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Abstract: An in-depth study of the failure of granular materials, which is known as a mechanism to
generate defects, can reveal the facts about the origin of the imperfections such as cracks in the carbon
anodes. The initiation and propagation of the cracks in the carbon anode, especially the horizontal
cracks below the stub-holes, reduce the anode efficiency during the electrolysis process. In order
to avoid the formation of cracks in the carbon anodes, the failure analysis of coke aggregates can
be employed to determine the appropriate recipe and operating conditions. In this paper, it will be
shown that a particular failure mode can be responsible for the crack generation in the carbon anodes.
The second-order work criterion is employed to analyze the failure of the coke aggregate specimens
and the relationships between the second-order work, the kinetic energy, and the instability of the
granular material are investigated. In addition, the coke aggregates are modeled by exploiting the
discrete element method (DEM) to reveal the micro-mechanical behavior of the dry coke aggregates
during the compaction process. The optimal number of particles required for the failure analysis
in the DEM simulations is determined. The effects of the confining pressure and the strain rate as
two important compaction process parameters on the failure are studied. The results reveal that
increasing the confining pressure enhances the probability of the diffusing mode of the failure in the
specimen. On the other hand, the increase of strain rate augments the chance of the strain localization
mode of the failure in the specimen.

Keywords: Carbon anode production, Crack generation, Discrete element method, Failure analysis,
Second-order work criterion, Strain localization

1. Introduction

Carbon anodes are part of the chemical reaction of the alumina reduction and are
consumed during the Hall-Héroult electrolysis process. The mechanical and chemical qual-
ities of the carbon anodes directly affect the technological, economical, and environmental
aspects of the aluminum production process. The carbon anode production accounts for 17
% of the total cost of the aluminum smelting [1]. To produce one ton of aluminum, theoret-
ically, 334 kg of carbon would be required. However, in practice, the required carbon is
higher and roughly about 415 kg per ton of aluminum [2]. The carbon anodes are composed
of three major parts, i.e. the calcined petroleum coke (65 wt. %), the recycled anode (butt,
20 wt. %), and the coal tar pitch (15 wt. %). Initially, the coke particles are crushed and
sieved to the required size distribution, and they are mixed with the granulated recycled
butts. The dry aggregates are then heated to about 160 ◦C and mixed with the coal tar pitch
at 150–180 ◦C. The coal tar pitch binds the coke and butt particles. The obtained mixture is
called the anode paste. The anode paste goes through the vibro-compaction or the pressing
process to form the green anode blocks. To improve the mechanical strength and electrical
conductivity, the green anodes are baked at a temperature of 1100 ◦C. Then, the obtained
baked anodes can be used as electrodes in the aluminum smelters [3].
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Figure 1. Images of cuts made on baked carbon anodes which are manufactured at the Alcoa Deschambault Québec (ADQ)
smelter [4]. (The size of cracks in these images has been virtually enlarge for a clearer visual appreciation).

High mechanical strength and electrical conductivity, homogeneity, as well as low
reactivity towards carbon dioxide and air, are the important quality indices of the carbon
anodes [5]. The main parameters determining the final anode quality are categorized
into two essential groups; the material properties and the process parameters [6]. The
variations in the properties of the raw materials are considered as one of the most significant
challenges in the anode manufacturing industry. This quality variation is due to the fact
that the raw materials come from different sources. When the material properties are
changed, the paste formation and the process parameters including the mixing variables
and the compaction parameters should be re-adjusted in such a way to compensate for the
effects of the variations and to keep the anode quality consistent. Moreover, the sufficient
mixing power and time, the optimized speed of the vibro-compaction, and the confining
pressures, as well as the proper temperature, are the most important process parameters
determining the mixing effectiveness and the anode quality. An efficient mixing results in
a homogeneous distribution of the coke and the coal tar pitch, and lower porosity in the
paste that improves the anode characteristics such as the density and the thermal shock
resistance [5]. In addition, any changes in either the speed and load of pressing forming or
the frequency and dead-weight of the vibro-compaction process influence the homogeneity
of the density of the green anodes, as well as the quality of the baked anodes [7]. Similarly,
the higher baking temperature leads to larger crystallite sizes and a more homogeneous
structure of the pitch-coke, which reduces the electrical resistivity and the consumption
rate of the carbon anodes [8].

Any defects such as the internal and the external cracks and the density distribution
affect the carbon anode consumption rate and remarkably increase the process costs [7].
The presence of the cracks reduces the mechanical strength and the electrical conductivity
of the baked carbon anode, thereby reducing the life of the carbon anode, disrupting the
cell stability, and increasing the greenhouse gas emissions [6]. Given that all the steps of
anode production are done at high temperatures and the components of the anode paste
are opaque, it is not easy to investigate the origins of the cracks. The cracks can be formed
during the green carbon anode preparation, as well as during the baking process [9,10].
Many researchers have attempted to discover the reasons for the formation of the cracks in
the carbon anodes. Menard [11] attributed the generation of the cracks during the green
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anode formation to two factors, trapping compressed air in the anode paste during the
formation and inhomogeneous distribution of the binder, which causes adhesion between
the coke particles. Moreover, Amrani et al. [12] ascribed the crack formation to the releasing
of the volatiles from the coal-tar pitch during the baking process, which can create pressure
inside the carbon anodes.

Three major types of the cracks can develop in the carbon anodes: corner, vertical,
and horizontal cracks [13]. The corner cracks predominantly appear after the anode is
set into the electrolysis cell due to the thermal shock [14]. The vertical cracks are created
mainly during the baking process. The high temperature gradient inside the carbon anode
due to the high heating rate provides the tensile stresses required to create the vertical
cracks [8]. The horizontal cracks of the anodes are the most detrimental to the electrolysis
operation [13]. Under normal circumstances, the stresses caused by the thermal shock
cannot generate these types of cracks [13]. These defects should already appear as small
horizontal cracks that are likely to occur during the formation process [13]. Boubaker et
al. [4] reported a kind of the horizontal cracks below the stub-holes of the baked carbon
anodes. In Figure 1, the baked carbon anodes are cut from the middle and shows the
horizontal cracks under the stub-holes. Although these cracks are not present in all the
anodes, they are accidentally observed beneath the stub-holes. In the compaction process,
however, the compression stresses around the stub-holes appear to be higher than in other
parts of the carbon anode. Hence, It seems strange to have these types of cracks where
they are probably denser than elsewhere in the anode [15]. On the other hand, because
these cracks are the opening type, the tensile stresses perpendicular to the direction of the
crack growth is required to generate them [16]. However, the origin of these tensile stresses
beneath the stub-hole is not known [4].

Many investigations have been conducted to find the cause of the formation of the
cracks [15,17]. Due to the high temperature of the forming process and the opacity of the
carbon anode paste, the experimental investigations are not easily performed. Chaouki
et al. [15] proposed a constitutive law to simulate the anode paste during the compaction
process. Although this model can reveal the density gradient due to the stub-hole, it is not
capable of demonstrating the formation of the horizontal cracks below the stub-hole [15,17].
This limitation stems from the fact that the granularity nature of the anode paste cannot be
taken into account by phenomenological models such as finite element methods [18]. On
the other hand, several attempts have been made to investigate the behavior of anode paste
using the discrete element method (DEM), which considers grains as the basic element
from which the mechanical behavior of granular materials originates [6,19]. Despite the fact
that modeling anode paste with all its complexities, including different size distribution,
particle shape, solid-fluid interaction, and coal-tar pitch dependence on temperature, is a
challenging task, DEM has shown that it is able to simulate successfully some properties of
the anode coke aggregates such as the bulk density [20] and the electrical resistivity [21].
However, investigating the causes of the horizontal cracks under stub-holes requires more
in-depth analysis. Hence, a comprehensive study of the distinct behaviors of granular
materials subjected to compression loading conditions can shed light on the hidden truth
of this problem.

The granular materials are generally defined as those composed of the smaller par-
ticles, and in our case, those whose mechanical behavior is governed by the interaction
between the particles [18]. When the granular material is exposed to a compression load, it
reaches a stress state wherein it is no longer able to sustain any deviatoric load increment.
At such a limited stress state, if an additional load is imposed the state of the material
changes suddenly with the occurrence of large deformations, cracks, fragmentation, etc
[22]. This circumstance, which is associated with a sudden decrease in the number of
grain contacts, is called failure [23]. The sudden reduction in the grain contacts leads to a
significant increase in the number of degrees of freedom which implies the possibility of
rapid relative displacements between the grains. Due to these rapid relative displacements
between the grains, the failure is a physical phenomenon that can be regarded as a state
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from which a transition from a quasi-static regime to a dynamical regime is possible under
certain constant loading parameters [24]. For the materials with an associative flow rule,
as it is generally assumed for metals, the symmetry of the elasto-plastic tensor leads to
the compelling fact that the failure occurs in the plastic limit condition. However, for
granular materials, which are known to have non-associated flow rules and consequently
non-symmetry in the elasto-plastic tensor, the failure can be met before the plastic limit
condition (Mohr-Coulomb criterion) [25]. The mathematical interpretation of the failure
is usually attributed to the existence of a limit load that cannot be exceeded for a given
mechanical system under some boundary and initial conditions [26].

The failure in the granular materials is initiated by the instability of these materials
[27]. The instability can be either geometric such as structural instability [28], or material
such as constitutive behavior and force chains buckling [25,29]. The geometric instability is
associated with the tendency of the configuration to pass from one deformation pattern to
another [28]. For instance, the critical condition of a long, slender column that is axially
loaded is a state of transition from pure compression to a combination of compression and
bending. Therefore, this type of instability is a function of the geometry of the specimen
and its loading [30]. On the other hand, material instability is defined as a property of the
material that converts an initially homogeneous deformation field into a heterogeneous
deformation field [31]. The material instability is related to the size of the materially
intrinsic length scales, which is called microstructure, and the magnitudes of the length
scale of the initial perturbations [29,31]. For example, local buckling of particle force chains
is considered as a material instability [29,32].

The material instability leads to the loss of uniqueness of the solution of the underlying
governing equations, hence to a bifurcation problem [33]. When a mechanical state belongs
within the bifurcation domain, failure is possible depending on the loading parameters,
loading history, disturbances, and imperfections in the system [22]. Due to this dependence
on small perturbations, the failure can also be viewed as an instability phenomenon in the
basic Lyapunov sense [34]. Lyapunov’s definition of stability expresses that for a given
rate-independent material, a stress-strain state for a given strain history is called stable
if any small change of any admissible loading leads to a small change of the response.
However, the main question that comes to mind is, according to Lyapunov’s definition of
stability, how can be shown a stress-strain state is unstable strictly inside the plastic limit
surface?

Two concepts of failure are built around the above-mentioned question of describing
the failure. The first one is the notion of controllability [35] and the second one is the
sustainability of equilibrium states [36]. Nova [35] proceeded by defining controllability
as the ability of a material (or a model) to provide one and only one (existence and
uniqueness) response to any loading path for which some strain components and the
other stress components are prescribed. According to [35], granular materials lose their
controllability at a certain stress level and after that point, the specimen does not give rise to
a unique material response under any arbitrary incremental loading program. At this point,
the stiffness tensor is no longer positive definite. It has been shown that as soon as the
stiffness tensor becomes positive semi-definite, there is a particular program that leads to
infinite solutions and unconditional controllability is lost [37]. The concept of controllability
is an interpretation of the Lyapunov definition of stability. As the notion of controllability
applies to a given loading program, therefore, this is not an intrinsic characteristic of
the mechanical state of the system [35]. On the other hand, another interpretation of the
Lyapunov definition of stability is about the sustainability of the mechanical state of the
system. The sustainability of equilibrium states defined as an ability of a mechanical system
loaded with specific control parameters to evolve toward another mechanical state from
a given equilibrium state, with no change in the control parameters [36]. If this is true,
the equilibrium state of the material is reputed unsustainable, and the subsequent loss
of sustainability corresponds to a proper bifurcation mode. From a mechanical point of
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view, it means that a system that is initially in equilibrium can generate kinetic energy
spontaneously and without any external disturbances [26,36].

Due to the difficulty with Lyapunov definition of stability, there was a need for a
related manageable criterion of failure for the practical use in the investigation of the
granular materials [38,39]. To compensate for this issue, Hill’s second-order work criterion
of stability has been introduced. According to Hill [40], a stress-strain state is unstable if
there exists one loading direction which can be pursued in an infinitesimal manner without
any input of the energy from an external source. Although Hill’s criterion and Lyapunov’s
definition of stability are not related in a general manner [41], the concepts of controllability
and sustainability are equivalent to the Hill’s criterion in the classical elasto-plasticity [35]
and the failure of granular materials [39,42]. Therefore, in spite of the fact that this criterion
does not specify the mode of material failure [24], it can predict the necessary conditions
for the occurrence of a failure in the granular materials.

Various modes of failure in granular materials have been observed in practice. Thanks
to experimental observations, there are two broad classes of failure modes that arise in the
granular materials due to some instabilities [43]. In the granular materials, excluding flutter
instabilities, two material failure modes are of interest: localized and diffuse failure modes.
At a material point scale, the localized failure mode corresponds to a transition from a
homogeneous strain pattern to an inhomogeneous one, characterized by the appearance of
a system of bands in which strains concentrate [44]. These narrow zones where deforma-
tion is concentrated are called localized bands. Depending on the loading path and their
kinematic attributes, shear, dilation, or compaction bands may be developed [45]. While
the shear bands are predominated by shearing, the dilation and compaction bands are
formed primarily by volumetric deformation and they are characterized by local volume
expansion and local volume reduction, respectively [45]. The strain localization of the
granular materials has been studied by many researchers through theoretical [44,46–48], ex-
perimental [49–54], and numerical methods [55–58]. There have been attempts to simulate
the phenomenon of the strain localization in the granular material, especially in the sand
samples, based on either continuum mechanics by using the finite element method (FEM)
[55,56] or micro-mechanics by using the discrete element methods (DEM) [53,57]. The
finite element methods (FEM) require the constitutive relation of the material, while there
are no reliable constitutive laws that can accurately predict the behavior of the granular
materials [59]. It should be noted that the constitutive laws derived from the classical
continuum mechanics do not take into account the dimensions of the granular elements
[18,60]. Consequently, these constitutive laws suffer from pathological mesh-dependency
when they are employed in the failure analyses [61,62]. However, the discrete element
method can provide applicable equipment for considering the internal length scale of the
granular material without involving the sophisticated mathematics of the non-classical
continuum mechanics [63]. In addition, a combination of the latter two methods, called
multi-scale methods, is also used to model the strain localization in the granular materials,
which benefits from both FEM and DEM [18,58,62,64,65].

On the contrary, the diffusing failure mode corresponds to a homogeneous occurrence
of the failure in which no visible pattern of localization exists [66]. A chaotic, unstructured
strain field dominates [41]. This failure mode can be observed mostly in the loose sand
specimens for classical tests [67]. Diffusing failure does not occur in the dense sand under
undrained conditions [68]. This is the case, for instance, for the isochoric triaxial test carried
out on a loose sand specimen. At the deviatoric peak, an infinitesimal loading disturbance
is sufficient to provoke the abrupt collapse of the specimen without any localization pattern
[38,66]. While the localized failure is predicted by the vanishing values of the determinant
of the acoustic tensor [46], known as classical bifurcation analysis, the second-order work
criterion is mostly used as a proper indicator of the diffuse failure mode [66]. Although
there are differences in the kinematics properties of the two failure modes, [69] showed
that both localized and diffuse failure can be predicted through the classical bifurcation
analysis. Despite the difficulty in finding a proper constitutive law that describes the
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granular material’s behavior, the bifurcation analysis has been used widely to predict
failure in the sands [56,70], the rocks [71], and the fluid-saturated granular soils [72,73].
Moreover, it has been shown that the second-order work criterion is capable to detect
both the diffuse and the localized failure modes [24]. This criterion, unlike the classical
bifurcation analysis, does not require necessarily a constitutive law to predict failure [74].

Comprehension of failure as a mechanism to generate defects in granular material
can reveal the facts about the origin of the imperfections such as cracks in the granular
materials (e.g. see [45,75] and the references cited in them). In geology, the localized
bands are recognized as the main mechanism of fault formation in sandstone which
precedes the formation of the larger faults [76,77]. As these localized bands are usually
associated with porosity reduction, they may provide a natural barrier to fluid flows and
form hydrocarbon reservoirs and aquifers [78,79]. Another type of localized bands, called
compaction bands, is formed by the accommodation of pure compaction (with little or
no shear) in the tabular zone perpendicular to the maximum compression direction in
the sandstone or the sedimentary rocks [80–82]. There are compelling evidence for the
existence and the formation of compaction bands in the granular materials that are exposed
to the compressive stress states both in the laboratory and in the theory [82]. Although
compaction bands were first recognized in the sandstone [80], similar phenomena appear
to be common in the other porous materials [83]. For instance, Bastawros et al. [84] were
able to illustrate the formation of the compaction bands in a cellular aluminum alloy upon
axial compression through a digital image correlation procedure. Similar observations had
been reported for steel foams [85] and polycarbonate honeycombs [86] in which inherent
pore collapse has mainly caused the formation of the compaction bands.

The characteristics of the compaction bands, such as being perpendicular to the
maximum principal compression direction, as well as the similarity in the way of loading,
which is mainly compressive, have led us to the idea that the horizontal cracks beneath
the stub-holes in the carbon anodes can be generated by these bands. Figure 2 shows how
internal tensile stresses could generate inside the carbon anode even in the absence of an
external load. When the compressive stresses are applied to the carbon anode paste, due
to the stub-hole shape effect, the areas below the stub-holes subject to more compaction
than their neighboring areas (Figure 2 (a)). It is assumed that this additional compression
can cause the compressive strain to accumulate in a narrow rectangular region, resulting
in a compression band (dashed rectangle in Figure 2 (b)). After removing the external
load from the material, due to the viscoelastic properties of the carbon anode paste, the
compression accumulated in the compaction bands causes residual tensile stresses in the
stub-hole region, as well as residual compressive stresses in the neighboring areas (Figure
2 (c)). Accordingly, the compaction bands could be responsible for the tensile stresses
which are required for the generation of these type of cracks. This phenomenon is similar
to the inclusion problem in the elastic media described by Eshelby [87]. Although many
researchers used an analogous method to predict the initiating of the compaction bands
in the porous rocks [81,88–90], the factors influencing the various manifestations of the
compression bands are still unknown [82]. Therefore, understanding the failure behavior
of the granular materials is of great importance to find the mysterious phenomena of
compaction band formation. In addition, due to the fact that detection of the compaction
bands is difficult in either the field or the laboratory [82], it is possible that compaction
bands are present in virtually all the carbon anodes (even in the cases where there are no
horizontal cracks). Although some parameters, such as thermal shocks or shrinkage of the
coal-tar pitch during the baking process, affect the formation of the cracks in the carbon
anodes, the compaction bands are a mechanism that can create a susceptible region under
the stub-holes to generate the horizontal cracks. Therefore, it is necessary to determine
the factors of the physical conditions and the material characteristics associated with the
formation of the compaction bands in the case of a systematic investigation.

As aforementioned, the existence of compaction bands in the visco-elastic anode
paste creates a susceptible area for the horizontal crack formation. While the temperature
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(a) (b) (c)

Figure 2. Generation of the residual tensile stresses due to compaction band formation. (a) The carbon anode paste before
the compaction process. (b) The carbon anode paste during the compaction process and the formation of the compaction
band (dashed rectangle). (c) Creating residual stresses in the absence of the external pressure. (The red arrows indicate the
compression stresses and the blue ones show the tensile stresses).

and coal-tar pitch content affect the viscous part of the anode paste, the coke particle
characteristics influence the elastic part of the anode paste behavior [5]. Therefore, it seems
reasonable to consider only the coke particles for the failure analysis. In addition, the
coarse coke particles have been shown to form a skeleton that controls the main mechanical
behavior of coke aggregates [91]. Hence, for the sake of simplicity, we will consider the
coarse coke particles with spherical shape for our investigations. Accordingly, in this paper,
the second-order work criterion for the failure of the granular material will be reviewed
and the influence of failure on the kinetic energy of the system will be explained in Section
2. In addition, the ability of the second-order work criterion in diagnosing the failure of
the granular material will be discussed. In Section 3, the concept of the discrete element
method will be presented. The criteria for choosing the proper representative volume
element (RVE) will be studied. In Section 4, the strain localization analysis is presented
based on the second-order work criterion and the evolution of the mode of the localized
bands will be discussed. The most salient results of this work will be summarized and
discussed in Section 5.

Throughout this paper, the material time derivatives of any variable ψ will be dis-
tinguished by denoting Dψ

Dt and the particulate time derivative of ψ defined as ψ̇. The
first-order tensors (vectors) and the second-order tensors, respectively, denoted by lower-
case bold Latin (v) and upper-case bold Latin (F). Moreover, the subscript 3 throughout the
paper indicates the axial direction, while the subscripts 1 and 2 were designated as lateral
directions.

2. Second-order work criterion

In mechanical problems, where the existence of a potential energy function can be
assumed, with some particular hypotheses on conservative and dissipative forces, stability
is ensured if this potential function has a strict minimum. Due to complex dissipative
phenomena, a potential energy function does not exist in mechanics problems involving
granular media [38]. Therefore, the material instabilities thus cannot be studied through
the analysis of potential energy function. In other words, these instabilities are linked to
the inherent deformation mechanisms of the granular material and do not depend on the
potential energy. In addition, the theoretical investigations, the numerical analyses, and
the experimental results highlight that the concept of failure is related to the development
of kinetic energy [26,68,92,93]. As a consequence, it is necessary to have criteria that relate
the kinetic energy of granular material to the control parameters (such as strain or stress
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Figure 3. Definition of the First Piola-Kirchhoff stress tensor and Cauchy stress tensor and transformation of a material system.

at the boundaries). Hence, the issue of stability will be investigated using Hill’s second-
order work criterion [40]. This sufficient condition of failure states that a stress-strain
state is stable if, for all (δP, δF) in the semi-Lagrangian formulation or (δσ, δǫ) in Eulerian
formulation (by assuming small deformations and neglecting geometrical aspects) linked
by the constitutive relation, the second-order work is strictly positive [94]:

d2W =
∫∫∫

V0

δPij δFij dV0 > 0 (semi-Lagrangian expression) ,

d2W =
∫∫∫

V

δσij δǫij dV > 0 (Eulerian expression) ,
(1)

where Pij is the first Piola-Kirchhoff stress tensor, Fij the general term of the deformation
gradient tensor, σij the Cauchy stress tensor and, and ǫij is the strain tensor. Thus, according
to Hill, a stress-strain state is unstable if at least one loading direction exists that can be
pursued in an infinitesimal manner without any input of energy from the outside. It is
worth noting that the vanishing of the second-order work implies the loss of controllability
of the loading program, independently of the constitutive relations has been proved,
independently of the constitutive relations [37]. Although this sufficient condition is
not based on thermodynamic principles, it still remains a valuable tool for investigating
potential instabilities [38]. The nullity of the second-order work criterion is a powerful tool
to describe any kind of quasi-static material instability by taking into account that flutter
instabilities are dynamic.

2.1. kinetic energy of the granular system and external and internal second-order work

An attempt for the definition of the failure in the granular material was made in the
previous section, and this related to a transition (bifurcation) from a quasi-static regime
toward a dynamic one. In this section, the mathematical description of the second-order
work criterion is developed and the conditions in which the kinetic energy of the granular
material system may increase will be investigated. For this purpose, a system consisting of
granular material, with a volume, V0, and a surface boundary, S0, initially in a configuration,
C0, is considered. With a loading history, the system is in a current configuration, C, with
a volume, V, and the surface boundary, S, in equilibrium under a prescribed external
load. Each material point in the volume V0 is transformed into a material point in the
volume V (Figure 3). All the material points in the volume V0 are displaced along with the
deformation of their geometric properties, including the surface vector, the area, and the
volume. During this transformation, the material is subjected to a rigid body motion, along
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with the pure strain induced by the stretching and the spinning deformations. If large
amounts of strain take place, the initial configuration, C0, will be significantly different
from the current configuration, C.

As the Cauchy stress tensor is not objective (in the rigid body transformation, it
gives different values), the first Piola-Kirchhoff stress tensor and the conservation of the
mechanical energy in the material description are used [95,96]. It should be noted that the
first Piola-Kirchhoff stress vector is the vector t0(X, t, n0), which is parallel to the Cauchy
stress t(x, t, n), but measures the force per unit undeformed area (see Figure 3). The balance
of the kinetic energy of a system with neglecting the body force in the material description
(configuration C0) can be derived as [97]:

D

Dt
K(t) = Pext(t)−Pint(t) , (2)

or
D

Dt

∫∫∫

V0

(
1
2

ρ0v · v

)

dV0 =
∫∫

S0

Pn0 · vdS0 −
∫∫∫

V0

P : ḞdV0 . (3)

Equation (3), expresses that the rate of change of the kinetic energy, K(t), is equal to the
difference between the power of the external forces, Pext(t), and the power of the stresses,
Pint(t). The stress power, P : Ḟ, given in term of the first Piola-Kirchhoff stress tensor
P = JσF−T and the deformation gradient F. Note that the stress power P : Ḟ refers to the
unit undeformed volume. By taking the time derivative of Equation (3) yields:

D2

Dt2

∫∫∫

V0

(
1
2

ρ0v · v

)

dV0 =
∫∫

S0

(
Ṗn0 · v + Pn0 · v̇

)
dS0 −

∫∫∫

V0

(
Ṗ : Ḟ + P : F̈

)
dV0 . (4)

Furthermore, the two-order Taylor expansion of the kinetic energy reads:

K(t0 + ∆t) = K(t0) + ∆tK̇(t0) +
(∆t)2

2
K̈(t0) + H.O.T. (∆t) . (5)

Since the velocity of the system in the initial time is equal to zero (quasi-static), the amount
of the kinetic energy K(t0) and its first time derivative K̇(t0) must be equal to zero [93]. In
addition, if ∆t is considered to be small, then the higher-order terms of ∆t (H.O.T. (∆t)) can
be ignored. Therefore, by substituting in Equation (5), the kinetic energy in a very small
time interval could be predicted as:

K(t0 + ∆t) =
(∆t)2

2
K̈(t0) . (6)

Therefore, by combining Equation (4) and (6), an approximation of the kinetic energy
changes in a quasi-static system will be obtained as a function of the external and the
internal stress powers.

K(t0 + ∆t) =
(∆t)2

2








Ṗext(t)
︷ ︸︸ ︷
∫∫

S0

(
Ṗn0 · v + Pn0 · v̇

)
dS0 −

Ṗint(t)
︷ ︸︸ ︷
∫∫∫

V0

(
Ṗ : Ḟ + P : F̈

)
dV0








. (7)

Based on Equation (7), the evolution of the kinetic energy of a granular system for every
time step can be expressed as the difference between the rate of the external and the internal
stress power. It should be noted that this approximation is limited to small time increments
[92]. In addition, in Equation (7), it is important to distinguish the stress acting on the
boundary and the stress inside the boundary.

Some simplification needed to be taken place for using Equation (7). Hereafter,
we particularize the analysis to a cubic representative volume element with dimension
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Figure 4. Cubic representative volume element.

(L1 × L2 × L3) as defined in Figure 4. The average external stress at the boundaries is
determined by summing the contact forces, f, along the boundary, and dividing by the
surface area of the rigid boundary for the 3D model. Therefore, the external stress of each
side of the boundary, Ai, is equal to:

Ti =
fi

Ai
, (8)

where, fi is the equivalent external force on the side "i" and the Ai is the area of the surface
perpendicular to the direction "ei", as mentioned in Figure 4. The displacement of each side
is denoted ui = u · ei. The deformation gradient tensor is defined as

[
Fij

]
= ∂xi

∂Xj
= 1 + ∂ui

∂Xj
.

No tangential displacement is assumed to take place. Therefore, the deformation gradient
tensor will be in its principal axes. It should be noted that at any material point of the
system, both the rate of the first Piola-Kirchhoff stress tensor (Ṗ) and the rate of the
deformation gradient tensor (Ḟ) are related by the constitutive equation Ṗij = Lijkl Ḟij, where
the four-order tensor L is the tangent constitutive tensor for rate-independent materials.
Since the first Piola-Kirchhoff stress tensor and deformation gradient tensor are each other’s
energy conjugate, the first Piola-Kirchhoff stress tensor will be in principle axes as well.
Against this background, it could be written:

〈F〉 =





〈F11〉 0 0
0 〈F22〉 0
0 0 〈F33〉



 and 〈P〉 =





〈P11〉 0 0
0 〈P22〉 0
0 0 〈P33〉



, (9)

where, 〈Y〉 denotes the mean value of the variable Y over the whole volume V0, which is
defined as:

〈Y〉 = 1
V0

∫∫∫

V0

YdV0 . (10)
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For the deformation gradient tensor 〈Fii〉 = 1
V0

∫∫∫

V0

(

1 + ∂ui
∂Xj

)

dV0 by virtue of the Green

formula, the following hold:

〈Fii〉 =
1

V0





∫∫∫

V0

dV0 +
∫∫

S0

uieidS0



 = 1 +
Ai

V0
ui . (11)

The detailed mathematical calculations of the first and the second rate of the deformation
gradient tensor are provided in Appendix A and B, respectively.

By considering the rate of the external stress power, Ṗext(t), and the above assump-
tions, it could be simplified as:

Ṗext(t) =
∫∫

S0

[(
∂Ti

∂t

)(
∂ui

∂t

)

+ Ti

(
∂2ui

∂t2

)]

dS0 . (12)

Equation (12) can be written as:

Ṗext(t) =
3

∑
i=1

(
Ṫiu̇i + Tiüi

)
Ai . (13)

due to considering a fixed value of the external stress on each side of the boundary.
In the other hand, the macro-homogeneity assumption makes it possible to invoke

the fundamental Hill identity [93], stating that
〈

PijFij

〉
=

〈
Pij

〉〈
Fij

〉
, consequently, by

considering the mean value for the first Piola-Kirchhoff stress tensor and the deformation
gradient tensor, the rate of the internal stress power, Ṗint(t), could be written as:

Ṗint(t) =
∫∫∫

V0

(〈
Ṗij

〉〈
Ḟij

〉
+

〈
Pij

〉〈
F̈ij

〉)
dV0 . (14)

Combining Equation (11) and Equation (14) gives:

Ṗint(t) =
(〈

Ṗij

〉〈
Ḟij

〉
+

〈
Pij

〉〈
F̈ij

〉)
V0 =

3

∑
i=1

(〈
Ṗii

〉
u̇i + 〈Pii〉üi

)
Ai . (15)

By substituting Equation (13) and (15) in Equation (7), an expression of the kinetic energy
as a function of the system’s second-order works is obtained:

K(t0 + ∆t) =
(∆t)2

2

3

∑
i=1

[(
Ṫi −

〈
Ṗii

〉)
u̇i + (Ti − 〈Pii〉)üi

]
Ai . (16)

The first term of the right-hand side of Equation (16) represents the difference between
external and internal second-order work. The second term ((Ti − 〈Pii〉)üi Ai) demonstrates
the effect of the inertia on the evolution of the kinetic energy. According to Equation (
16), the external stress vector (Ti) acting on the boundary of the specimen is equal to the
internal stress (〈Pii〉) acting within the specimen as long as the system is in the quasi-static
evolution, and consequently, the information from the boundary will reveal the material
constitutive behavior. Thus, the constitutive response of the specimen can be investigated
in that case from the measurable variables Ti and ui. This information exactly what is
evaluated during laboratory tests. On the other hand, when the material failure occurs, the
transition from the quasi-static to the dynamic regime, the information which are obtained
from the boundary is not the exact information of the material constitutive relations. Hence,
the external stresses are not balanced by the internal stresses, and a heterogeneous strain
field may develop within the specimen [93]. In addition, when failure occurs, the internal
stress will be dropped and according to Equation (16), the terms

(
Ṫi −

〈
Ṗii

〉)
and(Ti − 〈Pii〉)
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are greater than zero. Therefore, in this case, leads to K(t0 + ∆t) > 0, which describes an
outburst in the kinetic energy [92]. Hence, a sudden release in the kinetic energy of the
system, could be an indicator of the material failure.

3. DEM simulation

The discontinuous nature of the granular materials causes many phenomena such
as the collapse of void space and the buckling of force chains, that cannot be modeled by
the phenomenological plasticity methods [63,64]. One possibility to obtain information
about the behavior of the granular materials is to perform simulations with the discrete
element method (DEM) as proposed by [98]. Because the DEM provides the opportunity
to track the motion of every single particle in the grain assembly, it can consider how the
microstructures affect the macroscopic properties of the granular material. Therefore, it
provides interesting information to describe the mechanisms of the failure in the granular
materials.

In this paper, the DEM computations were realized with the open-source software
YADE [99]. The particles are assumed to be rigid spheres with a diameter, dp. The inter-
actions between the particles are simulated in the normal direction to the contact by a
linear elastic spring with a stiffness Kn = 681 MPa, and in the tangential direction by a
linear elastic spring with a stiffness (Kt/Kn = 0.385), and the tangential perfect plasticity
with a friction angle ϕ = 18◦ [6]. The normal and the tangential contact forces, fn and ft,
respectively, are given by:

fn =Knδn fn > 0 ,

ft =Ktδt, ft 6 tan ϕ fn ,
(17)

where δn is the overlap at the contact point and δt is the incremental tangential displacement.
At the beginning of a computational time-step, the position of all the elements and the
boundaries are known. The contacts are detected by the algorithm according to the known
position of the elements and so the magnitude of the possible overlaps between the elements
are discovered. The propagated contact forces and momentum on each sphere are then
calculated by the interaction law (Equation (17)). After that, the forces are inserted in the
law of motion for each particle and the velocity and the acceleration of the particles are
calculated. Then, the new sphere positions are calculated by applying Newton’s second
law of motion. The integration time in Newton’s second law and the interaction contact
law are both carried out by way of an explicit scheme. The positions of all the particles
and the boundaries in the current time-step are determined by the obtained values. This
cycle of the calculations is repeated and solved at each time-step, and thus the flow or the
deformation of the material is simulated (Figure 5).

Dealing with spherical particles has a great advantage comes from a relatively simple
geometry treatment, then two particles will be considered as interacting bodies if the
distance between their centers is lower than the sum of their radii. Simulation results
presented in this paper were all obtained from two boundary conditions, the periodic and
the solid boundary conditions. In the periodic boundary conditions, the particles can go
through the boundaries, although the total number of the particles is constant. It is useful
for the bulk properties modeling, because it ignores the boundary effect on the behavior
of the material [100]. Meanwhile, the solid boundary conditions are used for the failure
analysis, which is strictly controlled by the boundary effects [101]. Here, it is assumed
that the solid boundaries are frictionless. Therefore, the interaction of the spheres and the
walls will be in the normal direction of their contacts. The specimens are generated by
randomly inserting grains within a cubic domain (each side is Dinitial = 8 cm long) with
the possibility of overlap until a target void ratio is achieved. Then specimens are left to
stabilize. Since the time required to complete the calculation depends on the number of
particles, determining the optimum number of particles is a challenging part of our work.
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Figure 5. The computation cycle of a DEM model.

Table 1. Coke properties which are used in the DEM model [6].

Radii (mm) Density (kg/m3) Elastic Modulus (MPa) Poisson ratio Friction angle (rad) Damping ratio

1.87 1377 681 0.3 0.31 0.4

3.1. Determination of a proper representative volume element (RVE)

Due to the high computational cost of the DEM simulation, the modeling of the real
size of the carbon anode is not practical. Therefore, we need to perform our simulation
on the optimum number of particles which could represent the mechanical behavior of
the whole material with an acceptable statistical error [102]. Accordingly, six different
representative volume elements (RVE) are considered, each of which contains 150, 300, 500,
1000, 2000, 3000, and 4000 particles, respectively. The particle diameter is the same and is
equal to 3.74 mm. This is the average diameter of the coarse coke (4-8 US mesh) [19]. The
properties of the materials are also given in Table 1. All RVEs are then consolidated to the
same initial confining pressure P0 = 100 kPa. Because of the mechanical properties of the
RVEs are intended here, their shear responses are examined under a drained conventional
triaxial compression loading path. Hence, the load is applied through the displacement-
controlled boundaries in the z-direction (ǫ̇3 = 0.05 s−1), while the lateral boundaries are
stress-controlled and maintain a constant value for the lateral stresses (σ1 = σ2 = 100
kPa). Various criteria have been considered to quantify the RVE size, including having a
more homogeneous force path network, having a smother stress-strain diagram, having a
repetitive shear behavior, and having a higher chance of capturing the strain localization.
Below, They will be explained in detail.

3.1.1. First criterion: Having a more homogeneous force chain network

All the particles will not participate equally in the deformation of the granular materi-
als. However, when the forces between the particles are more symmetrical, the mechanical
behavior of the material will be closer to the bulk state. Figure 6 shows the force chain

Table 2. The average of inter-particle forces and their standard deviation for the different size RVEs.

Number of the particles in the RVE Average force (N) Standard deviation (N)

150 13.72 10.68
300 12.65 9.94
500 12.84 10.55
1000 12.76 9.69
2000 12.71 10.13
3000 12.49 9.39
4000 14.53 9.87
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Figure 6. Force chain network for the RVE with the periodic boundary conditions.

network of RVEs with a different number of particles in which the RVEs are under confin-
ing pressure (P0 = 100 kPa) and have periodic boundary conditions. To have an accurate
explanation for Figure 6, the average of inter-particle forces and the standard deviation
of the inter-particle forces are represented in Table 2. It is observed that the average of
the inter-particle forces and their standard deviation are almost the same for all the RVEs.
In addition, the results show that increasing the number of particles does not lead to an
increase in the inter-particle forces. This can be due to the fact that the stress on the RVEs is
the same. Hence, as the number of particles increases, both the boundary areas and the
number of particles that apply force to the boundaries increase in order to keep the stresses
felt at the boundaries constant. Therefore, this criterion does not lead us to a specific
conclusion for selecting the appropriate number of particles in the RVE.

3.1.2. Second and third criteria: Smooth the stress-strain curve and repetitive behavior

For quantifying the smoothness and repetitive behavior, the shear response of the
RVEs with a different number of particles are simulated and for each RVE this simulation is
repeated five times, and then their average is calculated. Figure 7 shows the average shear
behavior of the RVEs with different number of particles, and the error bars represent the
standard deviation from the average behavior. Because the bulk behavior of the RVEs is
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7. The average of shear behavior of the RVEs with (a) 150, (b) 300, (c) 500, (d) 1000, (e) 2000, (f) 3000, and (g) 4000 particles and
periodic boundary conditions. The error bars indicate the standard deviation for five times of simulation for each RVE.
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Figure 8. The maximum error of the stress-strain fluctuation versus D0/dp for the different RVEs with the different number
of particles.

desired, the periodic boundary conditions are employed. The results show that increasing
the number of particles leads to a reduction in the standard deviations and makes the
average stress-strain behavior of the RVEs smoother. This is because as the number of
particles increases, so does the number of particles taking part in the deformation. Also,
since the deformation of the granular material is associated with buckling of the force
chains and rearrangement of the particles, there are more particles to replace in the new
force chains so that they can withstand the external loads. As a result, less stress the
fluctuations are felt at the boundaries. Therefor, the stress-strain curve will be smoother.

To quantitative this phenomenon, D0/dp is considered in which D0 is the size of the
RVE at the beginning of the compaction process and dp is the diameter of the particles.
Based on [103], for the RVEs with higher D0/dp, the fluctuations of the stress-strain diagram
are reduced. We define another parameter in which the ratio of the maximum of the
standard deviation to its average stress is considered as the error parameter. The error
parameter is as follows:

error =
Max(δσi)

σi
× 100 , (18)

where Max(δσi) is the maximum of the standard deviation and the σi is the average stress
belongs to the maximum standard deviation. In addition, Oda and Kazama [32] by using
photoelastic pictures taken from a biaxial test on a two-dimensional assembly of oval rods
indicated that the thickness of localized bands is at least 7 times of the mean particle size.
Therefore, the RVEs with 150 and 300 particles in which D0/dp is less than 7 will be refused
for this criterion. Moreover, according to Evesque and Adjemian [103], if the number of
particles increases, the error will be decreased. In figure 8, the error parameter is plotted
in terms of the parameter D0/dp for the RVEs with different number of particle. For the
RVEs with 2000, 3000, and 4000 particles, the error is 4.9%, 3.9%, and 3.28 %, respectively.
In addition, the parameter D0/dp for the RVEs with 2000, 3000, and 4000 particles is 12.27,
14.023, 15.41, respectively. Therefore, these three RVEs can be considered as candidates.
It is worth mentioning that to achieve an error of less than 1%, an RVE with at least 107

particles must be used [103].

3.1.3. Forth criterion: Higher chance of capturing the strain localization

According to Stroeven et al. [102], if the size of the RVE increases, the resolution for
capturing the strain localization inside the RVE increases. In other words, by increasing
the number of particles, the localized zone will be more distinguishable. To examine this
issue, the RVEs with the mono-size particles and the solid boundary conditions with the
different number of particles are considered. The initial position of particles inside the
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Figure 9. the particle-centered domains for the definition of micro-strain.

RVEs is random. The particles are initially compressed by a confining pressure of 100 kPa.
While the axial pressure is applied through the upper displacement-controlled boundary
(ǫ̇3 = 0.05 s−1), the micro-strain is calculated for each particle. The micro-strain tensor
for a particle is defined as a function of the displacements of the particles adjacent to it
in the regular triangulation, which forms the polyhedral domain Vµ (Figure 9) [104,105].
The definition is based on the equivalent continuum formed by the space cells of the
system. The space cells are triangles in 2D and tetrahedral in 3D, formed by the centers of
neighboring (but not necessarily contacting) particles (see Figure 9). The boundary of this
equivalent continuum goes through the center of the surrounded particles. The average
displacement gradient in the equivalent continuum, which contains the polyhedral domain
Vµ, is as follows:

〈∇u〉µ =
1

Vµ

∫∫∫

Vµ

∂(u)

∂x
dVµ =

1
Vµ

∫∫

Sµ

u · n dSµ , (19)

where, Vµ and Sµ are the volume or the surface area of the cell, du is the translation vector
of the boundary point, and n is the outwards unit normal vector of the boundary of the cell
at the same point. In addition, the amount of du for the point c is equal to the difference
between m and n nodes translation. Therefore, by applying the ∆uc = un − um and using
dc, the complementary area vector belonging to the c the pair of grains (see [105,106] for
more detail), the average displacement gradient for the particle p will be:

〈∇u〉µ =
1

Vµ
∑

c

∆ucdc, (20)

and the micro-strain is the symmetric part of Equation (20) and is as follows:

〈
ǫij

〉

µ
=

1
2Vµ

∑
c

(
∆ui

cdj
c + ∆uj

cdi
c). (21)

The micro-strains are visualized for the different RVEs in Figure 10 and it roughly
shows that localized areas are more recognizable as the number of particles increases.
Hence, as shown in Figure 10, it is easier to detect the localized areas in the RVEs with 3000
and 4000 particles than in the RVEs with 1000 and 2000 particles. However, this judgment
is based on the visualization (color difference in Figure 10) and mathematically it could not
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(a) (b)

(c) (d)

Figure 10. The magnitude of the micro-strain insideThe RVEs with (a) 1000, (b) 2000, (c) 3000, and (d) 4000 particles.

be cited. Hence, we need a rational criterion to select the RVE with the most probable of
the strain localization formation.

As explained in Section 2.1, the granular material failure is a transition state (a bi-
furcation) between a quasi-static regime and a dynamic one; consequently, the changing
procedure of the kinetic energy could be a reliable indicator of the granular material failure
[92,93]. Therefore, by pursuing of the kinetic energy of a granular system, its failure can
be recognized. In addition, As Oda and Kazama [32] explained, the particles which are
located in the localized zone have the rotation one order of the magnitude more than the
rotation of the particles outside of the localized zone. Hence, the onset of failure will be
accompanied by a jump in the kinetic energy of the granular system [92]. The kinetic
energy of a granular system is:

K(t) =
N

∑
i=1

[
1
2

mp(vp)2 +
1
2

ωp
(

IpωpT
)]

, (22)

where mp is the mass of the particle p, vp is the linear velocity of the particle p, Ip is
the inertia tensor transformed to the global frame, and ωp is the angular velocity of the
particles p. The total number of the particles in each RVE is denoted by N. In view of the
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Figure 11. The evolution of the total kinetic energy of different RVEs during the compaction process.

fact that the compaction process carried out in the quasi static manner, the kinetic energy
of all the RVEs will remain near to zero (10−2µJ) except when the failure occurs in them. It
should be note that the discrete element method is a dynamic method (in each step, DEM
solves Newton’s second law of motion for each particle to find the new interactions and
position of particles), hence the initial kinetic energy of the system is not exactly zero (the
initial kinetic energy is in the order of 10−2µJ). Therefore, the outburst of the kinetic energy
is an indicator of the higher probability of the failure (localization) in the RVEs. Figure 11
shows the kinetic energy evaluation of the RVEs with different number of particles. For
the RVEs with 2000, 3000, and 4000 particles, the kinetic energy diagram has a jump when
the strain equal to 0.044, 0.07, and 0.093, respectively. The local maximums of Figure 11
reveal the bucking of the small force-chains in the RVEs [107]. Therefore, the RVEs with
2000, 3000, and 4000 particles can be treated as candidates.

All the criteria which are considered in this paper show that as the number of particles
increases, the RVE behavior will be more reliable. On the other hand, increasing the number
of particles dramatically affects the computational cost. Therefore, selecting the size of the
RVE size is a trade-off between the computational cost and the reliability of the results. The
computational cost for DEM simulation is a function of the number of particles, strain rate,
the hydrostatic pressure, and the Central Processing Units (CPU) of the system used for the
simulation. For example, the computational cost for the RVE with 1000 particles, confining
pressure equal to 100 kPa, and the strain rate equal to 0.05 s−1 is approximately 10 hours.
This time for the RVE with 4000 particles is nearly four days. Therefore, the computational
cost is the most effective limiting factor for considering more particles. According to our
criteria, the error and smoothness of the RVE with 3000 and 4000 particles are almost
the same. Hence, to reduce the computational cost, the RVE with 3000 particles will be
considered for further investigations.

4. Failure analysis

The confining pressure and the speed of compaction process have a significant effect on
the final density of the carbon anodes. To investigate the effect of the confining pressure and
the strain rate on the failure of the carbon anodes, numerical simulations were conducted
on three three-dimensional specimens S1, S2, and S3 which are compacted uniformly by
confining pressure equal to 100 kPa, 250 kPa, and 100 kPa, respectively. All of the specimens
are cubical in shape and contain 3000 spherical particles of radius 1.87 mm enclosed within
six rigid frictionless walls. They were compressed from initially sparse arrangements of
the particles to an isotopic state by moving the six rigid frictionless walls until the desired

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 March 2021                   doi:10.20944/preprints202103.0393.v1

https://doi.org/10.20944/preprints202103.0393.v1


20 of 30

(a)

(b)

Figure 12. (a)The shear stress behavior and (b) the volumetric strain behavior of specimens S1, S2, and S3.

confining pressures are reached. The desired confining pressures for specimens S1 and
S3 are σ1 = σ2 = σ3 = 100 kPa and for specimen S2 is σ1 = σ2 = σ3 = 250 kPa. They are
then subjected to a drained conventional triaxial compression loading path. The stresses
are kept constant and equal to confining pressures in the lateral directions. The specimens
are loaded by applying constant strain rate in the axial direction. The axial strain rate for
specimen S1 and S2 is ǫ̇3 = 0.05 s−1, for specimen S3 is ǫ̇3 = 0.15 s−1. The initial porosity
of both specimens S1 and S3 are the same and equal to φ = 0.466. The initial porosity
of the specimen S2 is equal to φ = 0.463. It should be noticed that porosity is defined as
φ = VT−Vs

VT
in which Vs is the volume of spheres and VT is the total volume of specimen.

The evolution of both the axial stress σ3 and the volumetric strain ǫv versus the axial
strain ǫ3 are shown in Figure 12 (a) and (b), respectively for all three specimens. For
specimen S1, the axial stress increases continuously (positive hardening regime) toward a
limit plateau at which σ3 = 203 kPa, and its volumetric strain increases when the strain
reaches to 0.0825. By increasing the confining pressure for specimen S2, the hardening
regime augments and its axial stress increases until it reaches to the strain ǫ3 = 0.122. The
maximum of the axial stress at this strain is σ3 = 511 kPa. Its volumetric strain grows after
axial strain reaches to ǫ3 = 0.067. The shear behavior of specimen S3 is similar to specimen
S1, except that the hardening regime for specimen S3 is shorter than specimen S1 and it
reach to its maximum level of stress when the axial strain is equal to 0.0365. Moreover, the
reduction of volumetric strain for specimen S3 is less than specimen S1 and it attains its
minimum value at the axial strain ǫ3 = 0.92. These analyzes are based on the behavior
of the granular material at the boundaries. Although our information in the laboratory
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Figure 13. Definition of Rendulic planes; (a) stress probes and (b) strain responses.

experiments is also based on the information which are obtained from the boundaries,
when the granular materials fails, the information at the boundaries does not properly
delineate the behavior of the material. Therefore, second-order work analysis requires
examining the behavior of the specimens at their critical points.

4.1. Second-order work from macroscopic variables

In Section 2, the two distinct formulations of the second-order work have been re-
viewed. [42] shown that the semi-Lagrangian and the Eulerian expressions of the second-
order work are equivalent as long as the deformation is quasi static. In addition, the
second-order work for a granular material can be calculated using by either macroscopic
variable or inter-particle variables (microscopic variables) [39]. [42] shown that the macro-
scopic second-order work Equation (1) (the variables that are measured at the boundaries)
and the microscopic expression (which takes into account the forces between the particles
and the micro displacement gradient) are in a good agreement. Therefore, in this paper, the
Eulerian expression of the second-order work with macroscopic variable will be used.

In order to compute the second order work from the macroscopic variables, three
stress states defined by their deviatoric stress ratio η = (3(σ3 − σ1)/(σ1 + σ2 + σ3)) are
considered (represented by the points (A1, B1, C1), (A2, B2, C2), and (A3, B3, C3) in Figure
12 (a) for specimens S1, S2, and S3, respectively). These arbitrary stress states are chosen
before the maximum stress condition (Mohr-Coulomb condition) is reached (see Table 3).
In particular, A1, A2, and A3 correspond to the isotropic state for each specimen. The strain
states which are specified in Table 3 will constitute initial states on which stress probes
(as first introduced by [108]) are performed. It should be noted that due to frictionless
boundaries of specimens and the fact that lateral stresses are kept equal, the stress probe
will be written as:

∆~σ =‖ ∆~σ ‖ (cos(α)~e1 + cos(α)~e2 + sin(α)~e3) . (23)

Table 3. Deviatoric stress ratio η and axial strain ǫ3 corresponding to the critical points of specimens
S1, S2, and S3.

Specimen S1 Specimen S2 Specimen S3

A1 B1 C1 A2 B2 C2 A3 B3 C3

ǫ3 0 0.0413 0.0833 0 0.0365 0.067 0 0.04 0.092
η 0 0.69 0.74 0 0.62 0.76 0 0.65 0.75

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 March 2021                   doi:10.20944/preprints202103.0393.v1

https://doi.org/10.20944/preprints202103.0393.v1


22 of 30

(a) (b)

(c)

Figure 14. Circular diagrams of the normalized second-order work of (a) specimen S1 (confining pressure P0 = 100 kPa and
strain rate ǫ̇3 = 0.05 s−1), (b) specimen S2 (confining pressure P0 = 250 kPa and strain rate ǫ̇3 = 0.05 s−1), and (c) specimen
S3 (confining pressure P0 = 100 kPa and strain rate ǫ̇3 = 0.15 s−1) for different values of η.

By exposing this stress probe to the specimens, the strain response will be obtained directly
from DEM as:

∆~ǫ = (‖ ∆~ǫ1 ‖)~e1 + (‖ ∆~ǫ2 ‖)~e2 + (‖ ∆~ǫ3 ‖)~e3 . (24)

As the stress probe and its strain response are equal in the lateral direction, the they could
be represented on a two dimensional diagram (see Figure 13). Stress probes are performed
from an initial stress-strain state by imposing a loading vector ∆~σ defined in the Rendulic
plane of stress increments (

√
2∆σ1, ∆σ3). The norm of ∆~σ assumed to be 10 kPa. The angle

α between the
√

2∆σ1 and ∆~σ is increased from 0◦ to 360◦ by increments of 10◦ to check
each stress direction. The maximum axial strain rate for applying the stress probe for
specimens S1 and S2 is equal to 0.05 s−1, and for the specimen S3 is equal to 0.15 s−1. The
corresponding response vectors ∆~ǫ, defined in the Rendulic plane of the strain increments
(
√

2∆ǫ1, ∆ǫ3) are computed. Once the strain response ∆~ǫ is computed for each stress probe,
by using Eulerian expression of Equation (1) the macroscopic normalized second-order
work is computed as:

d2W̄ =
∆~σ.∆~ǫ

‖ ∆~σ ‖‖ ∆~ǫ ‖ , (25)

for all investigated stress directions and considered strain states. It is worth mentioning that
the value of normalized second-order work is in the range of [−1, 1]. Figure 14 represents
the value of the normalized second-order work for the specimens S1, S2, and S3 at their
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Figure 15. The micro-strain contour evolution during compaction process of specimen S1 (P0 = 100 kPa and ǫ̇3 = 0.05s−1).

critical stress state. The dashed circles in Figure 14 demonstrate the zero value for the
second-order work. Therefore, when d2W̄ is negative the plot is inside the dashed circles,
whereas plot is outside the dashed circles for positive values of d2W̄.

All the specimens have a positive second-order work in the isotropic stress state
(points A1, A2, and A3). In the other words, all the specimens are in the stable stress state at
the begging of the compaction process. For the specimen S1, the cone of the unstable stress
directions (inside the dashed circle zone in Figure 14 (a)) are found for σ3 = 173.5 kPa when
its correspond α is in the range of [225◦, 248◦]. In addition, the stress states of point C1,
in which the tangent of the volumetric strain diagram (Figure 12 (b)) is zero, are unstable
when α in the range of [227◦, 254◦]. By increasing the confining pressure for specimen S2
to P0 = 250 kPa, all the stress states associated with point B2 are stable. Moreover, the
unstable stress is discovered for the σ3 = 445 kPa when its corresponding α is in the range
of [249◦, 251◦]. The results indicates that by enhancing the confining pressure, the stable
zone for the compaction process increases, and the specimen could be tolerated more stress
without any failure inside. In a similar way, by increasing the strain rate to ǫ̇3 = 0.15 s−1,
the cone of the unstable stress directions are found when the axial stress is equal to 174.1
kPa (Figure 14 (c)). The unstable corresponding α for this stress state is in the range of
[229◦, 231◦]. By comparison the range of the unstable α for the points B1 and B3 reveals
that the unstable zone diminishes when the strain rate enhances. However, by analyzing
the response of the stress state at the point C3, the unstable stress directions are detected
when the range of α is [226◦, 253◦], which is almost similar to the range of the unstable α
for the point C1 of the specimen S1. As we discussed in Section 2, the second-order work
criterion does not specify the instability mode of specimens. Therefore, the micro-strain
contours are plotted during the compaction process to identify which type of failure modes
(localization or diffusing failure) is happened inside the specimens.

4.2. Failure mode along the drained compression path

Both modes of the failure, either the localized within the granular assembly forming
then a system with failing bands and unloading zones; or diffuse within the whole granular
assembly (as thoroughly investigated in [109]) are observable for the failures initiated
from the generalized limit states. Thanks to using the micro-strain contours inside the
specimens, the mode of failure could be recognizable. As discussed in the previous section,
specimen S1 fails when the axial stress and the axial strain are equal to 173.5 kPa and 0.0413,
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Figure 16. The micro-strain contour evolution during compaction process of specimen S2 (P0 = 250 kPa and ǫ̇3 = 0.05s−1).

respectively. The localization area is distinguishable in Figure 15. This figure presents the
evolution of the localized area from the shear band to the compaction band of specimen
S1. At the beginning of the compaction, the micro-strain inside the specimen is uniform.
By increasing the compaction in the z-direction, the micro-strain localizes in the specimen.
Because the initial angle between the localized band and the the maximum principal stress
plane (here XY-plane) is not zero (θ1

∼= 47◦), there are shear stresses within the localized
zone. It means that the localized zone is a shear band. By increasing the compaction, the
angle decreases to a value very close to zero (θ5 ≃ 0). The zero angle means that there is
no shear stress in the localized band. Hence, the localized band is a compaction band at
the end of the compaction. In other words, the shear band becomes the compaction band.
These results are consistent with the results of Das et al. [110]. Therefore, as discussed
earlier, the compaction band creates a region that is prone to horizontal crack formation.

In Figure 16, the micro-strain contours are depicted for specimen S2. As shown in
Figure 14 (b), specimen S2 fails when it reach to the axial stress 471 kPa and the axial strain
0.067. The micro-strain contours reveal that no specific localization pattern could be seen
inside the sample. Therefore, it could be deduced that when confining pressure increases,
the failure mode of the specimen intents to be a diffusing failure. It is worth to know that
the dead-weight of the vibro-compactor in the anode production indicates the confining
pressure. Consequently, enhancing the dead-weight of the vibro-compactor can be used as
a proposed solution to prevent the strain localization in the carbon anodes.

On the other hand, according to Figure 14 (c), specimen S3 fails when its axial stress
and axial strain are equal to 189 kPa and 0.092, respectively. Figure 17 shows that the strain
localization mode of failure is predominant in specimen S3 and similar to the compaction
process of specimen S1, the localized band of specimen S3 is a type of shear band at the
beginning of the compaction process. The angle between the shear band and the maximum
principal stress plane (here XY-plane) at the axial strain ǫ3 = 0.1 is equal to 42◦. Although
the shear band angle (θi) decreases as the axial strain increases, the shear band remains
a shear band at the end of the compaction process (θ5

∼= 18◦). It means that increasing
the axial strain rate will postpone the formation of the compaction bands. Therefore, the
compaction process can be continued further until the shear band angle reaches close to
zero (the shear band turns to a compaction band). Hence, by taking into account the fact
that the vibro-compactor frequency in the anode production process represents the amount
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Figure 17. The micro-strain contour evolution during compaction process of specimen S3 (P0 = 100 kPa and ǫ̇3 = 0.15s−1).

of the axial strain rate, increasing the frequency can be a suggested solution to inhibit the
formation of compaction bands in the anode production process.

5. Conclusions

This paper presents a theoretical aspect of the failure analysis in the granular material
and a numerical investigation to find the failure in the mono-sized spherical coke aggregate
under different compaction conditions. Some conclusions can be summarized as follows:

• It has been shown that the strain localization could happen in the carbon anodes
during the compaction process and if this localized zone be a type of the compaction
band, it could be responsible for the crack generation under the stub-holes in the
carbon anodes. As the carbon anode paste behavior during the compaction process is
too complex for considering, the dry mono-sized spherical coke aggregates have been
examined.

• Considering failure as a bifurcation from a quasi-static regime to a dynamical one, a
failure criterion was inferred, and the notion of the bifurcation domain was specified.
The relationship between the kinetic energy of the granular materials and the internal
and external second-order work has been evolved. It has been shown that when the
failure occurred, the stresses which sense at the boundaries cannot reflect the real
stress inside the material.

• Using the DEM simulation, the optimum number of particles which could represent
the bulk material for the failure analysis is justified. Four criteria, including having a
more uniform force path network, having a smother stress-strain diagram, repetitive
behavior of the RVE, and a higher chance of the capturing the strain localization, have
been exploited. It has been proved that the RVE with 3000 particles could represent
the bulk material behavior in the failure analysis.

• The second-order criterion was used for finding the failure threshold in the specimens.
The evolution of the shear band to the compaction band was investigated. Moreover,
the effect of the confining pressure and the strain rate on the failure of the specimens
have been studied. It revealed that by enhancing the confining pressure, the failure
mode of the specimen would be of the diffusing type. However, by increasing the
strain rate, the mode of the failure would be the localized type. In addition, the strain
rate could postpone the formation of the compaction band, which can generate a
susceptible area for the crack generation. The results highlighted that increasing the
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confining pressure and the axial strain rate could be suggested solutions for preventing
the localization or postponing the formation of the compaction bands in the carbon
anode.

This article focuses on the study of the failure behavior of the dry mono-sized coke aggre-
gates. However, the coke aggregates are very complex as they are composed of particles of
different sizes, different shapes, different materials, etc. In the next step, the role of the size
distribution and particle shape on the failure of the coke aggregates will be explored by
using DEM simulation.

Appendix A

Let us consider, at a given time t, a homogeneous granular assembly of volume V
in equilibrium under prescribed boundary conditions. Then, the rate of the deformation
gradient tensor can be obtained as [97]:

Ḟ = ∇v F. (A1)

In the other hand, we can use a pull-back transportation to bring the differential from the
spatial configuration to the material configuration as:

∇v =
∂v

∂X

∂X

∂x
=

∂v

∂X
F−1. (A2)

By substituting Equation (A2) in (A1), it comes:

Ḟ =

(
∂v

∂X
F−1

)

F =
∂v

∂X
. (A3)

Then, the mean value of the rate of the deformation gradient tensor (
〈

Ḟij

〉
) by using Green

formula is equal to:

〈
Ḟij

〉
=

1
V0





∫∫∫

V0

∂vi

∂Xj
dV0



 =
1

V0





∫∫

S0

vi NidS0



 =
Aiu̇i

V0
. (A4)

Appendix B

By using a similar process, we can calculate the second rate of the deformation gradient
tensor by using a time derivative of Equation (A3):

F̈ =
∂

∂t

(
∂v

∂X

)

(A5)

Because X is independent of t, it can be written:

F̈ =
∂

∂X

(
∂v

∂t

)

. (A6)

Then, by using Green formula, the mean value of the second rate of the deformation
gradient tensor (

〈
F̈ij

〉
) is equal to:

〈
F̈ij

〉
=

1
V0





∫∫∫

V0

∂

∂Xj

(
∂vi

∂t

)

dV0



 =
1

V0





∫∫

S0

(
∂vi

∂t

)

· Nj dS0



 =
Aiüi

V0
. (A7)
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