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Abstract:  The synchronous generator, as the main component of power systems, plays a key role in these 

system’s stability. Therefore, utilizing the most effective control strategy for modeling and control the 

synchronous generator results in the best outcomes in power systems’ performances. The advantage of using a 

powerful controller is to have the synchronous generator modeled and controlled as well as its main task i.e. 

stabilizing power systems. Since the synchronous generator is known as a complicated nonlinear system, 

modeling and control of it is a difficult task. This paper presents a sum of squares (SOS) approach to modeling 

and control the synchronous generator using polynomial fuzzy systems. This method as an efficacious control 

strategy has numerous superiorities to the well-known T–S fuzzy controller, due to the control framework is a 

polynomial fuzzy model, which is more general and effectual than the well-known T–S fuzzy model. In this 

case, a polynomial Lyapunov function is used for analyzing the stability of the polynomial fuzzy system. Then, 

the number of rules in a polynomial fuzzy model is less than in a T-S fuzzy model. Besides, derived stability 

conditions are represented in terms of the SOS approach, which can be numerically solved via the recently 

developed SOSTOOLS. This approach avoids the difficulty of solving LMI (Linear Matrix Inequality). The 

Effectiveness of the proposed control strategy is verified by using the third-part Matlab toolbox, SOSTOOLS. 

 

Keywords: Synchronous generator; Polynomial fuzzy controller; Polynomial fuzzy system; Polynomial 

Lyapunov function; Stability; Sum of squares (SOS) 

 

 

1. Introduction 

  Fuzzy logic, which has been considered as one of the most important parts of artificial intelligence 

either in the past or in the current time, was introduced by Professor Lotfizadeh in the form of Fuzzy 
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sets [1].   The fuzzy set theory has been developed by Lotfizadeh to control plants. The fuzzy logic 

controller (FLC) is known as the most efficacious solution for a number of control issues. FLCs 

efficiency relates to the fact that they are less sensitive to parametric variations; therefore, they are 

more robust than the conventional classical controllers (such as PI, PD, and PID) in controlling system 

output [2]. FLC has been used as an effective control process because of several remarkable reasons 

such as quick decision-making capability, usability in nonlinear systems, and intuitive definition of 

controller behavior [2-6].    

In the last two decades, the Takagi-Sugeno (T-S) fuzzy model based control methodology has received 

much attention as a powerful tool to deal with complex nonlinear control systems. The main 

contribution of T-S fuzzy model in representing nonlinear systems is that nonlinear systems are 

shown as a combination of local linear subsystems weighted by membership functions [7]. In 

addition, this fuzzy modeling method offers another excellent approach for describing higher order 

nonlinear systems, and then reduces the number of rules in their modeling [8]. 

The T-S fuzzy model can represent any smooth nonlinear systems by fuzzily blending linear 

sub-systems; moreover, their stabilization conditions based on Lyapunov stability theory can be 

represented in terms of linear matrix inequalities (LMIs) [7,8,9]. By the same token, designs have been 

carried out using LMI optimization techniques. In the T-S fuzzy model based control, for designing a 

fuzzy controller for the  system the parallel distributed compensation (PDC) concept based on a 

common quadratic Lyapunov function has the main contribution [7], [9]. 

It is worth mentioning that, nowadays, numerous researches [10-14] try to utilize the T-S fuzzy 

model as the stabilization conditions of nonlinear systems because of the above mentioned reasons. 

Recently, in [15] a more general version of T-S fuzzy model has been introduced, it is named the 

polynomial fuzzy model. The main distinction between the T-S fuzzy model and the polynomial 

fuzzy model is that the former method only deals with constants in the system matrices; however, 

the latter one provides a perfect opportunity to deal with the polynomials in the system matrices. 

This great advantage of polynomial fuzzy model results in remarkable applications in nonlinear 

systems. Therefore, representation of the nonlinear systems with a number of polynomial terms can 

be controlled more efficiently [15,16]. There is a problem in handling the polynomial fuzzy model. 

To put it in other words, it is clear that T-S fuzzy model utilizes LMI optimization techniques, a 

numerical solution is obtained by convex optimization methods such as the interior point method. 

However, it cannot be used to solve stability analysis and control design problems directly in the 

polynomial fuzzy model [15, 16]. Despite the great success and popularity of LMI-based approaches, 

still there exists a large number of design problems that either cannot be represented in terms of 

LMIs, or the results obtained through LMIs are too conservative and the polynomial fuzzy model is 

one of that problems. Hence, the paper [15] introduced a sum-of-squares (SOS) optimization 

technique to perform stability analysis and control design for the polynomial fuzzy model. The 

problems represented in terms of SOS can be numerically solved by free third-party MATLAB 

toolboxes such as SOSTOOLS [17] and SOSOPT [18].  

In this paper SOS approach for modeling and control of the synchronous generator using polynomial 

fuzzy systems is presented. The proposed SOS-based approach was selected for modeling and control 

of this vital system since this method has proved its high efficiency and obvious superiority over T-S 

fuzzy model. One of the advantages as discussed above is that the polynomial fuzzy model 
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framework is a general version of T-S fuzzy model, hence is more effective in representing nonlinear 

control systems. The second one is that, one polynomial Lyapunov function that contains quadratic 

Lyapunov function was employed to stabilize the fuzzy polynomial system and its stability 

conditions. Hence, the obtained stability conditions from proposed SOS-based approach are more 

general than those based on the existing LMI-based approaches to T–S fuzzy model and control. The 

derived stability conditions were represented in terms of SOS can be numerically solved via the 

recently developed SOSTOOLS [19]. These SOS conditions cannot be generally solved via convex 

optimization methods. SOSTOOLS [19] is a free, third-party MATLAB toolbox that solves SOS 

problems. The techniques behind it are based on the SOS decomposition for multivariate polynomials, 

which can be efficiently computed using semidefinite programming. SOSTOOLS is developed as a 

consequence of the recent interest [15]. 

Synchronous generators are the most important parts and electrical energy suppliers of all power 

systems. They usually operate together (or in parallel), forming a large power system supplying 

electrical energy to the loads or consumers. Synchronous generators are built in large units, their 

rating ranging from tens to hundreds of megawatts. They convert mechanical power to ac electric 

power. The source of mechanical power, the prime mover, may be a diesel engine, a steam turbine, a 

water turbine, or any similar device. 

One stable model of synchronous generator improves the performance and the stability of nonlinear 

power systems, and provides several  benefits such as saving time, energy, and money. Therefore, a 

helpful and powerful control strategy such as SOS-based polynomial fuzzy control strategy for 

modeling and control of synchronous generator will be a cost effective, time and energy saving 

strategy to improve the performance and the stability of nonlinear power systems, as well as 

enhances the dynamic response of the operating system. 

The rest of the paper is organized as follows: In section 2 dynamic model of the synchronous 

generator is presented. Next, a general form of the fuzzy logic controller is introduced. In the section 

4 the polynomial fuzzy model and the polynomial Lyapunov function are described, precisely. 

Then, the stability analysis via SOS are explained. In section 6, designing the polynomial fuzzy 

controller is shown. Finally, in section7, the synchronous generator behavior in presence of the 

introduced polynomial fuzzy controller and without it is analyzed carefully. In the last section, 

conclusion explains the whole paper briefly. 

 

2. Dynamic Model of the Synchronous Generator 

   The detailed nonlinear model of a synchronous generator is a sixth-order model. However, the 

third-order model is of crucial interest for studying control systems of the generator as well as their 

synthesis [20]. Therefore, the detailed nonlinear model is usually reduced to a generalized one-axis 

nonlinear third-order model. Generator structure diagram and the simplified model of the 

synchronous generator are shown in figure1. and figure2. respectively. In Figure 1 extR and ( )t  

are rotor winding resistance and speed of the rotor respectively. 
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Figure 1. Synchronous Generator Diagram 

 

Figure 2. Simplified model of third-order of the synchronous generator in Simulink MATLAB 

The following equations describe a third-order dynamic model of the synchronous generator : 

( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( )( )
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Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 March 2021                   doi:10.20944/preprints202103.0339.v1

https://doi.org/10.20944/preprints202103.0339.v1


. 2021, 11, x FOR PEER REVIEW 5 of 29 
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And 

1

2
ds d T LX X X X= + +

                                  

(3)
 

' ' 1

2
ds d T LX X X X= + +                                     (4) 

Variables and parameters in the equations of the third-order model of the generator are 

introduced in the below table: 

Table 1. Description of the system variables and parameters 

 Symbol                               Description 

( )δ t
 

( )ω t
 

( )0 t
 

 

DK
 

 

 

 

                                                                                  

 

Rotor angle of the generator 

(radian) 

Speed of the rotor 

Synchronous machine speed of 

the generator (radian per 

second) 

Damping constant of the 

generator (pu) 

H   The inertia constant of the 

generator (sec) 

mP
 

 Mechanical input power of the 

generator (pu) 

eP
 

 Active electrical power delivered 

by the generator (pu) 

( )qv t  
 The EMF of the q-axis of the 

generator (pu) 

   

( )qv t
 

 

( )fv t  

 The transient EMF in the q-axis of 

the generator (pu) 

 

The equivalent EMF in the 

excitation winding of the generator  
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0dT 
 

 d-axis transient short circuit time 

constant of the generator (sec) 

 

 

  

EK  
 The gain of the excitation amplifier 

of generator 

   

FG  
 

 

Control input of the excitation 

amplifier with gain  EK  

   

dsX  

 

'

dsX  

 

 

 

 

The total direct reactance of the 

system (pu) 

 

Total transient reactance of  the 

system  (pu) 

dX  

dX 
 

 

 

 

The d-axis reactance of the 

generator (pu) 

The d-axis transient reactance of 

the generator (pu) 

  sV
 

 Infinite bus voltage (pu) 

The state variables of the generator are defined as follow: 

1( ) ( )x t t=  , 2 0( ) ( )x t t = − , 3( ) ( )qx t t=              (5) 

Hence, state variables vector for the generator will be : 

1 2 3( ) [ ]Tx t x x x=                                         (6) 

The control input ( )u t also considered as follows:   

( ) ( )'

E
F

do

u
T

K
t G t=                                            (7)  

The nonlinear equations of the system, define the following constants for the generator: 
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

=


 = −



−
=




                                            (8) 

The equations (1) and (2) can be rewritten by using (8) as follows: 

( )

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )

1 2

2 1 2 2 3 1 3 1 4

3 5 3 6 1 2 1

sin sin 2

cos sin

x x t

x x t x t x t x t

x x t x t x u t

   

  

=

= + + +

= + +







           (9) 

In these equations the rotor angle is the first state variable, the second one is the rotor speed deviation, 

and the last state variable describes the voltage. Considering the above described equations, it is clear 

that the systems is complex and difficult to control because of nonlinear terms. Therefore, employing a 

powerful approach to control it is a significant issue. 

 

3. Fuzzy Logic Control 

  In modeling and control of systems with no accurate mathematical model, fuzzy Logic Controls 

(FLCs) can be of great help. The fuzzy-model-based control methodology provides a natural, simple, 

and effective design approach to complement other nonlinear control techniques that require special 

and rather involved knowledge [21, 22]. 

The main part of the fuzzy logic controller is a set of linguistic control rules related to fuzzy 

implication and compositional rule of inference. The fuzzy logic controller is the most rapid 

methodology, and it is simple to design. It requires no precise system mathematical model and can 

deal with the nonlinearity of haphazard complications. Representing the local dynamics of each 

fuzzy implication (rule) by a linear system model is the main feature of this model. It is done by 

linguistic rules with an IF-THEN general structure, which is the origin of human logic. The 

following figure (Figure3.) and example clearly represent the above-mentioned features of fuzzy 

logic systems and control. 
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The structure of a fuzzy controller is shown in Figure3. It consists of fuzzification inference engine 

and defuzzification blocks: 

 

Figure 3. Basic configuration of fuzzy systems with fuzzifier and defuzzifier 

Example 1: Consider the following nonlinear system: 

( )

3

11

2

1 2

3

2 2 1

     

3

x x u

x

x

x

x

x x

 = − + +


= − + +  

 1 2; , 1,1x  − x
             (10) 

( )

2

12 1

2

22 1

1
 ;

3 1

xx x
x x x

xx x

 −  
= =   

+ −                     (11) 

If the nonlinear items 
2

2 1x x  and 
2

2 1( 3)x x+  in equation (11) are replaced by 1z  and 

2z respectively, the following equation is obtained: 

1

2

1

1

z
x x

z

− 
=  

− 
                                         (12) 

For  1 2, 1,1x x  − : 

1 2 1 2

1 2 1 2

, 1 , 1

, 2 , 2

  1,     1

  4,     0

x x x x

x x x x

max z min z

max z min z

= = −


= =                     (13)

 

Therefore: 

( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 1 2 1 1 2 1

2

2 2 1 1 2 2 2

.1 . 1

3 .1 . 1

z x x M z M z

z x x N z N z

 = = + −


= + = + −              (14) 

Where 

( ) ( )

( ) ( )

1 1 2 1

1 2 2

1

1

M Z M Z

N Z N Z

+ =


+ =

                                   (15) 

The membership functions are given as follows: 
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( ) ( )

( ) ( )

1 1  1  1
1 1 2 1

1  1  1  1 

2 2  2  2
1 2 2 2
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min max
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z z z z
N z N z

z z z z

− −
= = − −


− − = =

 − −

           (16) 

( ) ( )

( ) ( )

1 1
1 1 2 1

2 2
1 2 2 2

1 1
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2 2

4
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2 4

Z Z
M Z M Z

z z
N z N z

+ −
= =


− = =



                       (17) 

 

1 1 2 1 1

1 1 2 2 2

1 2 2 1 3

1 2 2 2 4

                 

                 

                 

                 

IF z is M AND z is N THEN x A x

IF z is M AND z is N THEN x A x

IF z is M AND z is N THEN x A x

IF z is M AND z is N THEN x A x

=

=

=

=

                     (18) 

 

Figure 4. Membership functions for 1( ( ))M z t  

 

 

Figure 5. Membership functions for 1( ( ))N z t  

Figures 4. and 5. show membership functions. 

1 2

1   1  1  1 
 , 

   4 1    0 1
A A

− −   
= =   − −   

, 3 4

1 1 1 1
 ,

   4 1    0 1
A A

− − − −   
= =   − −   
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1 2 3 4

1

0
B B B B

 
= = = =  

 
                                      (19) 

With defuzzification process: 

( )
4

1

i i

i

x h z A x
=

=                                              (20) 

As 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 2

2 1 1 2 2

3 2 1 1 2

4 2 1 2 2

h z M z N z

h z M z N z

h z M z N z

h z M z N z

= 

= 

= 

= 

                                  (21) 

This model exactly shows nonlinear system in area    1,1 1,1−  − of space 1 2x x− . 

4. Polynomial Fuzzy Model and Polynomial Lyapunov Function 

4.1. Polynomial fuzzy model 

  In this section, before introducing the polynomial fuzzy model, the T–S fuzzy-model-based control 

is explained. It provides an opportunity to compare the two mentioned models' performances and 

proving the advantages of the polynomial fuzzy model. The main application of T–S 

fuzzy-model-based control is that it is an effective strategy to represent any smooth nonlinear 

control systems by the T–S fuzzy models (with liner model consequence), and the system stability is 

analyzed based on quadratic Lyapunov functions. The T–S fuzzy model is described by fuzzy 

IF-THEN rules that represent local linear input-output relations of a nonlinear system. In this model, 

the dynamics of each fuzzy implication (rule) are shown as a linear system model, and this is the 

main feature of the T–S fuzzy model. The overall fuzzy model of the system is achieved by the fuzzy 

blending of the linear system models. After modeling systems, analyzing the stability should be 

considered. In this case, the quadratic Lyapunov function should be defined, and the stability 

conditions result in solving LMIs. Finally, the stability conditions can be efficiently solved 

numerically by interior point algorithms such as the LMI toolbox of MATLAB, which is hard and 

timewasting sometimes. 

To solve the above-mentioned problems and prepare further beneficial results, a simpler and more 

general method is introduced as the polynomial fuzzy model [15]. For proving the stability of this 

model a polynomial Lyapunov function should be defined. The stability conditions for polynomial 

fuzzy systems based on polynomial Lyapunov functions could be reduced to SOS problems, which 

avoids the difficulty of the LMIs and could be solved readily. Therefore, instead of the LMI toolbox, 

these problems can be solved via SOSTOOLS. In the following, the polynomial fuzzy model of a 

general nonlinear system is described. 

Suppose a nonlinear system as follows: 
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( ) ( ( ), ( ))x t f x t u t=                                       (22) 

As discussed above, a so called polynomial fuzzy model is introduced to represent the nonlinear 

system (22). 

The main difference between T-S fuzzy model and a polynomial fuzzy model lies in the consequent 

part representation. The T-S fuzzy model features linear model consequence, however, the 

introduced polynomial fuzzy model has polynomial model consequence as below: 

Model rule i: 

                       ( ) ( )1 1          .      i p piIf z t is M and and z t is M  

( ) ( )( ) ( ) ( )( ) ( )  ( ) ,  1,2, ,  ˆ
i iThen x t A x t x x t B x t u t i r= + =        (23) 

Where ( )( ) n n

iA x t R   and ( )( ) n m

iB x t R   are polynomial matrices in ( )x t . ( )( )x̂ x t  

is a column vector whose entries are all monomials in ( )x t . 

The overall polynomial fuzzy model is obtained by fuzzy blending of each polynomial model 

equation in the consequent part. By using the weighted average of each rule’s output, the 

defuzzification process of model (23) can be represented as: 

 

 

   

                                             

 

                                                                                   (24)   

   If ( )( ) ( )x̂ x t x t= , ( )( )iA x t and ( )( )iB x t  are constant matrices for all i , then 

( )( ) ( )( ) ( )( ) ( )ˆ
i iA x t x x t B x t u t+ reduces to ( ) ( )i iA x t B u t+ . Then (24) reduces to (25): 

( )
1

( ( )){ ( ) ( )}
r

i i i

i

x t h z t A x t B u t
=

= +                                 (25) 

Where, (25) shows the T-S fuzzy model of above nonlinear system. Therefore, (24) or polynomial 

fuzzy model is a more general representation compared to T-S fuzzy model (25). 

4.2. Polynomial Lyapunov function 

( )
( )( ) ( )( ) ( )( ) ( )( ) ( ) 

( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( ) 

1

1

1

 

ˆ

ˆ

r

i i ii

r

ii

r

i i i

i

w z t A x t x x t B x t u t
x t

w z t

h z t A x t x x t B x t u t

=

=

=

+
= =

+






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   Analyzing the stability of mentioned polynomial system could be simple in using a polynomial 

Lyapunov function, in this case the stability results and conditions could be relaxed. The proposed 

polynomial Lyapunov function is defined as below: 

ˆ ˆ( ( )) ( ( )) ( ( ))Tx x t P x t x x t                                            (26) 

Where ( ( ))P x t  is a polynomial matrix in ( )x t . If ˆ( ( )) ( )x x t x t= and ( ( ))P x t  is a constant 

matrix, then (26) reduces to the quadratic Lyapunov function )( ) (Tx xt P t .Therefore, it is clear that 

(26) is a more general representation.  

 

 

5. Sum of Squares for Stability Analysis 

5.1.Sum of squares 

 One of the most important objectives of this paper is utilizing the SOS method as the computational 

method to provides significantly more relaxed stability results than the existing LMI approaches to 

T–S fuzzy models and avoid the difficulty of solving the LMI. A multivariate ( ( ))f x t  where 

( ) nx t R  is an SOS if there exist polynomials 1( ( )),..., ( ( ))mf x t f x t  such that 

2

1

( ( )) ( ( ))
m

i

i

f x t f x t
=

= . It is clear that ( ( )) 0f x t   for all ( ) nx t R [23]. 

 

5.2.Stability conditions 

   In this section, the stability of system (24) is analyzed. The zero equilibrium of the system (24) 

with 0u =  is stable if there exists a symmetric polynomial matrix 
( )( ) n nP x R   such that (27) 

and (28) are satisfied, where 1( )x  and 2 ( )i x  are nonnegative polynomials for all x : (In this 

section, we drop the notation with respect to time t ) 

1
ˆ ˆ( )( ( ) ( ) ) ( )Tx x P x x I x x isSOS−                    (27) 

2

1

ˆ ˆ ˆ( )( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( )
n

T T T k

i i i i

k k

P
x x P x T x A x A x T x P x x A x x x x I x x isSOS

x


=


− + + +


  i     

(28) 

Where ( )T x is a polynomial matrix whose ( , )i j th  entry is given by 
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ˆ
( ) ( )ij i

j

x
T x x

x


=


                                    (29) 

If ( )P x is a constant matrix, then the stability holds globally. 

Proof. See [15]. 

Remark1: When ( ), ( )i iA x B x , and ( )P x  are constant matrices and ˆ( )x x x= . The system (24) 

and the polynomial Lyapunov function (26) are the same as the T–S fuzzy model and the quadratic 

Lyapunov function. Thus, the proposed SOS approach to polynomial fuzzy models contains the 

existing LMI approaches to T–S fuzzy models as a special case. Therefore, the SOS-based polynomial 

fuzzy models provide significantly more relaxed stability results than the existing LMI approaches 

to T–S fuzzy models.  

6. Designing Polynomial Fuzzy Controller 

  A fuzzy controller with polynomial rule consequence can be constructed from the given 

polynomial fuzzy model (23). 

The ith rule of polynomial fuzzy controller is as follows: 

Control rule i : 

( ) ( )

( ) ( )( ) ( )

1 1          .      

  ,  1,2, ,ˆ

i p pi

i

If z t is M and and z t is M

Thenu t F x t x t i r



= − = 
         (30) 

Where  
m n

iF R   is the polynomial feedback gain in rule j . Thus, the following polynomial 

fuzzy controller is applied to the nonlinear plant represented by the polynomial fuzzy model: 

( ) ( )( ) ( )( ) ( )( )
1

ˆ
r

i i

i

u t h z t F x t x x t
=

= −
          (31) 

Therefore, from (24) and (31) the closed-loop system can be represented as: 

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )  ( )( )

1 1

ˆ

r r

i j

i j

i i j

x t h z t h z t

A x t B x t F x t x x t

= =

=

 −


        (32) 
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Where ( )( ) n n

iA x t R  and ( )( ) n m

iB x t R   are polynomial matrices in ( )x t . If  

( )( ) ( )x̂ x t x t= , ( )( )iA x t , ( )( )iB x t and ( )( ) jF x t  are constant matrices for all i and 

j then the above equation can be summarized to Takagi-Sugeno equation. Therefore, (32) are more 

general representations compared to Takagi-Sugeno equation. 

In the next step the stability of the closed-loop control system (32) should be considered. 

6.1.SOS design conditions 

 

   Theorem1: To provide required conditions for stability of closed-loop system (32) one polynomial matrix 

( )S x  and the polynomial matrix iM  should be defined to satisfy the following conditions, where 

1( )x and 2 ( )ij x  are nonnegative polynomials such that 1( ) 0x   for 0x  and 2 ( ) 0ij x  for all 

x : 

( ( )k

iA x denotes the kth row of ( )iA x , 1 2{ , ,..., }mK k k k= denotes the row indices of ( )iB x whose 

corresponding row is equal to zero, and define 1 2
ˆ ( , ,..., )k k kmx x x x= ). 

( ) ( )( )T

1S I  is SOSv x x v−                          (33) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )2

 –  

)      ,

(

ˆ ˆ

T

i i j

T T T T T

i j i

j j i

T T T T T

j i j

k k

i j

k K k Kk k

ij

v T x A x S x T x B x M x

S x A x T x M x B x T x

T x A x S x T x B x M x

S x A x T x M x B x T x

S S
x A x x x x A x x x

x x

x I v is SOS i j

 

− − +

− +

+

− −

 
− +

 



 

  (34) 

Where   is independent of x . ( )T x  is a polynomial matrix and ,i j  are entries that are given 

by: 

ˆ
( ) ( )ij i

j

x
T x x

x


=


                                    (35) 
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If (34) holds with 2 ( ) 0ij x   for 0x   then the zero equilibrium is asymptotically stable. If 

( )S x  is a constant matrix then the stability holds globally. A stabilizing feedback gain ( )iF x  can 

be obtained from ( )S x  and ( )iM x  as: 

1( ) ( ) ( )i iF x M x S x−=                             (36) 

Proof. See [15]. 

 

Algorithm1: Application of Sum of Square Programming 

___________________________________________________________ 

1: Initialize the sum of squares program  

2: Define ix  

3: Define iM  

4: Define V as an independent vector of x  

5: System characteristics in state space 

6: i values  

7: Equation (35) 

8: Equation (33) 

9: Equation (34) 

10: Define SOSP constraints 

11: Calling solver 

12: Get solution 

13: Equation (36) 

14: Obtained ( )iF x  from SOSTOOLS 

___________________________________________________________ 

Positive polynomials are optimized by SOSTOOLS Algorithm1. 

 

7. Modeling and Stability Analysis of the Synchronous Generator  

7.1. Nonlinear synchronous generator system 

  The model of simple transmission system containing power plant is shown in figure 6. The 

polynomial fuzzy system is used to improve transient stability and power system oscillations 

damping. 
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Figure 6. Bus power system 

 

The state space equations for the system discussed above (figure 6) is given as follow: (assuming 

0DK = : damping constant of generator) 

( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )

1 2

2 2 3 1 3 1 4

3 5 3 6 1 2 1

sin sin 2

cos sin

x x t

x x t x t x t

x x t x t x u t

  

  

=

= + +

= +





 +

          (37) 

 

The nominal values of system parameters are shown in Table 2: 

Table 2. System parameters 

dx  

dx   

Tx  

doT   

Lx  

H  

 

0W  

 1.863 

0.257 

 

0.127 

 

6.9 

 

0.4853 

 

4 

 

314.159 
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mP  

 

sV  

 

0.9 

 

0.9552 

 

By applying values of Table 2, the following are obtained: 

( )

( )( )

( ) ( )( ) ( )

1 2

2 3 1 1

3 3 1 1

146 sin 60sin 2 35

0.86cos 146sin

x x t

x x x x t

x x t x t x u t

 =


= − + +


= − + −              (38) 

Figures 7-9 show the time responses of the system behavior: 

 

 

Figure 7. Rotor angle (radian) 

 

 

Figure 8. Rotor speed deviation (radian per second) 

 

 

Figure 9. Terminal voltage (P.U.) 

 

As shown in Figures 7 and 8, the angle and the speed deviation of the rotor goes to infinity with 

respect to time, which exhibit unstable behavior. Also in Figure 9, the variable 3x  goes to zero with 

an uncontrolled initial value. Hence, we should improve and control it. 
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Since phase plot is a useful graphical tool to understand the stable or unstable behavior of 

equilibrium points of nonlinear systems, figures 10, 11, 12 are prepared to show the behavior of a 

nonlinear system with 0u = . As shown, 1x  and  2x  exhibit unstable behavior, therefore, 

nonlinear system is unstable . 

 

Figure 10. Behavior in 2 3x x− plane  

 

Figure 11. Behavior in 1 3x x− plane 

 

Figure 12. Behavior in 1 2x x− plane 

7.2. Controller design 
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  To meet the objective of control and stabilize the system, modeling and designing a polynomial 

fuzzy controller is necessary. 

In this step one more variable is defined as ( )4 1   cosx x t= . According to derivative of the chain 

rule:  

( )( ) ( )4 1 1 2 1sin sin( )x x x t x x t= − = −                          (39) 

By replacing sin 2 (2sin )(cos )x x x= the above equation could be written as follow: 

( )

( )( )

( ) ( )

( )

1 2

2 3 1 4 1

3 3 4 1

4 2 1

146 sin 120 sin 35 

0.86 146sin

sin( )

x x t

x x x x x t

x x t x x u t

x x x t

=

= − + +

= − +








−

 = −
                     (40)

 

It is clear that: 

sin
0.2172 1

x

x
−                                                   (41) 

Membership functions are given as follow: 

( ) ( )   
1 2

       

,      min max

max min max min

z z z z
h z h z

z z z z

− −
= =

− −
                       (42) 

Therefore, the fuzzy model of the system is obtained as follows: 

 

( ) ( )1 1 1 1
1 2

1 1

sin 0.2172 sin
,  

1.2172 1.2172

x x x x
h z h z

x x

+ −
= =                    (43) 

( )1 3 4

2

0 1 0                 0

146 120 0 0                 0

0 0 1              0.86

0 0                0

A x x x

x

 
 
 

= − + 
 

− 
 − 

                (44) 
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( ) ( ) ( )2 3 4

2

0 1 0                 0

146 0.2172 120 0.2172 0 0                 0

0 0 1              0.86

0.2172 0 0                0

A x x x

x

 
 
 

= −  − +  − 
 

− 
  

              (45) 

( )
1 2

0 0

0  ,  0  

146 146 0.2172

0 0

B B

  
  
  
  = =
  

− −  −  
     

                      (46) 

By considering the values of   as follows : 

1

2

0.001

0.001





=

=
                                                    (47) 

The SOS design conditions in Theorem 1 are feasible. From (33), (34) and (36),  and using SOSTOOLS 

in MATLAB ( )iF x  is obtained as follows: 

1

1 1

1

2 2

F M S

F M S

−

−

 = 


= 
                                                (48) 

( )

( )

( )

( )

32

32 4

32 4

32 4

518

1 4

617 5

1

1715 16

1

1715 16

1

1,1 2.3548 2.9111 0.0009443 0.1023

1,2 3.8025 2.5505 8.2738 0.00171
 

1,3 2.4496 1.8947 6.146 0.00115

1,4 3.6107 1.630 5.287 0.00

xx

xx x

xx x

xx x

F e e x

F e e e

F e e e

F e e e

−−

−− −

−− −

−− −

= − + + −

= − − +

= + + −

= − − − + 099









           (49) 

( )

( )

( )

( )

32

32

32 4

32 4

518

2 4

617

2 4

1715 14

2

1715 14

2

1,1 4.191 2.9441 0.057827 0.64291

1,2 6.7675 2.5794 0.0050664 0.01023

1,3 4.3598 1.916 3.763 0.00762

1,4 6.4262 1.6485 3.238 0.00655

xx

xx

xx x

xx x

F e e x

F e e x

F e e e

F e e e

−−

−−

−− −

−− −

= + − −

= − + +

= − + − −

= − + +









            (50) 

F can be written as (regardless of some small amounts): 

( )

( )

( )

( )

1 4

1

1

1

1,1 0.00094435 0.10235

1, 2 0.0017107

1,3 0.0011586

  1, 4 0.00099656

F x

F

F

F

=




−

=

= −

=





                             (51) 
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( )

( )

( )

( )

2 4

2 4

2

2

1,1 0.057827 0.64291

  1, 2 0.0050664 0.010235

1,3 0.007623

1, 4 0.0065559

F x

F x

F

F

= − −




= +

= −

=



                        

 (52) 

Therefore, the next equation is obtained: 

 

 
1 4

2 4 4

0.00094435 0.10235,0.0017107, 0.0011586,0.00099656

0.057827 0.64291,0.0050664 0.010235, 0.007623,0.0065559

F x

F x x

= − −

= − − + −





   (53) 

The fuzzy controller is obtained from the equation (31): 

 

( ) ( )( ) ( )( ) ( )( )
1

ˆ
r

i ii
u t h z t F x t x x t

=
= −  

Finally, the closed-loop system could be obtained from (32) : 

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )  ( )( )

1 1

ˆ

r r

i ji j

i i j

x t h z t h z t

A x t B x t F x t x x t

= =
= 

−

 
 

Figures 13-18 show the control result via the designed stabilizing controller.  

 

Figure 13. Rotor angle (radian) 

 

Figure 14. Rotor speed deviation (radian per second) 
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Figure 15. Terminal voltage (P.U.) 

The explained unstable system in previous sections is stabilized via SOS designed controller. In the 

figures 13-15, it can be seen that the components of the rotor angle, its speed and the terminal voltage 

have reached a stable value, and by taking the advantage of the introduced method all of them could 

be controlled.  

we considered the value of 1x  in Figure13. of ( )4 41 10 , 5 10− −−   , In order to show the more 

details (including the initial value, etc.), so it is clear that x is stable. 

 

Figure 16. Behavior in 2 3x x−  plane 

 

Figure 17. Behavior in 1 3x x−  plane 
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Figure 18. Behavior in 1 2x x−  plane 

 

Phase plot figures 16, 17, and 18 show the stability of the system behavior on the 1 2x x−  plane 

using the obtained state feedback. In fact, the controller guarantees the global asymptotic stability of 

controlled system. It should be noted that the path of the states on the 1x  and 2x  plane 

approaches to the origin. In this case, the equilibrium point is called the stable node. Consequently, 

the paths are said to be stable (as t increases, the paths lead to the origin). 

 

7.3. Design example 

 

  In this step, to show the results more accurately, it is assumed that the system’s state equations are 

as follows: 

( )

( )( )

( ) ( )( ) ( )

1 2

2 1

3 3 1

    20.564sin 2 35.342

0.516 0.354cos

x x t

x x t

x x t x t u t

 =


= +


= − + +       (54) 

State equations of the system include nonlinear terms. By plotting the system time response and, and 

as shown in figures 19-25, 1x  and 2x  show an unstable behavior. 
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Figure 19. Rotor angle (radian) 

 

 

Figure 20. Rotor speed deviation (radian per second) 

 

Figure 21. Terminal voltage (P.U.) 

 

Figure 22. Power system responses 
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Figure 23. Behavior in 2 3x x−  plane 

 

Figure 24. Behavior in 1 3x x−  plane 

 

Figure 25. Behavior in 1 2x x−  plane 

Figures 19, 20, 21, and 22 show the time response of the system, which rotor angle increases slightly 

and the rotor speed increases to infinity respect to time. The variable (given the assumptions in the 

problem) in Figure 21 behaves more stable, so the goal is to control the variables. Also, Figures 23, 24, 
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and 25 show the values of variables and go to infinity. Therefore, the nonlinear system is unstable. In 

this system using SOSTOOLS, the following are obtained: 

 

 

 
1 4 4

2 4 4

0.0077146 0.07597,  0.00091803 0.042675, 0.33956, 0.34027

0.0016756 0.10108, 0.0001994 0.0483, 0.33956, 0.34027

F x x

F x x

 = − − − + −


= + − −

   (55) 

 

Figures 26-29 show the result of the control by the stabilizer controller. 

 

Figure 26. Power system responses 

 

 

Figure 27. Behavior in 2 3x x−  plane 
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Figure 28. Behavior in 1 3x x−  plane 

 

 

Figure 29. Behavior in 1 2x x−  plane 

Figure 26 shows the time response graph of the system, which indicates the stability of system, and 

variables reach their final value after a certain time. The system response after the design and 

implementation of the polynomial fuzzy controller has been improved and stabilized. The figures 

27,28, and 29 show the stability of the system behavior in 1 2x x−  plane using the obtained state 

feedback. As shown in figures, the unstable system is affected by the designed controller of the sum 

of square, and stabilize, finally. It should be noted that the path of the states in 1x  and 2x plane 

approaches to the origin. In this case, the equilibrium point 0x = is called the stable node. 

Consequently, the paths are said to be stable (as t increases, the paths lead to the origin). 

8.Conclusion 

This paper discussed the synchronous generators as a highly complicated system and its 

importance in power systems and their stability. Then, it presented SOS approach to modelling and 

control of the synchronous generator in terms of polynomial fuzzy systems as an efficacious method. 

First of all, the state equations of the synchronous generator were described. Secondly, a polynomial 

fuzzy modeling and control framework that is more general and effective than the T–S fuzzy model 
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and control was introduced. Thirdly, stability of the fuzzy polynomial systems has been obtained 

based on polynomial Lyapunov functions that contain quadratic Lyapunov functions as a special case. 

The stability and stabilizability conditions presented in this paper are more general and relaxed than 

those of the existing LMI-based approaches to T–S fuzzy model and control. SOS-based approach 

offers less strict analysis and design conditions comparing to the current LMI approach. Stability 

conditions can be represented in terms of SOS and, then, can be numerically (partially symbolically) 

solved via the recently developed SOSTOOLS. The simulation results have been acquired for the 

generator system with Fuzzy Polynomial Controller and without it. Validity of the proposed 

approach was demonstrated using the third-part Matlab toolbox, SOSTOOLS. 
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