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Abstract: Wrist-worn fitness trackers and smartwatches are proliferating with an incessant attention
towards health tracking. Given the growing popularity of wrist-worn devices across all age groups, a
rigorous evaluation for recognizing hallmark measures of physical activities and estimating energy
expenditure is needed to compare their accuracy across the lifespan. The goal of the study was to build
machine learning models to recognize physical activity type (sedentary, locomotion, and lifestyle) and
intensity (low, light, and moderate), identify individual physical activities, and estimate energy
expenditure. The primary aim of this study was to build and compare models for different age groups:
young [20-50 years], middle (50-70 years], and old (70-89 years]. Participants (n =253, 62% women, aged
20-89 years old) performed a battery of 33 daily activities in a standardized laboratory setting while
wearing a portable metabolic unit to measure energy expenditure that was used to gauge metabolic
intensity. Tri-axial accelerometer collected data at 80-100 Hz from the right wrist that was processed for
49 features. Results from random forests algorithm were quite accurate in recognizing physical activity
type, the F1-Score range across age groups was: sedentary [0.955 — 0.973], locomotion [0.942 — 0.964],
and lifestyle [0.913 — 0.949]. Recognizing physical activity intensity resulted in lower performance, the
F1-Score range across age groups was: sedentary [0.919 — 0.947], light [0.813 — 0.828], and moderate
[0.846 — 0.875]. The root mean square error range was [0.835 — 1.009] for the estimation of energy
expenditure. The F1-Score range for recognizing individual physical activities was [0.263 — 0.784].
Performances were relatively similar and the accelerometer data features were ranked similarly
between age groups. In conclusion, data features derived from wrist worn accelerometers lead to high-
moderate accuracy estimating physical activity type, intensity and energy expenditure and are robust
to potential age-differences.

Keywords: wrist; accelerometer; physical activity; energy expenditure; machine learning; random
forest, age groups

1. Introduction

Regular and sufficient amounts of physical activity (PA) are significant in increasing health benefits

and mitigating health risks. Globally, one out of four adults (almost 1.4 billion) do not meet the World
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Health Organization (WHO) PA recommendations [1]. Mobility is an essential factor for independence
and social life engagement. Those who lose mobility have higher risk of morbidity, disability, and
mortality [2-5]. Recently, WHO has published the Global action plan on physical activity 2018-2030
(GAPPA) to enhance PA with a target of 15% reduction in physical inactivity by year 2030 [6]. The most
recent WHO guidelines on physical activity and sedentary behavior [7] suggest that adults (aged 18 and
older) should do at least 150-300 minutes of moderate-intensity aerobic PA; or at least 75-150 minutes of
vigorous intensity aerobic PA; or an equivalent combination of moderate- and vigorous-intensity activity
throughout the week. Additionally, adults should replace their time spent being sedentary with PA.

To meet the WHO goals, accurate estimation of physical activity type, intensity and duration is
required. The proliferation of fitness trackers and wearable accelerometers offer an excellent opportunity
to achieving this goal. The literature contains many examples of machine learning algorithms including
decision tree [8], random forests [8,9], and bag-of- words [10] processing and modeling accelerometer
data. However, these models are often limited to a specific age group (e.g., adults 20-40 yrs old). The
looming question here is whether known age differences in movement patterns influence the
performance of the machine learning models. There is a paucity of research to examine the differences
between models built to recognize PA type and intensity, recognize individual PA, and estimate energy
expenditure (EE) across different age groups. Such knowledge will be useful in deriving age-specific
models that improve prediction accuracy.

Historically, the adopted approach used to recognize PA type and intensity, and to estimate energy
expenditure (EE) relied on data collected from the hip position in standardized laboratory settings. The
advantage of the hip over other positions is the proximity to the body’s center of the mass, offering a
convenient and accurate approach for capturing ambulatory activity [11]. However, the hip position is
riddled with patient/participant compliance issues and inability to gather 24 hour data [12].
Alternatively, the wrist position has become popular for collecting accelerometer data due to a rise in
smartwatches, convenience, ability to capture sleep quality (24 hours) and enhanced compliance in
research studies [13-16]. Unfortunately, despite the popularity of wrist-worn accelerometers, there is a
paucity of models that are deemed viable for accurately assessing PA [17,18]. The use of the wrist position
to recognize PA type and intensity and estimate EE is challenging due to its potential limitation in
quantifying and capturing large lower limb movements and other lifestyle activities. Therefore, models
that can accurately recognize PA type and intensity and estimate energy expenditure from the wrist are
greatly needed to meet the current demand.

This study utilizes a large amount of high-resolution raw accelerometer data collected from the wrist
position coupled with metabolic intensity assessed in 253 adults aged 20-89 years. An aggregated set of
relevant features were used as an input to machine learning models to recognize PA type and intensity,
identify individual PA, and estimate EE. Machine learning models developed on specific age groups
(young [20,50], middle (50-70], and old (70-89]) were then compared to test the hypothesis that model
performance varies across age-group. Results are expected to help evaluate whether machine learning
models used to represent wrist-worn accelerometer data need to be tailored to known age-differences in

movement and behavior to optimize their accuracy.

2. Materials and Methods
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2.1. Participants

Participants were community dwelling adults 20+ years old who were able to read and speak
English language, were welling to undergo all testing procedures, and their weight was stable in the last
three months (+/-5 1bs). Two-hundred and fifty-three (253) of the 264 participants who were enrolled were
included in the analysis. Those excluded either had: missing of start/end time of activities (6 participants),
insufficient length of activity or missing values (3 participants), and missing demographic information
(2 participants). Institutional Review Board at the University of Florida approved all study procedures,

and all participants provided written informed consents before the study.

2.2. Prescribed Activities and Visits

The ChoresXL study methods have been described previously by our group [19,20]. Briefly,
participants performed a battery of 33 typical daily activities that were categorized into activity types
and intensities calculated post-facto from metabolic unit data (supplemental Table S1). Tasks were chosen
because they mimic daily chores activities, common among most Americans, and they are consistent with
average time spent in the 2010 American Time Use Survey [21]. All tasks were performed in a standardized
laboratory setting with scripted instructions for approximately 8-10 minutes to achieve a steady state
energy expenditure. Participants performed all tasks at their own speed and were ordered from lowest to
highest metabolic demand to reduce transfer of high metabolic effects of one task to another. To ease burden
and exhaustion, participants performed all tasks over four visits. However, some did not complete all visits.
Overall, 213 participants attended all 4 visits, 21 attended 3 visits, 7 attended only 2 visits, and 12 attended

only 1 visit. In total, there were 941 data collection visits.

2.3. Instrumentation

Participants wore an ActiGraph GT3X-BT monitors on their right wrists (ActiGraph Inc, Pensacola,
FL). The ActiGraph GT3X-BT monitor is a tri-axial lightweight accelerometer that records accelerations
in units of gravity (1 g) in perpendicular, anterior-posterior, and medio-lateral axes. Accelerometers
were programmed to collect data at 100 Hz sampling rate. Participants also wore a 2 Kg portable
metabolic unit that estimated energy expenditure using principles of indirect calorimetry, Cosmed K5
(COSMED, Rome, Italy). Before data collection, the oxygen (O2) and carbon dioxide (CO:z) sensors were
calibrated using a gas mixture sample of 16.0% Oz and 5.0% CO2 and room air calibration. The turbine
flow meter was calibrated using a 3.0-L syringe. A flexible facemask was positioned over the
participant’'s mouth and nose and attached to the flow meter. Oxygen consumption (VO: =
mL.min"1.kg™') was measured breath-by-breath and were subsequently smoothed with a 30-sec running
average window. Steady-state VO: for each task was manually calculated over approximately 2 minutes
when there was evidence of a plateau, which indicates metabolic demand is matched to physical
workload. Data were expressed as METs after dividing the VO: values by the traditional standard of
3.5 mL.min~.kg™ [22].
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2.4. Problem Formulation

In this paper, we targeted four main tasks to measure the hallmark measures of PA: 1) recognize PA
type (classification task) through splitting this task into three binary classification tasks: i) sedentary vs
non-sedentary; ii) locomotion vs non-locomotion and iii) lifestyle vs non-lifestyle; 2) recognize PA
intensity (classification task) through splitting this task into three binary classification tasks: i) low vs
non-low; ii) light vs non-light and iii) moderate vs non-moderate; 3) recognize individual PA
(classification task); and 4) estimate the energy expenditure while performing the scripted activities
(regression task). We extracted consecutive non-overlapping 60-seconds windows from the raw
accelerometer data. Previous studies used various window lengths, ranging from 0.1 seconds to 128
seconds [23-27]. A 60-seconds window was chosen as a compromise between having sufficient data for
accurate feature extraction and balancing computational resources. In total, 49 time- and frequency-
domain features, listed in Table 1, were extracted. During data processing, some cases with different

collection frequencies were discovered (15 at 80 Hz and 100 at 30 Hz). However, no resampling was

performed because the resolution was sufficient to extract features over a 60 second window.

Table 1. Description of features extracted from the raw data

Feature

Description

Time

Mean of vector magnitude (mvm)

Sample mean of the VM in the window

SD of vector magnitude (sdvm)

Standard deviation of VM

Mean angle of acceleration relative to vertical on

the device (mangle)

Sample mean of the angle between x axis

and VM in the window

SD of the angle of acceleration relative to vertical

on the device (sdangle)

Sample standard deviation of the angles in

the window

Mean of acceleration (mean_x, mean_y and

mean_z)

Sample mean of acceleration from x axis, y

axis and z axis in the window

SD of acceleration (sd_x, sd_y and sd_z)

Standard deviation of acceleration from x

axis, y axis and z axis in the window

Coefficient of variation of acceleration (cv_x, cv_y

and cv_z)

Standard deviation of acceleration from x
axis, y axis and z axis in the window

divided by their mean, multiplied by 100

Min of vector magnitude and acceleration

(min_vm, min_x, min_y and min_z)

Min value of VM and acceleration from x

axis, y axis and z axis in the window

Max of vector magnitude and acceleratioin

(max_vm, max_x, max_y and max_z)

Max value of VM and acceleration from x

axis, y axis and z axis in the window

25% quantile of vector magnitude and

acceleratioin (lower_vm_25, lower_x_25,

lower_y_25 and lower_z_25)

Lower 25% quantile of VM and acceleration

from x axis, y axis and z axis in the window
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75% quantile of vector magnitude

acceleration (upper_vm_75,

upper_y_75 and upper_z_75)

and

upper_x_75,

Upper 75% quantile of VM and acceleration

from x axis, y axis and z axis in the window

Third moment of vector magnitude and
acceleration (third_moment_vm,
third_moment_x, third_moment_y and

third_moment_z)

Third moment of VM and acceleration
from x axis, y axis and z axis in the
window, which are used to depict the

shape of the signals

Fourth moment of vector magnitude and
acceleration (fourth_moment_vm,

fourth_moment_x, fourth_moment_y and

Fourth moment of VM and acceleration
from x axis, y axis and z axis in the

window, which are used to depict the

d0i:10.20944/preprints202103.0333.v1

fourth_moment_z) shape of the signals

Skewness Skewness of the VM, acceleration from x
axis, y axis, and z axis in the window
Kurtosis Kurtosis of the VM, acceleration from x

axis, y axis and z axis in the window

Coefficient of variation (CV) Standard deviation of VM in the window

divided by the mean, multiplied by 100

Percentage of the power of the vm that is in 0.6- | Sum of moduli corresponding to frequency

2.5 Hz (p625) in this range divided by sum of moduli of

all frequencies

Dominant frequency of vm (df) Frequency corresponding to the largest

Frequency

modulus

Fraction of power in vm at dominant frequency

(tpdf)

Modulus of the dominant frequency/sum of

moduli at each frequency

2.5. Model Training

Three main models were developed to estimate PA type recognition, PA intensity recognition, and
individual PA recognition. The models were generated separately across three age groups: young [20-
50 years], middle (50-70 years], and old (70-89 years]. For EE estimation, 247 participants provided valid data
and were included. All the scripted activities (33 activities) were used in case of individual PA
recognition, PA intensity recognition and EE estimation. However, for PA type recognition,
some activities were removed (strength exercise leg extension, strength exercise chest press, strength
exercise leg curl, stretching yoga); they did not fit sedentary, locomotion or lifestyle categories.
For the PA type recognition, we built binary classification models for each type and age group;
resulting in 12 models. Similarly, for the PA intensity recognition, we built binary classification
models for each intensity and age group; resulting in 12 models. For individual PA recognition,

we built one multi-class classification model (33 classes) for each age group; resulting in 4
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models. For EE estimation, we built one regression model for each group; resulting in 4 models.
In all tasks, all participants were randomly distributed into 5 folds. We used 5-fold nested cross
validation (nested-CV), which has an inner CV loop nested in an outer CV loop. The inner loop is
responsible for hyperparameter tuning (the process of searching for the optimal parameters of the
model), while the outer loop is responsible for error estimation and generalization. We used random
search for hyperparameter tuning (number of trees, maximum number of features, maximum depth of each
tree, and minimum number of samples per leaf) , in which 10 sets of hyperparameters are set up and
combined randomly for training the model. Then, the model with the highest F1-score was chosen. F1-
score was used to compare across age groups because it protects against the imbalance across classes seen
in PA type and intensity categories. There is no absolute criterion for a “good” value of F1 measure, but
values above 0.80 generally indicate good performance. For continuous data from energy expenditure

(METs), the root mean square error (RMSE) was used to evaluate performance.

3. Results

Table 2 shows participants’ descriptive characteristics per age group: young [20-50 years], middle (50-
70 years], and old (70-89 years]. Table 3 shows a slight performance reduction from younger to older age
groups and from sedentary to more high variability lifestyle activities (F1-score range [0.913 — 0.973]).
Results in Table 3 also show that METs RMSE decreased (improved) from young to middle to older age
groups (RMSE range [0.835 - 1.009]).

Results for PA intensity show model performance were slightly higher for young and middle age
groups compared to the old age group (F1-score range [0.813 — 0.947]). The performance of low intensity
models across age groups outperformed the performance of the moderate, then light intensities.

Table 5 shows the performance of recognizing individual PA. It can be noticed that activities mainly
involving wrist movements (washing dishes, computer work, cleaning windows) tend to perform better
than others. However, there is no clear difference across age groups.

Figures 1-3 show the confusion matrices of recognizing PA type across age groups. The confusion
increases as we move from sedentary to lifestyle PA type, which is consistent with the F1 scores shown
in Table 3. Figures 4-6 show the confusion matrices of recognizing PA intensity across age groups.
Similarly, the confusion of the models are consistent with the F1 scores shown in Table 4.

Figures 7-9 show the top 15 features that contributed the most in recognizing PA type across age
groups. It can be noticed that the ranking of features is similar across age groups within each PA type.
Figures 10-12 show the top 15 features that contributed the most in recognizing PA intensity across age

groups. Similarly, it can be noticed that the ranking of features is similar across age groups within each

PA intensity.
Table 2. Participants descriptive characteristics by age group
Young Middle Old All
Age range, years [20-50] (50-70] (70-89] [20-89]
Mean Age (SD), years 35.2(10.7) 61.9 (5.6) 77.7 (5.1) 61.7 (17.7)
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Mean BMI (SD), kg/m”"2 26.1 (5.5) 26.9 (5.5) 27.7 (5.8) 27 (5.6)
Women % 60% 67% 58% 62%
Number of Hispanic 3 2 1 6
Total number 60 95 98 253

Table 3. Performance metrics of recognizing physical activity type and estimating energy expenditure.

Each value is the mean and standard deviation of the 5-fold nested cross validation.

Young

Middle

Old

All

Activity Type Recognition Performance (F1 Score)

Sedentary 0.970 (0.004) | 0.973 (0.004) | 0.955 (0.005) | 0.971 (0.002)
Locomotion 0.964 (0.009) | 0.956 (0.004) | 0.942 (0.005) | 0.956 (0.004)
Lifestyle 0.949 (0.008) | 0.940 (0.005) | 0.913 (0.005) | 0.938 (0.004)
Macro average (F1-score)*| 0.961 (0.005) | 0.956 (0.003) | 0.937 (0.003) | 0.955 (0.003)

Energy Expenditure Estimation Performance (RMSE)

[ 1.009 (0.059) | 0.904 (0.024) | 0.835 (0.033) | 0.898.048)

*The macro-average Fl-score is the unweighted average of the F1-scores over all the classes

Table 4. Performance metrics of recognizing physical activity intensity. Each value is the mean and standard

deviation of the 5-fold nested cross validation.

| Young | Middle | Oold | All
Activity Intensity Recognition Performance (F1 Score)
Low intensity 0.947 (0.014) | 0.939 (0.005) 0.919 (0.012) | 0.927 (0.005)
Light intensity 0.828 (0.008) | 0.845 (0.013) 0.813 (0.010) | 0.839 (0.004)
Moderate intensity 0.866 (0.012) | 0.875 (0.012) 0.846 (0.011) | 0.868 (0.005)
Macro average (F1-score)* | 0.880 (0.008) | 0.886 (0.010) 0.860 (0.009) | 0.878 (0.004)

*The macro-average F1-score is the unweighted average of the F1-scores over all the classes

Table 5. Performance metrics of recognizing individual physical activities and estimating energy

expenditure. Each value is the mean and standard deviation of the 5-fold nested cross validation.

|  Young |

Middle

[ old

[ Al

Individual Activities Recognition Performance (F1 Score)

LEISURE WALK

| 0.510 (0.066) | 0.488 (0.078) | 0.401 (0.049) | 0.474 (0.033)
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RAPID WALK 0.631 (0.023) [ 0.527 (0.063) | 0.463 (0.075) | 0.557 (0.035)
LIGHT GARDENING 0.537 (0.090) | 0.442 (0.058) | 0.431 (0.035) | 0.499 (0.041)
YARD WORK 0.349 (0.022) [ 0.383 (0.070) | 0.351 (0.063) | 0.405 (0.042)
PREPARE SERVE MEAL 0.415 (0.042) | 0.379 (0.048) | 0.380 (0.058) | 0.428 (0.012)
DIGGING 0.664 (0.019) [ 0.634 (0.036) | 0.605 (0.072) | 0.661 (0.039)
STRAIGHTENING UP DUSTING] 0.402 (0.075) | 0.374 (0.053) | 0.365 (0.059) | 0.401 (0.028)
WASHING DISHES 0.724 (0.056) | 0.661 (0.017) | 0.583 (0.042) | 0.671 (0.020)
UNLOADING STORING DISHES] 0.668 (0.040) | 0.627 (0.051) | 0.557 (0.053) | 0.637 (0.011)
WALKING AT RPE 1 0.316 (0.061) | 0.456 (0.042) | 0.300 (0.059) | 0.395(0.018)
PERSONAL CARE 0.644 (0.058) | 0.662 (0.038) | 0.492 (0.046) | 0.622 (0.005)
DRESSING 0.445 (0.056) | 0.384 (0.055) | 0.263 (0.026) | 0.386 (0.025)
WALKING AT RPE 5 0.415 (0.038) | 0.397 (0.097) | 0.348 (0.088) | 0.393 (0.022)
SWEEPING 0.557 (0.061) | 0.554 (0.084) | 0.458 (0.053) | 0.546(0.021)
VACUUMING 0.592 (0.043) [ 0.550 (0.043) | 0.493 (0.032) | 0.551 (0.024)
STAIR DESCENT 0.643 (0.090) | 0.610 (0.040) | 0.576 (0.030) | 0.613 (0.070)
STAIR ASCENT 0.422 (0.110) | 0.486 (0.065) | 0.437 (0.027) | 0.482 (0.049)
TRASH REMOVAL 0.403 (0.054) | 0.415 (0.066) | 0.274 (0.057) | 0.396(0.028)
REPLACING SHEETS ON A BED| 0.579 (0.069) | 0.606 (0.059) | 0.549 (0.016) | 0.607 (0.029)
STRETCHING YOGA* 0.586 (0.041) | 0.600 (0.029) | 0.501 (0.062) | 0.556 (0.031)
MOPPING 0.502 (0.076) | 0.569 (0.041) | 0.550 (0.077) | 0.606 (0.033)
LIGHT HOME MAINTENANCE | 0.447 (0.028) | 0.466 (0.021) | 0.378 (0.046) | 0.468 (0.030)
COMPUTER WORK 0.764 (0.051) | 0.784 (0.029) | 0.750 (0.052) | 0.782(0.019)
HEAVY LIFTING 0.613 (0.060) | 0.620 (0.015) | 0.439 (0.059) | 0.579 (0.019)
SHOPPING 0.447 (0.052) | 0.488 (0.054) | 0.442 (0.050) | 0.486 (0.035)
TRONING 0.589 (0.028) | 0.636 (0.027) | 0.608 (0.057) | 0.639 (0.035)
LAUNDRY WASHING 0.379 (0.035) | 0.458 (0.036) | 0.392 (0.021) | 0.443 (0.030)
STRENGTH EXERCISE LEG

CURL 0.560 (0.045) | 0.616 (0.064) | 0.652 (0.090) | 0.652 (0.055)
STRENGTH EXERCISE CHEST

PRESS 0.563 (0.051) | 0.612 (0.085) | 0.516 (0.066) | 0.606 (0.037)
STRENGTH EXERCISE LEG

EXTENSION 0.407 (0.152) | 0.462 (0.067) | 0.345 (0.063) | 0.454 (0.034)
TV WATCHING 0.608 (0.054) | 0608 (0.036) | 0.572 (0.079) | 0.612 (0.038)
STANDING STILL 0.634 (0.120) | 0637 (0.079) | 0.545 (0.097) | 0.614 (0.036)
WASHING WINDOWS 0.740 (0.074) | 0.693 (0.053) | 0.722 (0.064) | 0.729 (0.025)
Macro average (F1 score) 0.540 (0.025) | 0.540 (0.025) | 0.476 (0.011) | 0.544 (0.015)

*The macro-average F1-score is the unweighted average of the Fl-scores over all the classes

4. Discussion

The goal of the study was to build accurate machine learning models to recognizing the hallmark
measures of physical activities and estimating energy expenditure across different age groups. We
analyzed a large dataset of raw accelerometer data collected from the wrist position. We utilized the
random forests algorithm, which is one of the most powerful algorithms in machine learning, to build

models. Results showed that the machine learning models were quite accurate at recognizing physical
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activity type and intensity, and estimating energy expenditure. However, models performed less
optimally when recognizing individual physical activities. Our hypothesis that increasing age would
impact model performance was rejected as only slight differences were detected among age groups.

The results of the models built to recognize physical activity type showed high performance for all
age groups as shown in Table 3. The model built on the young age group achieved the highest
performance, followed by the middle, then old age groups for all activity types. Additionally, the highest
performance was for sedentary, locomotion, then lifestyle activities for all age groups. Physical activity
types seem to be more distinguishable and cause less confusion for younger ages as reflected on the
confusion matrices shown in Figures 1-3. It is hard to interpret the drop in the performance from young
to old age groups. One potential cause of this drop is the deviations from the standardized protocol that
are more common in older adults. For example, there was a certain amount of variability in the trash
removal activity among older adults compared to younger adults (older adults could not pull the trash
bag quickly). This suggests that the ML models need to incorporate these compensations more accurately
among older populations. Another reason is that older adults do not like the wrist device as tight as the
younger adults. This can result in unintended artifactual movement that occurred more commonly
among the older. Additional cause could be that the middle and old age groups include more
participants’ data than the young age group. Therefore, the models tend to generalize better and be less
optimistic. On the other hand, the drop in the performance from sedentary to lifestyle activity types is
intuitive. Lifestyle activities typically require more wrist involvement (i.e., ironing, trash removal) than
other physical activity types. This means more variability in physical activities as we move from
sedentary to lifestyle activities, which can increase the confusion in recognizing physical activity types
as reflected in the confusion matrices shown in Figures 1-3.

The results of the models built to recognize physical activity intensity showed relatively high
performance for all age groups, but lower than the performance of recognizing physical activity types as
shown in Table 4. The highest performance was for the young and middle age groups alternatively, then
old age group for all activity intensities. Additionally, the highest performance was for low, moderate,
then light intensities for all age groups. As mentioned above, it is hard to interpret the drop in the
performance from young to old age groups. Performance metrics and confusion for labeling physical
activity intensities showed a consistent, although slight, reduction in older aged groups (see Table 4 and
Figures 4-6). If this error was scaled to free-living conditions over a typical day (16 hours), older adults
would be expected to have 2% (~19 minutes) more mislabeling of PA intensity compared to a younger
group.

Models built to recognize individual physical activities showed lower performance than recognizing
physical activity type. The highest F1-score was 0.784 in recognizing the computer work activity in the
middle age group and the lowest was 0.263 for recognizing the dressing activity in the old age group.
The overall deterioration in the recognition performance in individual activities compared to other
recognition tasks is intuitive, due to the high number of classes and the data imbalance. Summing these

activities into categories such as the physical activity types or physical activity intensities can help in
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enhancing the recognition performance metric as observed in Table 3 and Table 4. In general, there were
no consistent differences among age groups.

The scaled impurity-based feature importance ranking generated from the random forest algorithm
show how relevant these features are to the problem in hand and help in better understanding the model.
We listed the top 15 features out of 49 features for both the physical activity type and intensity recognition
tasks. By examining the feature importance for the physical activity types, there is a consistency in the
ranking of these features across age groups within each one of the activity types. For example, variability
in vector magnitude features such as sdvm and cv_vm were important in predicting sedentary physical
activities, whereas wrist-specific features such as wrist_sd_z and sd_angle are more relevant for
recognizing lifestyle activity types. The feature importance rankings for low intensity activities was
similar to sedentary PA type, where the VM features such as sdvm and cv_vm were dominant. Feature
rankings for predicting light and moderate intensities were similar with high importance for moment-
based variables. Similarly, there is a consistency in the feature importance ranking across the age groups
suggesting that the features are robust to potential movement difference with increasing age.
Interestingly, the amplitude of the accelerometer axis (i.e. mean VM), which is commonly used to gauge
intensity did not have a major role in model prediction. Being aware of the important features for the
recognition problem in hand can help researchers continue improving model accuracy with less
computational costs.

Comparing relevant literature results is an intricate endeavor because of the differences in the data
collection environment and the variables that govern the study. There are numerous differences between
studies that include: sample size, the demographic characteristics of participants, the number and
diversity of the physical activities tested, type of accelerometer, body position, statistical and machine
learning algorithms applied, the extracted statistical features, the window size, and the metrics measured
to evaluate the overall performance. However, some important comparisons can be made. For example,
Ellis et al. [28] built random forest models on data collected from the dominant wrist to predict physical
activity type and estimate energy expenditure. The models were developed and tested on 40 (average
age 35.8 years) participants. They obtained an average F1 score of 0.75 on 8 daily activities. Additionally,
they obtained an RMSE value of 1.0 METs, which is similar to our young age group. Staudenmayer et al.
[8] also used random forest to estimate energy expenditure and metabolic intensity of 19 physical
activities from wrist accelerometer data. The models derived from a small young sample of 20 (24.1 years)
estimated RMSE at 1.21 METs. When compared to others using machine learning approaches, the results
from the current work are comparable within the young age group, but better in middle and old age
groups.

Studies that examined the hallmark measures of physical activity have used publicly available data
that contain activity labels, but not measures of metabolic intensity or energy expenditure (e.g.
Opportunity (multiple body positions, 3 participants) [29], PAMAP?2 (chest, arm and ankle positions, 9
participants) [30], UCI daily and sports dataset (hip position, 30 participants) [31], Skoda Mini
Checkpoint (multiple body positions, 1 participant) [32], WISDM (hip position, 29 participants) [33], and
Daphnet Freezing of Gait Dataset (legs and hip positions, 10 participants) [34]). They are also limited by
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a small number of participants, age-range being mostly <40 years, a low number and diversity of activity
types, and most importantly lacking sufficient data from the wrist position. Given these substantial
differences, the models presented here show relatively higher performance than others. Additionally, the
current model may generalize better due to the high diversity of activities, wide age-span, gender and
racial diversity and the larger number of participants enrolled.

A limitation of the current study is that data were collected in controlled lab settings, which is
appropriate and a first step in evaluating positional differences [35]. Collecting data in the free-living
settings is more reflective of numerous transitions between activity types, but it is challenged by labeling
the activity type. Another limitation is the consideration of window size, which was based on previous
studies that extracted time- and frequency-domain features. This window size may not reflect the most
appropriate size for all tasks and age groups. Additional simulation work should evaluate different

window sizes for optimizing performance.

5. Conclusions

In this study, we tested the hypothesis that the machine learning model performance varies across age-
groups for recognizing hallmark measures of physical activities and estimating energy expenditure.
Overall results suggest data features derived from wrist worn accelerometers lead to high-to-moderate
accuracy estimating physical activity type, intensity and energy expenditure in all age groups. In
conclusion, machine learning models used to represent accelerometry data are robust to age differences
and a generalizable approach might be sufficient to utilize in accelerometer-based devices (smartwatches

and activity trackers).

Supplementary Materials:

Table S1: List of the performed physical activities, their type, and intensity

Activity type Intensity
Activity Sedentary | Locomotion | Life-style Low light Moderate
LEISURE WALK No Yes No No No Yes
RAPID WALK No Yes No No No Yes
LIGHT GARDENING No No Yes No No Yes
YARD WORK No No Yes No No Yes
PREPARE SERVE MEAL No No Yes No Yes No
DIGGING No No Yes No No Yes
STRAIGHTENING UP No No Yes No No Yes
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DUSTING

WASHING DISHES No No Yes No Yes No
UNLOADING STORING No No Yes No Yes No
DISHES

WALKING AT RPE 1 No Yes No No No Yes
PERSONAL CARE No No Yes No Yes No
DRESSING No No Yes No Yes No
WALKING AT RPE 5 No Yes No No No Yes
SWEEPING No No Yes No No Yes
VACUUMING No No Yes No No Yes
STAIR DESCENT No Yes No No No Yes
STAIR ASCENT No Yes No No No Yes
TRASH REMOVAL No No Yes No No Yes
REPLACING SHEETS ON A No No Yes No No Yes
BED

STRETCHING YOGA* No No No No Yes No
MOPPING No No Yes No No Yes
LIGHT HOME No No Yes No No Yes
MAINTENANCE

COMPUTER WORK Yes No No Yes No No
HEAVY LIFTING No No Yes No No Yes
SHOPPING No No Yes No Yes No
IRONING No No Yes No Yes No
LAUNDRY WASHING No No Yes No Yes No
STRENGTH EXERCISE LEG No No No No Yes No
CURL*

STRENGTH EXERCISE No No No No Yes No
CHEST PRESS*

STRENGTH EXERCISE LEG No No No No Yes No
EXTENSION*

TV WATCHING Yes No No Yes No No
STANDING STILL Yes No No Yes No No
WASHING WINDOWS No No Yes No No Yes

A total of 29 activities were considered for PA type recognition, 33 for individual PA recognition, PA intensity recognition,
and EE estimation.
* Only considered for energy expenditure estimation, PA intensity recognition, and individual PA recognition.
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Figure 1. Confusion matrix of recognizing physical activity type for young age group
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Figure 7. Feature importance for recognizing sedentary activities across age groups

Young People

fpdf
moment_Y_three
mangle
mean_Y
kurtosis_vm
moment_four_Y
lower_Y.25%
upper_Y.75%
moment_four_X
p625
wrist_sd_Z
v Y
upper_X.75%
max_2
max_Y

0 04 0. 06 0. OB 0.

Scaled Importance

Old People

fpdf
mean_Y
upper_Y.75%
moment_Y_three
mangle
moment_four_Y
moment_four_X
wrist_sd_Z
lower_Y.25%
kurtosis_vm
max_Z
wrist_cv_Z
upper_X.75%
p625
moment_X_three

0 .03 0. 04 0. 05 0.0

Scaled Importance

Mid-Aged People

fpaif
moment_Y_three
mean_Y

mangle
upper_Y.75%
kurtosis_vm
moment_four_Y
lower_Y.25%
moment_four_X
wrist_sd_Z

p625

max_Z
wrist_cv_Z
upper_Xx.75%
upper_Z.75%

.

0.00 0.02 0.04 0.06 0.08 o0.10
Scaled Importance

All People

fpdf
moment_Y_three
mean_Y

mangle
upper_Y.75%
moment_four_Y
kurtosis_vm
lower Y.25%
moment_four_X
wrist_sd_Z

p625

wrist_cv_Z
max_Z
upper_X.75%
oY

”“““'W

0.00 0.02 0.04 0.06 0.08 0.10
Scaled Importance
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Figure 9. Feature importance for recognizing lifestyle activities across age groups
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Figure 11. Feature importance for recognizing light intensity across age groups
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Figure 12. Feature importance for recognizing moderate intensity across age groups
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