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ABSTRACT

For a given material, different shapes correspond to different rigidities. In this paper, the radii of the
oblique elliptic torus are formulated, a nonlinear displacement formulation is presented and numerical
simulations are carried out for circular, normal elliptic and oblique tori, respectively. Our investigation
shows that both the deformation and the stress response of an elastic torus are sensitive to the radius
ratio, and indicate that the analysis of a torus should be done by using the bending theory of shells
rather than membrance theory. Numerical study demonstrates that the inner region of the torus is
stiffer than the outer region due to the Gauss curvature. The study also shows that an elastic torus
deforms in a very specific manner, as the strain and stress concentration in two very narrow regions
around the top and bottom crowns. The desired rigidity can be achieved by adjusting the ratio of minor
and major radii and the oblique angle.
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1. Introduction
From common sense, we know that it is easier to crack

an egg on its side than at its tip, as shown in Fig.1. This
kind of rigidity is an intrinsic mechanical feature of curved
shells, which is called geometry-induced rigidity. Many nat-
ural and man-made objects take the shape of shells to gain
better rigidity. Hence [21] and [43] studied the egg-like shell
geometry-induced rigidity of non-spherical pressurized elas-
tic shells (ellipsoidal and cylindrical). The human foot evo-
lution also takes advantage of curvature to increase its stiff-
ness, hence [44] investigate the role of transverse curvature
in stiffening the human foot. They considered the human
foot as an elastic cantilever cylindrical shell and demonstrated
that, if the transverse curvature of the shell increases then
stiffness of the shell increases in the longitudinal direction.
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(a) (b)

Figure 1: (a) Egg under side force (b) Egg under tip force.

All these works are about the shells that have either posi-
tive Gauss curvature (i.e., egg) or zero curvature (i.e., cylin-
der). However, there is another kind of shell, namely the
torus (or toroidal shells), whose Gauss curvature can be pos-
itive, negative and zero as well. The Gauss curvature of the
torus is shown in Fig. 2. The crowns of the torus are where
the Gauss curvature of the surface changes sign.

The torus is a surface ofmixed type, and little is known in
general about elastic shells of mixed type. By ’mixed type’,
we mean that the torus is an elliptic surface in its outer half
and hyperbolic in its inner half, where it looks locally like a
saddle. As we shall show, an elastic torus deforms in a very
specific manner, as the strain and stress concentrate in two
very narrow regions, which are located around the top and
bottom crowns [2].

Doughnuts and car tubes might be two of the most com-
mon examples of real-world tori ( shown in Fig. 3). Torus
structures are also often found in the water tower designs.
Among regular shells, such as circular cylindrical shells, con-
ical shells, spherical shells, and tori, the deformation of the
torus is one of the most difficult topics due to its complicated
topology.

The torus has been studied for more than 110 years. For
a review on the analysis of axisymmetric toroidal shells, in-
cluding a historical perspective, we refer to the literature
[41, 19, 4, 52, 23, 2, 35, 36, 38, 53].
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Figure 2: The sign of the Gauss curvature and crowns in a
torus.

(a) (b)

Figure 3: (a) Doughnut (b) Tube.

Research of the mechanics of the torus started with the
torus with a circular cross-section. The very first work on
the circular torus was by L. Föppl [13], who applied a lin-
earized membrane theory to the particular case of circular
toroidal shells under pressure loading. Then H. Reissner
[30] and E. Meissner [25] derived a mixed equation to de-
termine the elastic deformation of shells of revolution un-
der axisymmetric loading [12]. E. Meissner’s doctorate stu-
dent Hans Wissler [45] applied the Reissner-Meissner equa-
tions to toroidal shells and obtained a power series solu-
tions. Tölke [42] has further expanded Reissner-Meissner’s
theory, combining the equations by cleverly transforming
them into a single complex differential equation. Tölke’s
complex differential formulation was latter be further de-
veloped into a general theory of shells [? ]. In 1944, un-
der supervision of F. Tölke, W. Chang (later changed to W.
Zhang) completed his Dr.-Ing at TU Berlin and the second
part of his thesis was published in 1949 [5] with an asymp-
totic solution of Tölke’s toroidal equations [42] in Bessel
functions. Eric Reissner [29], son of Hans Reissner, car-
ried on his father’s legacy and studied the problem of pure
bending of curved tubes with orthogonal homogenous mate-
rials and derived a general mixed-type equation of the curved
tubes. [7] and [6] studied the toroidal or ring shell prob-

lems from the point of view of the small deflection theory
of thin shells of revolution loaded symmetrically with re-
spect to their axis. Solutions to such problems are found by
applying methods of asymptotic integration of a differential
equation involving a large parameter multiplied by a func-
tion that vanishes at certain points. [40] found the solution in
closed form, expressed in terms of a comparatively unknown
function, the Heun function. Though Tao’s solution is still
in the form of a power series, it has some advantages over
asymptotic integrations. [33] investigated the enclosed vol-
ume and weight characteristics of toroidal pressure vessels
with various cross-sectional shapes are compared. In addi-
tion to the circular and elliptic cross sections, he also con-
sidered the "modified elliptic," "circulinear," "equal-stress,"
and "zero-hoop-stress" meridians. The circular cross sec-
tion is shown to provide the minimum weight toroid. [32]
studied the stability of toroidal shells under uniform exter-
nal pressure. [31] proposed a detailed solution for toroidal
membrane under internal pressure. Their solution is remark-
able as non-linear membrane effects are captured by linear
boundary layer equations, thereby allowing for an approx-
imated analytical solution. [9] proposed a new solution of
Novozhilov’s equation of toroidal shells. [46] studied the
general solution for thin-walled curved tubes with arbitrary
loadings and various boundary conditions. [48] discussed
the free vibration of a toroidal shell with elliptical cross-
section. [51] obtained the complete uniformly valid solu-
tions for toroidal shells with nonsymmetric loading corre-
sponding to a transition point problem. [49] studied the sur-
face loading of a thin-walled toroidal shell. [50] proposed
complete asymptotic expansions of four homogeneous solu-
tions, and a particular solution of toroidal shells, based on
Novozhilov’s thin shell equations, which are valid for the
stress and deformation of toroidal shells of circular cross sec-
tion subjected to nonsymmetric loadings. [22] and [26] stud-
ied the free vibrations of elastic circular toroidal shells. [1, 2]
investigated the deformation of a thin elastic torus under ax-
isymmetric surface twist loads, namely the Gol’denveizer
problem [16]. [34] proposed a closed form solution for ax-
isymmetric slender elastic toroidal shells when minor to ma-
jor radius ratio tends to zero. [37] obtained the exact so-
lution of Qian’s equation for slender toroidal shells. [17]
studied the nonlinear static analysis of an underwater elastic
semi-toroidal shell, and [18] further investigated the nonlin-
ear free vibration analysis of a toroidal pressure vessel under
constrained volume condition. [38] obtained an exact solu-
tion of Novozhilov’s equations of elastic torus in terms of
Heun functions and proposed a computational algorithm of
the Novozhilov equations [27].

Concerning the cross-section of torus, most publications
have focused on the circular torus, and fww non-circular
cross-section tori, for instance, the elliptic torus, have been
discussed. [39] conducted the stress analysis of toroidal shells
of elliptical cross-section and gave the correct principal radii
of elliptic torus for the first time. [3] discussed the influence
of geometrical imperfections on buckling pressure and post-
buckling behavior of elastic circular and elliptic toroidal shells.
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[15] gave a heuristic study of complete toroidal shells of el-
liptical cross-sectionwhichwere subjected to internal (rather
than external) pressure. They found that buckling under in-
ternal pressure was predicted to occur with some perfect el-
liptical geometries. [14] considered the elastic buckling of
an elliptic toroidal shell subjected to uniform internal pres-
sure,and confirmed that internally pressurised elliptical toroids,
unlike circular toroids, may possibly buckle,depending on
the axes ratio of the elliptical cross-section. [8] studied the
plastic buckling of complete toroidal shells of elliptical cross-
section subjected to internal pressure. [20] studied the non-
linear pure bending of toroidal shells of arbitrary cross-section
with finite element analysis. [47] studied the natural fre-
quencies of an orthotropic thin toroidal shell of elliptical
cross-section. [54] investigated a semi-elliptic toroid and
proposed an approximate bending solution that may be valid
in regions adjacent to the horizontal equatorial plane. [10]
presented results for the state of stress and buckling of a uni-
formly pressurized elastic toroidal vessel of four segments,
whose overall shape is similar to the normal elliptic torus.
[11] investigated the buckling of an externally pressurised
toroidal shell of revolutionwith a doubly-symmetric parabolic-
ogival cross-section, where the cross-section is bound by two
parabolas.

Among the different aspects of a torus, in Section §2.2.2.4
on page 30 of Flügge’s monumental treatise on the elasticity
of shells [12], it is remarked that the membrane theory of
shells does not yield a valid solution in the following simple
situation: "The shell, Fig.4, may be cut in two parts as indi-
cated by the broken line. The meridian of each part begins
and ends with a horizontal tangent. Therefore, the merid-
ional forces acting at each edge do not have a vertical com-
ponent and cannot transmit any vertical force from one half
of the shell to the other. Now, when the shell is filled with
gas of pressure p, this pressure has a downward resultant on
the inner half and an upward resultant of the same magni-
tude on the outer half and neither part can be in equilibrium
under the action of the pressure p and the forces on its edges.
It follows that a membrane stress system with finite values
N�,N� is not possible in this shell under this load."

Figure 4: Flügger’s problem of oblique torus in Section
§2.2.2.4 on page 30 of W. Flügge, Stresses in Shells [12].

The Flügger’s problem of oblique torus has not been stud-
ied since. We want to ask what happens if the torus is ro-
tated with an angle �. This paper focuses on the geometry-

induced rigidity of an elastic torus and investigates the rigid-
ity changes from a normal elliptic torus to the oblique elliptic
torus ( shown in Fig. 5).

Figure 5: Geometry of torus and transformation from elliptic
to oblique elliptic cross-section.

The paper is organised as follows. Section 2 formulates
the principal radii of curvature of the rotated ellipse and oblique
elliptic torus. Section 3 derives the nonlinear displacement
governing equations of the torus. Section 4 carries out some
numerical investigations on circular, normal and oblique el-
liptic tori, demonstrates geometry-induced rigidity of differ-
ent torus and presents full discussions. Section 5 concludes
with perspectives. In the appendix, a complete Maple code
is provided.

2. The principal radii of curvature of the
rotated ellipse and oblique elliptic torus
The classic Kirchhoff-Love theory of shells is well es-

tablished [24, 41, 27, 12]. For the mechanics problem of the
oblique elliptic torus, the key point is to find the principal
radii of the oblique elliptic torus. Unfortunately, the radii
can not be found in the literature, Therefore we first examine
the geometry of the middle surfaces.

A surface of revolution is generated by the rotation of a
plane curve about an axis in its plane. This generating curve
is called a meridian, and an arbitrary point on the middle
surface of the shell is described by specifying the particu-
lar meridian on which it is found, and by giving the value
of a second coordinate which varies along the meridian and
is constant on a circle around the axis of the shell, called a
latitude circle [12].

We identify a meridian by the angular distance � of its
plane from that of a datum meridian and choose as second
coordinate the angle � between a normal to the shell and
its axis of revolution. If the middle surface of our shell is a
sphere, these coordinates are the spherical coordinates used
in geography: � is the longitude and � is the complement to
the latitude, the colatitude [12].

Fig. 6 shows a meridian of the shell. Let r be the dis-
tance of one of its points from the axis of rotation and r1 its
radius of curvature. In our equations we also need the length
r2 , measured on a normal to the meridian between its inter-
section with the axis of rotation and the middle surface. It is
the second radius of curvature of the shell, and we read from
Fig. 6 the relation: r = r2 sin�. For the line element ds of
the meridian we have ds = r1d�, and since dr = ds cos�
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Figure 6: Surface of Revolution.

and dz = ds sin�, we have the relations

dr
d�

= r1 cos�,
dz
d�

= r1 sin�, (1)

and Gauss-Codazzi relation

dr2 sin�
d�

= r1 cos�. (2)

For the shells of revolution shown in Fig. 6, the positions
of points on the middle surface will be determined by the
angles � and �. Further, let r1 be the radius of curvature
of the meridian and r2 the radius of curvature of the normal
section, tangential to the parallel circle. This second radius
is equal to the segment of the perpendicular to the middle
surface between this surface and the axis of the torus.

(a)

(b)

(c)

Figure 7: Geometry of the torus, the Lamé coefficients are
A1 = r1, A2 = r2 sin�.

Figure 8: Geometry of the normal ellipse that is generated by
rotating the curve ( x−R

a
)2 + ( z

b
)2 = 1 .

The oblique elliptic torus can be viewed as a normal el-
liptic torus with rotation � around its center; the rotation
takes place within the plane of cross-section of the torus.
It is clear that the cross-section of the rotated torus is still
elliptic. The difference between the oblique torus and nor-
mal torus is that both major and minor axes are rotated by
the angle � as shown in Fig.7.

In the following, we formulate the principal radii formu-
lation of oblique torus. Before doing that, let’s recall the
formulation of the principal radii of normal elliptic torus as
shown in Fig. 8, whose equation is given by (x−Ra )2+( zb )2 =

1. It leads to z = ± b
a

√

a2 − x2. The magnitude of the
derivatives of this expression are: dz

dx = bx
a
√

a2−(x−R)2
=

b2(R−x)
a2y and d2z

dx2 = b4

a2y3 . Referring to the Fig.6, we have

tan� = dz
dx =

R−x
√

r22−(x−R)
2
, solving it we can find the carte-

sian coordinates x, y expressed in the meridian angle �:

x = R +
a2 sin�

√

a2 sin2 � + b2 cos2 �
,

z =
b2 cos�

√

a2 sin2 � + b2 cos2 �
.

(3)

It can be considered as the parametrization of the ellipse
equation (x−Ra )2 + ( zb )

2 = 1 by the meridian angle �.
The principal radii r2 is given by r2 =

x
sin� . Applying the

Gauss-Codazzi relation r1 cos� =
dr2 sin�
d� , we find principal

radii r1 =
1

cos�
dr2 sin�
d� . Therefore we have the principal radii

of normal elliptic surface as follows

r1 =
a2b2

(a2 sin2 � + b2 cos2 �)3∕2
,

r2 =
R
sin�

+ a2

(a2 sin2 � + b2 cos2 �)1∕2
.

(4)

These relations were given by [39], and can also be found in
[53]. When the major radius R = 0, the above radii reduced
to the normal ellipsoid’s radii, which can be seen in Reddy’s
book [28].

Let us consider a rotated ellipse as shown in Fig.9.
The point (x, y) is rotated to (x′, y′) by angle �, the coor-

dinates transformation in between are: x′ − R = x cos(�) +
y sin(�), and y′ = −x sin(�) + y cos(�). Thus we can write
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Figure 9: Geometry of the rotated ellipse: ( x
′−R
a
)2 + ( y

′

b
)2 = 1

.

the equation of the rotated ellipse in the coordinates (x, y) as
follows

(x
′ − R
a

)2 + (z
′

b
)2 = 1. (5)

Taking into account of relations in Eq.3, we have the position
vector r(�, �) parametrization of the oblique elliptic torus

r = i(R + a2 sin� cos � + b2 cos� sin �
(a2 sin2 � + b2 cos2 �)1∕2

) cos �

+ j(R + a2 sin� cos � + b2 cos� sin �
(a2 sin2 � + b2 cos2 �)1∕2

) sin �

+ k−a
2 sin� sin � + b2 cos� cos �
(a2 sin2 � + b2 cos2 �)1∕2

.

(6)

With the position vector r(�, �), we can draw torus as
shown in Fig. 10

Figure 10: Oblique elliptic torus is plotted by the Eq.6.

Using the position vector in Eq. 6, we can calculate the
first fundamental form I = Ed�2+2Fd�d�+Gd�2, where
E = r,� ⋅ r,� = A2�, F = r,� ⋅ r,� = 0 and G = r,� ⋅ r,� =

A2� , and the Láme coefficientsA� =
a2b2

(a2 sin2 �+b2 cos2 �)3∕2
and

A� = R +
a2 sin� cos �+b2 cos� sin �
(a2 sin2 �+b2 cos2 �)1∕2

.

The second fundamental form II = Ld�2+2Md�d�+
Nd�2, where L = A2�,M = 0 and N is not presented here
due to its length.

Hence we obtain the principle radii of the oblique elliptic
torus r1 =

E
L and r2 =

G
N , namely

r1 =
a2b2

(a2 sin2 � + b2 cos2 �)3∕2
,

r2 =
1

sin(� + �)

[

R +
a2 sin� cos � + b2 cos� sin �
(a2 sin2 � + b2 cos2 �)1∕2

]

.
(7)

The derived principal radii reveal that the meridian radii r1
has nothing to dowith the rotation angle � while r2 is strongly
affected by the rotation �. For a better imagination, an ex-
ample of r2 is shown in Fig.11.

Figure 11: The principle radii r2 vs. the oblique angle �. The
draw is plotted with data: a = 2, b = 1, R = 5 and � = �

8
k, and

k = 1, 2, 3.

The geometrical interpretation of Eq.7 can be understood
as follows: Tilting the elliptic cross-section by an angle � is
not expected to change the local curvature (value of r1) at
any given point, because applying a rigid rotation to a curve
does not change the shape of the curve. It is only the sec-
ond radius r2 that is expected to depend on �. According
to the invariance principal of arc-length in a rotating coor-
dinate system, for the rotated elliptic torus ds1 = r1d� =

a2b2

(a2 sin2 �+b2 cos2 �)3∕2
d�, hence r1 =

a2b2

(a2 sin2 �+b2 cos2 �)3∕2
; and

since x′ = R + a2 sin� cos �+b2 cos� sin �
(a2 sin2 �+b2 cos2 �)1∕2

, thus ds2 = r2d� =
x′

sin(�+�)d� =
1

sin(�+�)

[

R + a2 sin� cos �+b2 cos� sin �
(a2 sin2 �+b2 cos2 �)1∕2

]

d�, there-

fore r2 =
1

sin(�+�)

[

R + a2 sin� cos �+b2 cos� sin �
(a2 sin2 �+b2 cos2 �)1∕2

]

.

3. Nonlinear displacement formulation of the
oblique elliptic elastic torus
When the linear problem was first studied, high-order

and complicated governing equations of a torus under sym-
metric loads were reduced to lower-order, ordinary differen-
tial equations (ODE) by Hans Reissner [30]. His colleague
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at ETH, Meissner [25] derived a complex-form equation for
the shell of revolution. Hence, the first complex-form equa-
tion of the shells of revolution including tori is called the
Reissner-Meissner equation, which is an ODE system for the
shear force Q and the rotation � [12]. In 1959, Novozhilov
[27] published his celebrated monograph on the complex-
form theory of shells and formulated symmetrical deforma-
tion of a torus with a circular cross-section.

Regarding the formulation of the elastic torus, the gov-
erning equations that all publications adopted are either the
Reissner-Meissner’smixed formulation orNovozhilov’s complex-
form one. Although those formulations have some advan-
tages, they cannot be used for vibration and nonlinear prob-
lems. Therefore, it is desirable to have nonlinear displace-
ment formulations for the elastic torus.

Concerning the displacement formulation of an elastic
torus, [34] derived linear displacement-type equations and
obtained a closed-form solution for the special case when
radius ratio a

R → 0. However, this special solution cannot
capture the full mechanics nature of the torus and therefore
are needed to be improved further. This paper investigates
the mechanical response of the oblique elliptic torus for ar-
bitrary ratio a

R .
Regarding the forces shown in Fig.12, the balance equa-

tions [28] are

d
d�
(rN�) −N�r1 cos� + rQ� − rN�# + r1rf� = 0,

d
d�
(rQ�) − r1r(

N�

r1
+
N�
r2
) − d

d�
(rN�#) + r1rf� = 0,

(8)

where r = r2 sin�, distributed loads f�, f� along �, � di-
rection, and shear force

Q� =
1
r1r

d
d�
(rM�) −

1
r
cos�M� , (9)

where the resultant membranae forces

N� = K("� + �"�), N� = K(�"� + "�), (10)

the resultant bending moments

M� = B(�� + ���), M� = B(��� + ��), (11)

where the membrane stiffness K = Eℎ
1−�2 , the bending stiff-

ness B = Eℎ3

12(1−�2) , the thickness ℎ, the Young modulus E
and the Poisson ratio �.

The membrane strains are

"� =
1
r1
( du
d�

+w)+ 1
2
#2, "� =

1
r2
(u cot �+w), (12)

the change of curvature are

�� =
1
r1
d#
d�

+ 1
r21
#2, �� =

cot �
r2

#, (13)

Figure 12: Loading, forces and moments of the torus

and the total rotation

# = 1
r1
(u − dw

d�
). (14)

With the above strains and curvature change, the resul-
tant membrane force and bendingmoments can be expressed
in terms of displacements u, w as follows:

N� = K[
1
r1
( du
d�

+w) + 1
2
#2 + � 1

r2
(u cot � +w)],

N� = K[
1
r2
(u cot � +w) + � 1

r1
[( du
d�

+w) + 1
2
#2]],

M� = B[
1
r1
d#
d�

+ 1
r21
#2 + �

cot �
r2

#],

M� = B[�[
1
r1
d#
d�

+ 1
r21
#2] +

cot �
r2

#].

(15)

Substituting the shear force Q� in Eq.9 into Eq.8 and pro-
duce

d
d�
(rN�) −N�r1 cos� +

1
r1
[ d
d�
(rM�)

− r cos�M�] − rN�# + r1rf� = 0,

d
d�
[1
r
d
d�

(

rM�
)

− cos�M�] − r1r(
N�

r1
+
N�
r2
)

− d
d�
(rN�#) + r1rf� = 0.

(16)

The Eq. 16 can be further simplified by substituting the
constitutive relations into Eq.16, which will generate a fi-
nal equations as a six order nonlinear ordinary differential
equation system about displacement u(�) and w(�).
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K d
d�

(

r([ 1
r1
( du
d�

+w) + 1
2
#2 + � 1

r2
(u cot � +w)])

)

−Kr1 cos�[
1
r2
(u cot � +w) + � 1

r1
[( du
d�

+w) + 1
2
#2]]

+ B 1
r1

d
d�
(r[ 1
r1

d
d�
[ 1
r1
(u − dw

d�
)] + 1

r21
(u − dw

d�
)2

+ �
cot �
r2

1
r1
(u − dw

d�
)])

− B r
r1
cos[�( 1

r1
d
d�
[ 1
r1
(u − dw

d�
)] + 1

r21
(u − dw

d�
)2)

+
cot �
r2

1
r1
(u − dw

d�
)]

−Kr#[ 1
r1
( du
d�

+w) + 1
2
#2 + � 1

r2
(u cot � +w)]

+ r1rf� = 0,
(17)

B d
d�
[1
r
d
d�
[r[ 1
r1

d
d�
[ 1
r1
(u − dw

d�
)] + 1

r21
(u − dw

d�
)2

+ �
cot �
r2

1
r1
(u − dw

d�
)]]]

− B d
d�
[cos�[�( 1

r1
d
d�
[ 1
r1
(u − dw

d�
)] + 1

r21
(u − dw

d�
)2)

+
cot �
r2

1
r1
(u − dw

d�
)]]

−Kr[ 1
r1
( du
d�

+w) + 1
2
#2 + � 1

r2
(u cot � +w)]

−K
r1r
r2
[ 1
r2
(u cot � +w) + � 1

r1
[( du
d�

+w) + 1
2
#2]]

−K d
d�

(

r#[ 1
r1
( du
d�

+w) + 1
2
#2 + � 1

r2
(u cot � +w)]

)

+ r1rf� = 0.
(18)

Together, Eqs.17 and 18 are an ODE system for u, w,
taking into account of the principal radii r1, r2 in Eq. 7 and
total rotation # = 1

r1
(u − dw

d� ). Clearly the ODE system has
no analytical solution and we must turn to numerics.

4. Numerical study of the elastic oblique
elliptic torus
With the help of the code, we simulate three different

tori: circular, normal and oblique elliptic tori. For simplifi-
cation of presentation, physical units will not be plotted in
all drawings, and they are listed in Table 1.

4.1. A circular torus
One special case of elliptic torus is the circular torus with

a cut along its parallel at � = �
2 or � = −�

2 under load F , as
shown in Fig. 13.

Table 1
Physical units used in this paper

R a, b ℎ E � M� N�
m m m N∕m2 1 N N∕m
Q� �� u w �z, Δz
N∕m N∕m2 m m m
Note: N is force physical unit and stands for Newton.

Figure 13: Torus with a cut along its parallel at � = �
2
or

� = − �
2
acted by opposite and self-balance force F = 1[N].

The boundary condition is: � = �
2
∶ N� = − F

2�(R+a)
, Q� =

0, M� = 0 and � = − 3�
2
∶ N� = −

F
2�(R+a)

, Q� = 0, M� = 0.

The numerical results of circular torus are shown in Fig.14.

The bending movement, stress and displacement w are
strongly affected by the change of the ratio a

R , while the shear
force and membrane force are much less affected.

4.2. A normal elliptic torus
When there were no oblique angle, namely � = 0, all

formulations reduced to the normal elliptic torus. Normal
torus with a cut along its parallel at � = �

2 or � = −�
2 under

load F , as shown Fig.15.
With the help of Maple, numerical results are obtained

and shown in Fig. 16.
The numerical simulation show that the bending move-

ment, stress and displacementw are strongly affected by the
change of the ratio a

R , while the shear force and membrane
force are much less affected.

4.3. Oblique elliptic torus vs. normal elliptic torus
For a complete torus with a cut along the parallel � = �

2
and loaded with bending momentM , the loading condition
is shown in Fig. 17.

From results shown in Fig. 18, it is clear that the rigidity
can be achieved by adjusting the ratio of a∕b and oblique
angle �.

For a complete torus with a cut along the parallel � = �
2

and loaded with opposite and self-balance force F = 1[N],
the loading condition is shown in Fig. 19.

From results shown in Fig. 20, it is clear that the rigidity
can be achieved by adjusting the ratio of a∕b and oblique
angle �.

Similar to the circular and normal elliptic torus, the bend-
ing moment, shear force and membrane force, stress and de-
formationw are strongly affected by the change of the angle
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(a) Bending moment M� (b) Membranes force N�

(c) Shear force Q� (d) Stress ��

(e) Displacement u in ' direction, (f) Displacement w in � direction.

Figure 14: Circular torus data: a = b = 2k[m], R =
10[m], ℎ = a∕20[m], � = 0, E = 2.0 × 1011N∕m2, � = 0.3, F =
1[N], where k = 1, 2

Figure 15: Normal torus with a cut along its parallel at � = �
2

or � = − �
2
acted by opposite and self-balance force F = 1[N].

The boundary conditions: � = �
2
∶ N� = − F

2�(R+a)
, Q� =

0, M� = 0 and � = − 3�
2
∶ N� = −

F
2�(R+a)

, Q� = 0, M� = 0.

�.

4.4. Discussions
The numerical results indicate that both deformation and

stress response of an elastic torus are sensitive to the radius

(a) Bending moment M� (b) Membranes force N�

(c) Shear force Q� (d) Stress ��

(e) Displacement u in ' direction, (f) Displacement w in � direction.

Figure 16: Deformation caused vertical force. Normal el-
liptic torus with data: a = 6k[m], b = 15, R = 30[m], ℎ =
a∕15[m], � = 0, E = 2.0 × 1011N∕m2, � = 0.3, F = 1[N],
where k = 1, 2.

Figure 17: Torus with a cut along its parallel at � = �
2
or

� = − �
2
under distributed bending moment M = 1[N]∕[m].

The boundary conditions: � = �
2
∶ N� = 0, Q� = 0, M� = 1

and � = − 3�
2
∶ N� = 0, Q� = 0, M� = 1.

ratio, and all quantities such as bending moments, surface
forces, shear force, and displacement are strongly affected
by oblique angle. The study of [38] shows that analysis of a
torus should be done by using the bending theory of shells,
because for torus the bending contribution

Kℎ(extension)2 + Bℎ3(bending)2

cannot be omitted in the elastic energy of a shell, as the bend-
ing term is not delectable due to the variation of curvature
of the torus.
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(a) Bending moment M� (b) Membranes force N�

(c) Shear force Q� (d) Stress ��

Figure 18: Oblique elliptic torus with data: a = 2[m], b =
1[m], R = 5[m], ℎ = b∕15[m], E = 2.0 × 1011N∕m2, � =
0.3, M = 1[N] and � = �

72
k, where k = 0, 1

Figure 19: Obtique elliptic torus with a cut along its parallel
at � = �

2
or � = − �

2
and acted by opposite and self-balance

force F = 1[N]. The boundary conditions: � = �
2
∶ N� =

− F cos �
2�(R+ a

cos � )
, Q� = − F sin �

2�(R+ a
cos � )

, M� = 0 and � = − 3�
2
∶ N� =

− F cos �
2�(R+ a

cos � )
, Q� =

F sin �
2�(R+ a

cos � )
, M� = 0.

From the vertical displacement of the above-mentioned
results, we can see that the vertical displacements are mainly
contributed by the outer torus region and the region near the
crowns at � = −� and � = 0. The inner region of the torus
has little deformation since it has a displacement platform,
which reveals that the inner torus is stiffer than the outer
torus region due to its negative Gaussian curvature. This
proved that an elastic torus deforms in a very specific man-
ner, as the strain and stress concentration in two very narrow
regions, namely around the top and bottom crowns. This na-
ture of the torus is very useful for structural meta-materials
design, where the stronger cell with negative Gaussian cur-
vature is often needed. If we wish to have a flexible torus, we
can reduce the thickness around the crowns, and vise-versa.

(a) Bending moment M� (b) Membranes force N�

(c) Shear force Q� (d) Stress ��

(c) Displacement u (d) Displacement w

(c) Displacement in x (d) Displacement in z

Figure 20: Oblique elliptic torus with data: a = 2[m], b =
1[m], R = 5[m], ℎ = b∕15[m], E = 2.0 × 1011N∕m2, � =
0.3, M = 1[N] and � = �

16
k, where k = 2, 3, 4

5. Conclusions
We formulated the elastic oblique elliptic torus in terms

of displacement. To verify our formulation, we wrote a com-
putational code in Maple and carried out some numerical
simulations. Our investigations show that both the deforma-
tion and the stress response of an elastic torus are sensitive to
the radius ratio. Therefore the analysis of a torus should be
done by the bending theory of a shell rather than by mem-
brane theory of shells. Our numerical studies also reveal
that the inner torus is stiffer than outer the torus due to the
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property of their Gaussian curvature. Last but not least, the
oblique angle has a strong influence on the mechanics of the
elliptic torus, and a small angle misalignment will signifi-
cantly cause the change of deformation and strength distri-
bution. Therefore, the oblique elliptic torus is worth to be
studied.
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Appendix: Maple code of nonlinear
formulations of elastic torus

To solve numerically, a general code is written in Maple.

restart; with(plots);
for k to 2 do b := 2; a := 2*b; R := 10;
h := (1/20)*b; beta := (1/72)*Pi*k;
nu := .3; E := 2*10e+11;
K := E*h/(-nu*nu+1);
B := E*h*h*h/(12*(-nu*nu+1));
q1 := 0; qn := 0; F := 1;
Z := (a*a)*sin(phi)*sin(phi)+(b*b)*cos(phi)*cos(phi);
R1 := ((a*a)*b*b)/(Z*sqrt(Z));
R2 := (R+(a*a*sin(phi)*cos(beta)
+b*b*cos(phi)*sin(beta))/sqrt(Z))/sin(phi+beta);
vartheta := -(diff(w(phi), phi))/A1+u(phi)/R1;
A1 := R1; A2 := R2*sin(phi+beta);
e11 := (diff(u(phi), phi))/A1+w(phi)/R1;
e12 := 0; e13 := -vartheta;
e22 := (diff(A2, phi))*u(phi)/(A1*A2)+w(phi)/R2;
e21 := 0; e23 := 0;
x1 := e11+(1/2)*e13*e13; x2 := e22;
k11 := (diff(vartheta, phi))/A1;
k12 := 0; k13 := -vartheta/R1;
k22 := (diff(A2, phi))*vartheta/(A1*A2);
k21 := 0; k23 := 0;
y1 := e13*k13+k11; y2 := k22;
T2 := K*(nu*x1+x2); M2 := B*(nu*y1+y2);
equ1 := T1(phi) = K*(nu*x2+x1);
equ2 := M1(phi) = B*(nu*y2+y1);
equ3 := N1(phi) = (diff(A2*M1(phi), phi)
-(diff(A2, phi))*M2)/(A1*A2);
equ4 := diff(A2*T1(phi), phi)
-(diff(A2, phi))*T2+(N1(phi)/R1+q1)*A1*A2
-A1*A2*T1(phi)*vartheta/R1 = 0;
equ5 := diff(A2*N1(phi), phi)
-(T1(phi)/R1+T2/R2)*A1*A2+qn*A1*A2
+diff(-A2*T1(phi)*vartheta, phi) = 0;
equs := equ1, equ2, equ3, equ4, equ5;
bc := T1((1/2)*Pi) = -F*cos(beta)/(2*Pi*(R+a/cos(beta))),
T1((-3*Pi)*(1/2)) = -F*cos(beta)/(2*Pi*(R+a/cos(beta))),
M1(-3*Pi*(1/2)) = 0, M1((1/2)*Pi) = 0,
N1(-3*Pi*(1/2)) = F*sin(beta)/(2*Pi*(R+a/cos(beta))),
N1((1/2)*Pi) = -F*sin(beta)/(2*Pi*(R+a/cos(beta)));

sys := [bc, equs];
vars := [M1(phi), N1(phi), T1(phi), u(phi), w(phi)];
sol := dsolve(sys, vars, numeric, abserr = 0.1e-5,
output = listprocedure);
Mphi[k] := rhs(sol[2]);
Qphi[k] := rhs(sol[3]);
Nphi[k] := rhs(sol[4]);
hori[k] := rhs(sol[5])*cos(phi)+rhs(sol[6])*sin(phi);
verti[k] := -rhs(sol[5])*sin(phi)+rhs(sol[6])*cos(phi);
ur[k] := rhs(sol[5]);
wr[k] := rhs(sol[6]);
rot[k] := rhs(sol[7]);
print(k)
end do
plot([seq(Mphi[k](theta), k = 1 .. 2)],
theta = -3*Pi*(1/2) .. (1/2)*Pi,
legend = ["k=1", "k=2"], linestyle = [1, 3],
color = ["black", "red"], axes = boxed)
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