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Abstract: Wrist-worn fitness trackers and smartwatches are proliferating with an incessant attention 
towards health tracking. Given the growing popularity of wrist-worn devices across all age groups, a 
rigorous evaluation for recognizing hallmark measures of physical activities and estimating energy 
expenditure is needed to compare their accuracy across the lifespan. The goal of the study was to build 
machine learning models to recognize physical activity type (sedentary, locomotion, and lifestyle) and 
intensity (low, light, and moderate), identify individual physical activities, and estimate energy 
expenditure. The primary aim of this study was to build and compare models for different age groups: 
young [20-50 years], middle (50-70 years], and old (70-89 years]. Participants (n = 253, 62% women, aged 
20-89 years old) performed a battery of 33 daily activities in a standardized laboratory setting while 
wearing a portable metabolic unit to measure energy expenditure that was used to gauge metabolic 
intensity. Tri-axial accelerometer collected data at 80-100 Hz from the right wrist that was processed for 
49 features. Results from random forests algorithm were quite accurate in recognizing physical activity 
type, the F1-Score range across age groups was: sedentary [0.955 – 0.973], locomotion [0.942 – 0.964], 
and lifestyle [0.913 – 0.949]. Recognizing physical activity intensity resulted in lower performance, the 
F1-Score range across age groups was: sedentary [0.919 – 0.947], light [0.813 – 0.828], and moderate 
[0.846 – 0.875]. The root mean square error range was [0.835 – 1.009] for the estimation of energy 
expenditure. The F1-Score range for recognizing individual physical activities was [0.263 – 0.784]. 
Performances were relatively similar and the accelerometer data features were ranked similarly 
between age groups. In conclusion, data features derived from wrist worn accelerometers lead to high-
moderate accuracy estimating physical activity type, intensity and energy expenditure and are robust 
to potential age-differences.  

Keywords: wrist; accelerometer; physical activity; energy expenditure; machine learning; random 
forest, age groups  

 

1. Introduction 

Regular and sufficient amounts of physical activity (PA) are significant in increasing health benefits 
and mitigating health risks. Globally, one out of four adults (almost 1.4 billion) do not meet the World 
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Health Organization (WHO) PA recommendations [1]. Mobility is an essential factor for independence 
and social life engagement. Those who lose mobility have higher risk of morbidity, disability, and 
mortality [2–5]. Recently, WHO has published the Global action plan on physical activity 2018–2030 
(GAPPA) to enhance PA with a target of 15% reduction in physical inactivity by year 2030 [6]. The most 
recent WHO guidelines on physical activity and sedentary behavior [7] suggest that adults (aged 18 and 
older) should do at least 150–300 minutes of moderate-intensity aerobic PA; or at least 75–150 minutes of 
vigorous intensity aerobic PA; or an equivalent combination of moderate- and vigorous-intensity activity 
throughout the week. Additionally, adults should replace their time spent being sedentary with PA.  

To meet the WHO goals, accurate estimation of physical activity type, intensity and duration is 
required. The proliferation of fitness trackers and wearable accelerometers offer an excellent opportunity 
to achieving this goal. The literature contains many examples of machine learning algorithms including 
decision tree [8], random forests [8,9], and bag-of- words [10] processing and modeling accelerometer 
data. However, these models are often limited to a specific age group (e.g., adults 20-40 yrs old). The 
looming question here is whether known age differences in movement patterns influence the 
performance of the machine learning models. There is a paucity of research to examine the differences 
between models built to recognize PA type and intensity, recognize individual PA, and estimate energy 
expenditure (EE) across different age groups. Such knowledge will be useful in deriving age-specific 
models that improve prediction accuracy.  

Historically, the adopted approach used to recognize PA type and intensity, and to estimate energy 
expenditure (EE) relied on data collected from the hip position in standardized laboratory settings. The 
advantage of the hip over other positions is the proximity to the body’s center of the mass, offering a 
convenient and accurate approach for capturing ambulatory activity [11]. However, the hip position is 
riddled with patient/participant compliance issues and inability to gather 24 hour data [12]. 
Alternatively, the wrist position has become popular for collecting accelerometer data due to a rise in 
smartwatches, convenience, ability to capture sleep quality (24 hours) and enhanced compliance in 
research studies [13–16]. Unfortunately, despite the popularity of wrist-worn accelerometers, there is a 
paucity of models that are deemed viable for accurately assessing PA [17,18]. The use of the wrist position 
to recognize PA type and intensity and estimate EE is challenging due to its potential limitation in 
quantifying and capturing large lower limb movements and other lifestyle activities. Therefore, models 
that can accurately recognize PA type and intensity and estimate energy expenditure from the wrist are 
greatly needed to meet the current demand. 

This study utilizes a large amount of high-resolution raw accelerometer data collected from the wrist 
position coupled with metabolic intensity assessed in 253 adults aged 20-89 years. An aggregated set of 
relevant features were used as an input to machine learning models to recognize PA type and intensity, 
identify individual PA, and estimate EE. Machine learning models developed on specific age groups 
(young [20,50], middle (50-70], and old (70-89]) were then compared to test the hypothesis that model 
performance varies across age-group. Results are expected to help evaluate whether machine learning 
models used to represent wrist-worn accelerometer data need to be tailored to known age-differences in 
movement and behavior to optimize their accuracy.  

2. Materials and Methods 
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2.1. Participants 

Participants were community dwelling adults 20+ years old who were able to read and speak 
English language, were welling to undergo all testing procedures, and their weight was stable in the last 
three months (+/-5 lbs). Two-hundred and fifty-three (253) of the 264 participants who were enrolled were 
included in the analysis. Those excluded either had: missing of start/end time of activities (6 participants), 
insufficient length of activity or missing values (3 participants), and missing demographic information 
(2 participants). Institutional Review Board at the University of Florida approved all study procedures, 
and all participants provided written informed consents before the study.  

2.2. Prescribed Activities and Visits 

The ChoresXL study methods have been described previously by our group [19,20]. Briefly, 
participants performed a battery of 33 typical daily activities that were categorized into activity types 
and intensities calculated post-facto from metabolic unit data (supplemental Table S1). Tasks were chosen 
because they mimic daily chores activities, common among most Americans, and they are consistent with 
average time spent in the 2010 American Time Use Survey [21]. All tasks were performed in a standardized 
laboratory setting with scripted instructions for approximately 8-10 minutes to achieve a steady state 
energy expenditure. Participants performed all tasks at their own speed and were ordered from lowest to 
highest metabolic demand to reduce transfer of high metabolic effects of one task to another. To ease burden 
and exhaustion, participants performed all tasks over four visits. However, some did not complete all visits. 
Overall, 213 participants attended all 4 visits, 21 attended 3 visits, 7 attended only 2 visits, and 12 attended 
only 1 visit. In total, there were 941 data collection visits.     

2.3. Instrumentation 

Participants wore an ActiGraph GT3X-BT monitors on their right wrists (ActiGraph Inc, Pensacola, 

FL). The ActiGraph GT3X-BT monitor is a tri-axial lightweight accelerometer that records accelerations 
in units of gravity (1 g) in perpendicular, anterior-posterior, and medio-lateral axes. Accelerometers 
were programmed to collect data at 100 Hz sampling rate. Participants also wore a 2 Kg portable 
metabolic unit that estimated energy expenditure using principles of indirect calorimetry, Cosmed K5 
(COSMED, Rome, Italy). Before data collection, the oxygen (O2) and carbon dioxide (CO2) sensors were 
calibrated using a gas mixture sample of 16.0% O2 and 5.0% CO2 and room air calibration. The turbine 
flow meter was calibrated using a 3.0-L syringe. A flexible facemask was positioned over the 
participant’s mouth and nose and attached to the flow meter. Oxygen consumption (VO2 = 
mL.min−1.kg−1) was measured breath-by-breath and were subsequently smoothed with a 30-sec running 
average window. Steady-state VO2 for each task was manually calculated over approximately 2 minutes 
when there was evidence of a plateau, which indicates metabolic demand is matched to physical 
workload.  Data were expressed as METs after dividing the VO2 values by the traditional standard of 
3.5 mL.min−1.kg−1 [22]. 
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2.4. Problem Formulation 

In this paper, we targeted four main tasks to measure the hallmark measures of PA: 1) recognize PA 

type (classification task) through splitting this task into three binary classification tasks: i) sedentary vs 

non-sedentary; ii) locomotion vs non-locomotion and iii) lifestyle vs non-lifestyle; 2) recognize PA 

intensity (classification task) through splitting this task into three binary classification tasks: i) low vs 

non-low; ii) light vs non-light and iii) moderate vs non-moderate; 3) recognize individual PA 

(classification task); and 4) estimate the energy expenditure while performing the scripted activities 

(regression task). We extracted consecutive non-overlapping 60-seconds windows from the raw 

accelerometer data. Previous studies used various window lengths, ranging from 0.1 seconds to 128 

seconds [23–27]. A 60-seconds window was chosen as a compromise between having sufficient data for 

accurate feature extraction and balancing computational resources. In total, 49 time– and frequency– 

domain features, listed in Table 1, were extracted. During data processing, some cases with different 

collection frequencies were discovered (15 at 80 Hz and 100 at 30 Hz). However, no resampling was 

performed because the resolution was sufficient to extract features over a 60 second window.   

 

Table 1. Description of features extracted from the raw data  

 Feature Description 

Ti
m

e 

Mean of vector magnitude (mvm) Sample mean of the VM in the window 

SD of vector magnitude (sdvm)  Standard deviation of VM 

Mean angle of acceleration relative to vertical on 

the device (mangle) 

Sample mean of the angle between x axis 

and VM in the window 

SD of the angle of acceleration relative to vertical 

on the device (sdangle) 

Sample standard deviation of the angles in 

the window 

Mean of acceleration (mean_x, mean_y and 

mean_z) 

Sample mean of acceleration from x axis, y 

axis and z axis in the window 

SD of acceleration (sd_x, sd_y and sd_z) Standard deviation of acceleration from x 

axis, y axis and z axis in the window 

Coefficient of variation of acceleration (cv_x, cv_y 

and cv_z) 

Standard deviation of acceleration from x 

axis, y axis and z axis in the window 

divided by their mean, multiplied by 100 

Min of vector magnitude and acceleration 

(min_vm, min_x, min_y and min_z) 

Min value of VM and acceleration from x 

axis, y axis and z axis in the window 

Max of vector magnitude and acceleratioin 

(max_vm, max_x, max_y and max_z) 

Max value of VM and acceleration from x 

axis, y axis and z axis in the window 

25% quantile of vector magnitude and 

acceleratioin (lower_vm_25, lower_x_25, 

lower_y_25 and lower_z_25) 

Lower 25% quantile of VM and acceleration 

from x axis, y axis and z axis in the window 
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75% quantile of vector magnitude and 

acceleration (upper_vm_75, upper_x_75, 

upper_y_75 and upper_z_75) 

Upper 75% quantile of VM and acceleration 

from x axis, y axis and z axis in the window 

Third moment of vector magnitude and 

acceleration (third_moment_vm, 

third_moment_x, third_moment_y and 

third_moment_z) 

Third moment of VM and acceleration 

from x axis, y axis and z axis in the 

window, which are used to depict the 

shape of the signals 

Fourth moment of vector magnitude and 

acceleration (fourth_moment_vm, 

fourth_moment_x, fourth_moment_y and 

fourth_moment_z) 

Fourth moment of VM and acceleration 

from x axis, y axis and z axis in the 

window, which are used to depict the 

shape of the signals 

Skewness Skewness of the VM, acceleration from x 

axis, y axis, and z axis in the window 

Kurtosis Kurtosis of the VM, acceleration from x 

axis, y axis and z axis in the window 

Coefficient of variation (CV)  Standard deviation of VM in the window 

divided by the mean, multiplied by 100 

Fr
eq

ue
nc

y 

Percentage of the power of the vm that is in 0.6-

2.5 Hz (p625) 

Sum of moduli corresponding to frequency 

in this range divided by sum of moduli of 

all frequencies 

Dominant frequency of vm (df) Frequency corresponding to the largest 

modulus 

Fraction of power in vm at dominant frequency 

(fpdf) 

Modulus of the dominant frequency/sum of 

moduli at each frequency 

 

2.5. Model Training 

Three main models were developed to estimate PA type recognition, PA intensity recognition, and 

individual PA recognition. The models were generated separately across three age groups: young [20-

50 years], middle (50-70 years], and old (70-89 years]. For EE estimation, 247 participants provided valid data 

and were included. All the scripted activities (33 activities) were used in case of individual PA 

recognition, PA intensity recognition and EE estimation. However, for PA type recognition, 

some activities were removed (strength exercise leg extension, strength exercise chest press, strength 

exercise leg curl, stretching yoga); they did not fit sedentary, locomotion or lifestyle categories.  

For the PA type recognition, we built binary classification models for each type and age group; 

resulting in 12 models. Similarly, for the PA intensity recognition, we built binary classification 

models for each intensity and age group; resulting in 12 models. For individual PA recognition, 

we built one multi-class classification model (33 classes) for each age group; resulting in 4 
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models. For EE estimation, we built one regression model for each group; resulting in 4 models. 

In all tasks, all participants were randomly distributed into 5 folds. We used 5-fold nested cross 

validation (nested-CV), which has an inner CV loop nested in an outer CV loop. The inner loop is 

responsible for hyperparameter tuning (the process of searching for the optimal parameters of the 

model), while the outer loop is responsible for error estimation and generalization. We used random 

search for hyperparameter tuning (number of trees, maximum number of features, maximum depth of each 

tree, and minimum number of samples per leaf) , in which 10 sets of hyperparameters are set up and 

combined randomly for training the model. Then, the model with the highest F1-score was chosen. F1-

score was used to compare across age groups because it protects against the imbalance across classes seen 

in PA type and intensity categories. There is no absolute criterion for a “good” value of F1 measure, but 

values above 0.80 generally indicate good performance. For continuous data from energy expenditure 

(METs), the root mean square error (RMSE) was used to evaluate performance.  

3. Results 

Table 2 shows participants’ descriptive characteristics per age group: young [20-50 years], middle (50-

70 years], and old (70-89 years]. Table 3 shows a slight performance reduction from younger to older age 

groups and from sedentary to more high variability lifestyle activities (F1-score range [0.913 – 0.973]). 

Results in Table 3 also show that METs RMSE decreased (improved) from young to middle to older age 

groups (RMSE range [0.835 - 1.009]).  

Results for PA intensity show model performance were slightly higher for young and middle age 

groups compared to the old age group (F1-score range [0.813 – 0.947]). The performance of low intensity 

models across age groups outperformed the performance of the moderate, then light intensities.   

Table 5 shows the performance of recognizing individual PA. It can be noticed that activities mainly 

involving wrist movements (washing dishes, computer work, cleaning windows) tend to perform better 

than others. However, there is no clear difference across age groups.  

Figures 1-3 show the confusion matrices of recognizing PA type across age groups. The confusion 

increases as we move from sedentary to lifestyle PA type, which is consistent with the F1 scores shown 

in Table 3. Figures 4-6 show the confusion matrices of recognizing PA intensity across age groups. 

Similarly, the confusion of the models are consistent with the F1 scores shown in Table 4.    

Figures 7-9 show the top 15 features that contributed the most in recognizing PA type across age 

groups. It can be noticed that the ranking of features is similar across age groups within each PA type. 

Figures 10-12 show the top 15 features that contributed the most in recognizing PA intensity across age 

groups. Similarly, it can be noticed that the ranking of features is similar across age groups within each 

PA intensity. 

Table 2. Participants descriptive characteristics by age group 

 Young Middle Old All 
Age range, years [20-50] (50-70] (70-89] [20-89] 
Mean Age (SD), years 35.2 (10.7) 61.9 (5.6) 77.7 (5.1) 61.7 (17.7) 
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Mean BMI (SD), kg/m^2 26.1 (5.5) 26.9 (5.5) 27.7 (5.8) 27 (5.6) 
Women %  60% 67% 58% 62% 
Number of Hispanic 3 2 1 6 
Total number  60 95 98 253 

 
 

Table 3. Performance metrics of recognizing physical activity type and estimating energy expenditure. 

Each value is the mean and standard deviation of the 5-fold nested cross validation. 

 Young Middle Old All 
Activity Type Recognition Performance (F1 Score) 

Sedentary  0.970 (0.004) 0.973 (0.004) 0.955 (0.005)  0.971 (0.002) 
Locomotion 0.964 (0.009) 0.956 (0.004) 0.942 (0.005)  0.956 (0.004) 
Lifestyle 0.949 (0.008)  0.940 (0.005) 0.913 (0.005)  0.938 (0.004) 
Macro average (F1-score)* 0.961 (0.005)  0.956 (0.003) 0.937 (0.003)  0.955 (0.003) 

Energy Expenditure Estimation Performance (RMSE) 
 1.009 (0.059)  0.904 (0.024)  0.835 (0.033)  0.898 .048) 
*The macro-average F1-score is the unweighted average of the F1-scores over all the classes 

 

 

 

Table 4. Performance metrics of recognizing physical activity intensity. Each value is the mean and standard 

deviation of the 5-fold nested cross validation. 
 Young Middle Old All 

Activity Intensity Recognition Performance (F1 Score) 
Low intensity  0.947 (0.014) 0.939 (0.005) 0.919 (0.012)  0.927 (0.005) 
Light intensity 0.828 (0.008) 0.845 (0.013) 0.813 (0.010)  0.839 (0.004) 
Moderate intensity 0.866 (0.012) 0.875 (0.012) 0.846 (0.011) 0.868 (0.005) 
Macro average (F1-score)* 0.880 (0.008) 0.886 (0.010) 0.860 (0.009) 0.878 (0.004)  
*The macro-average F1-score is the unweighted average of the F1-scores over all the classes 

 

 

 

 

 

Table 5. Performance metrics of recognizing individual physical activities and estimating energy 

expenditure. Each value is the mean and standard deviation of the 5-fold nested cross validation.  

 Young Middle Old All 
Individual Activities Recognition Performance (F1 Score) 

LEISURE WALK 0.510 (0.066) 0.488 (0.078) 0.401 (0.049) 0.474 (0.033) 
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RAPID WALK 0.631 (0.023) 0.527 (0.063) 0.463 (0.075) 0.557 (0.035) 
LIGHT GARDENING 0.537 (0.090) 0.442 (0.058) 0.431 (0.035) 0.499 (0.041) 
YARD WORK 0.349 (0.022) 0.383 (0.070) 0.351 (0.063) 0.405 (0.042) 
PREPARE SERVE MEAL 0.415 (0.042) 0.379 (0.048) 0.380 (0.058) 0.428 (0.012) 
DIGGING 0.664 (0.019) 0.634 (0.036) 0.605 (0.072) 0.661 (0.039) 
STRAIGHTENING UP DUSTING 0.402 (0.075) 0.374 (0.053) 0.365 (0.059) 0.401 (0.028) 
WASHING DISHES 0.724 (0.056) 0.661 (0.017) 0.583 (0.042) 0.671 (0.020) 
UNLOADING STORING DISHES 0.668 (0.040) 0.627 (0.051) 0.557 (0.053) 0.637 (0.011) 
WALKING AT RPE 1 0.316 (0.061) 0.456 (0.042) 0.300 (0.059) 0.395 (0.018) 
PERSONAL CARE 0.644 (0.058) 0.662 (0.038) 0.492 (0.046) 0.622 (0.005) 
DRESSING 0.445 (0.056) 0.384 (0.055) 0.263 (0.026) 0.386 (0.025) 
WALKING AT RPE 5 0.415 (0.038) 0.397 (0.097) 0.348 (0.088) 0.393 (0.022) 
SWEEPING 0.557 (0.061) 0.554 (0.084) 0.458 (0.053) 0.546 (0.021) 
VACUUMING 0.592 (0.043) 0.550 (0.043) 0.493 (0.032) 0.551 (0.024) 
STAIR DESCENT 0.643 (0.090) 0.610 (0.040) 0.576 (0.030) 0.613 (0.070) 
STAIR ASCENT 0.422 (0.110) 0.486 (0.065) 0.437 (0.027) 0.482 (0.049) 
TRASH REMOVAL 0.403 (0.054) 0.415 (0.066) 0.274 (0.057) 0.396 (0.028) 
REPLACING SHEETS ON A BED 0.579 (0.069) 0.606 (0.059) 0.549 (0.016) 0.607 (0.029) 
STRETCHING YOGA* 0.586 (0.041) 0.600 (0.029) 0.501 (0.062) 0.556 (0.031) 
MOPPING 0.502 (0.076) 0.569 (0.041) 0.550 (0.077) 0.606 (0.033) 
LIGHT HOME MAINTENANCE 0.447 (0.028) 0.466 (0.021) 0.378 (0.046) 0.468 (0.030) 
COMPUTER WORK 0.764 (0.051) 0.784 (0.029) 0.750 (0.052) 0.782 (0.019) 
HEAVY LIFTING 0.613 (0.060) 0.620 (0.015) 0.439 (0.059) 0.579 (0.019) 
SHOPPING 0.447 (0.052) 0.488 (0.054) 0.442 (0.050) 0.486 (0.035) 
IRONING 0.589 (0.028) 0.636 (0.027) 0.608 (0.057) 0.639 (0.035) 
LAUNDRY WASHING 0.379 (0.035) 0.458 (0.036) 0.392 (0.021) 0.443 (0.030) 
STRENGTH EXERCISE LEG 
CURL 0.560 (0.045) 0.616 (0.064) 0.652 (0.090) 0.652 (0.055) 
STRENGTH EXERCISE CHEST 
PRESS 0.563 (0.051) 0.612 (0.085) 0.516 (0.066) 0.606 (0.037) 
STRENGTH EXERCISE LEG 
EXTENSION 0.407 (0.152) 0.462 (0.067) 0.345 (0.063) 0.454 (0.034) 
TV WATCHING 0.608 (0.054) 0.608 (0.036) 0.572 (0.079) 0.612 (0.038) 
STANDING STILL 0.634 (0.120) 0.637 (0.079) 0.545 (0.097) 0.614 (0.036) 
WASHING WINDOWS 0.740 (0.074) 0.693 (0.053) 0.722 (0.064) 0.729 (0.025) 
Macro average (F1 score) 0.540 (0.025)  0.540 (0.025) 0.476 (0.011)  0.544 (0.015) 

*The macro-average F1-score is the unweighted average of the F1-scores over all the classes 

 
 
 
 
 

4. Discussion 

The goal of the study was to build accurate machine learning models to recognizing the hallmark 

measures of physical activities and estimating energy expenditure across different age groups. We 

analyzed a large dataset of raw accelerometer data collected from the wrist position. We utilized the 

random forests algorithm, which is one of the most powerful algorithms in machine learning, to build 

models. Results showed that the machine learning models were quite accurate at recognizing physical 
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activity type and intensity, and estimating energy expenditure. However, models performed less 

optimally when recognizing individual physical activities. Our hypothesis that increasing age would 

impact model performance was rejected as only slight differences were detected among age groups.  

The results of the models built to recognize physical activity type showed high performance for all 

age groups as shown in Table 3. The model built on the young age group achieved the highest 

performance, followed by the middle, then old age groups for all activity types. Additionally, the highest 

performance was for sedentary, locomotion, then lifestyle activities for all age groups. Physical activity 

types seem to be more distinguishable and cause less confusion for younger ages as reflected on the 

confusion matrices shown in Figures 1-3. It is hard to interpret the drop in the performance from young 

to old age groups. One potential cause of this drop is the deviations from the standardized protocol that 

are more common in older adults. For example, there was a certain amount of variability in the trash 

removal activity among older adults compared to younger adults (older adults could not pull the trash 

bag quickly). This suggests that the ML models need to incorporate these compensations more accurately 

among older populations. Another reason is that older adults do not like the wrist device as tight as the 

younger adults. This can result in unintended artifactual movement that occurred more commonly 

among the older. Additional cause could be that the middle and old age groups include more 

participants’ data than the young age group. Therefore, the models tend to generalize better and be less 

optimistic. On the other hand, the drop in the performance from sedentary to lifestyle activity types is 

intuitive. Lifestyle activities typically require more wrist involvement (i.e., ironing, trash removal) than 

other physical activity types. This means more variability in physical activities as we move from 

sedentary to lifestyle activities, which can increase the confusion in recognizing physical activity types 

as reflected in the confusion matrices shown in Figures 1-3.  

The results of the models built to recognize physical activity intensity showed relatively high 

performance for all age groups, but lower than the performance of recognizing physical activity types as 

shown in Table 4. The highest performance was for the young and middle age groups alternatively, then 

old age group for all activity intensities. Additionally, the highest performance was for low, moderate, 

then light intensities for all age groups. As mentioned above, it is hard to interpret the drop in the 

performance from young to old age groups. Performance metrics and confusion for labeling physical 

activity intensities showed a consistent, although slight, reduction in older aged groups (see Table 4 and 

Figures 4-6). If this error was scaled to free-living conditions over a typical day (16 hours), older adults 

would be expected to have 2% (~19 minutes) more mislabeling of PA intensity compared to a younger 

group.  

Models built to recognize individual physical activities showed lower performance than recognizing 

physical activity type. The highest F1-score was 0.784 in recognizing the computer work activity in the 

middle age group and the lowest was 0.263 for recognizing the dressing activity in the old age group. 

The overall deterioration in the recognition performance in individual activities compared to other 

recognition tasks is intuitive, due to the high number of classes and the data imbalance. Summing these 

activities into categories such as the physical activity types or physical activity intensities can help in 
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enhancing the recognition performance metric as observed in Table 3 and Table 4. In general, there were 

no consistent differences among age groups. 

The scaled impurity-based feature importance ranking generated from the random forest algorithm 

show how relevant these features are to the problem in hand and help in better understanding the model. 

We listed the top 15 features out of 49 features for both the physical activity type and intensity recognition 

tasks. By examining the feature importance for the physical activity types, there is a consistency in the 

ranking of these features across age groups within each one of the activity types. For example, variability 

in vector magnitude features such as sdvm and cv_vm were important in predicting sedentary physical 

activities, whereas wrist-specific features such as wrist_sd_z and sd_angle are more relevant for 

recognizing lifestyle activity types. The feature importance rankings for low intensity activities was 

similar to sedentary PA type, where the VM features such as sdvm and cv_vm were dominant. Feature 

rankings for predicting light and moderate intensities were similar with high importance for moment-

based variables. Similarly, there is a consistency in the feature importance ranking across the age groups 

suggesting that the features are robust to potential movement difference with increasing age. 

Interestingly, the amplitude of the accelerometer axis (i.e. mean VM), which is commonly used to gauge 

intensity did not have a major role in model prediction. Being aware of the important features for the 

recognition problem in hand can help researchers continue improving model accuracy with less 

computational costs.   

Comparing relevant literature results is an intricate endeavor because of the differences in the data 

collection environment and the variables that govern the study. There are numerous differences between 

studies that include: sample size, the demographic characteristics of participants, the number and 

diversity of the physical activities tested, type of accelerometer, body position, statistical and machine 

learning algorithms applied, the extracted statistical features, the window size, and the metrics measured 

to evaluate the overall performance. However, some important comparisons can be made. For example, 

Ellis et al. [28] built random forest models on data collected from the dominant wrist to predict physical 

activity type and estimate energy expenditure. The models were developed and tested on 40 (average 

age 35.8 years) participants. They obtained an average F1 score of 0.75 on 8 daily activities. Additionally, 

they obtained an RMSE value of 1.0 METs, which is similar to our young age group. Staudenmayer et al. 

[8] also used random forest to estimate energy expenditure and metabolic intensity of 19 physical 

activities from wrist accelerometer data. The models derived from a small young sample of 20 (24.1 years) 

estimated RMSE at 1.21 METs. When compared to others using machine learning approaches, the results 

from the current work are comparable within the young age group, but better in middle and old age 

groups. 

Studies that examined the hallmark measures of physical activity have used publicly available data 

that contain activity labels, but not measures of metabolic intensity or energy expenditure (e.g. 

Opportunity (multiple body positions, 3 participants) [29], PAMAP2 (chest, arm and ankle positions, 9 

participants) [30], UCI daily and sports dataset (hip position, 30 participants) [31], Skoda Mini 

Checkpoint (multiple body positions, 1 participant) [32], WISDM (hip position, 29 participants) [33], and 

Daphnet Freezing of Gait Dataset (legs and hip positions, 10 participants) [34]). They are also limited by 
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a small number of participants, age-range being mostly < 40 years, a low number and diversity of activity 

types, and most importantly lacking sufficient data from the wrist position. Given these substantial 

differences, the models presented here show relatively higher performance than others. Additionally, the 

current model may generalize better due to the high diversity of activities, wide age-span, gender and 

racial diversity and the larger number of participants enrolled. 

A limitation of the current study is that data were collected in controlled lab settings, which is 

appropriate and a first step in evaluating positional differences [35]. Collecting data in the free-living 

settings is more reflective of numerous transitions between activity types, but it is challenged by labeling 

the activity type. Another limitation is the consideration of window size, which was based on previous 

studies that extracted time- and frequency-domain features. This window size may not reflect the most 

appropriate size for all tasks and age groups. Additional simulation work should evaluate different 

window sizes for optimizing performance. 

5. Conclusions 

In this study, we tested the hypothesis that the machine learning model performance varies across age-
groups for recognizing hallmark measures of physical activities and estimating energy expenditure. 
Overall results suggest data features derived from wrist worn accelerometers lead to high-to-moderate 
accuracy estimating physical activity type, intensity and energy expenditure in all age groups. In 
conclusion, machine learning models used to represent accelerometry data are robust to age differences 
and a generalizable approach might be sufficient to utilize in accelerometer-based devices (smartwatches 
and activity trackers).  
 

 

 

 

 

 

 

 

 

Supplementary Materials:  

 

Table S1: List of the performed physical activities, their type, and intensity 

 Activity type Intensity 

Activity Sedentary Locomotion Life-style Low light Moderate 
LEISURE WALK No Yes No No No Yes 
RAPID WALK No Yes No No No Yes 
LIGHT GARDENING No No Yes No No Yes 
YARD WORK No No Yes No No Yes 
PREPARE SERVE MEAL No No Yes No Yes No 
DIGGING No No Yes No No Yes 
STRAIGHTENING UP No No Yes No No Yes 
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DUSTING 
WASHING DISHES No No Yes No Yes No 
UNLOADING STORING 
DISHES 

No No Yes No Yes No 

WALKING AT RPE 1 No Yes No No No Yes 
PERSONAL CARE No No Yes No Yes No 
DRESSING No No Yes No Yes No 
WALKING AT RPE 5 No Yes No No No Yes 
SWEEPING No No Yes No No Yes 
VACUUMING No No Yes No No Yes 
STAIR DESCENT No Yes No No No Yes 
STAIR ASCENT No Yes No No No Yes 
TRASH REMOVAL No No Yes No No Yes 
REPLACING SHEETS ON A 
BED 

No No Yes No No Yes 

STRETCHING YOGA* No No No No Yes No 
MOPPING No No Yes No No Yes 
LIGHT HOME 
MAINTENANCE 

No No Yes No No Yes 

COMPUTER WORK Yes No No Yes No No 
HEAVY LIFTING No No Yes No No Yes 
SHOPPING No No Yes No Yes No 
IRONING No No Yes No Yes No 
LAUNDRY WASHING No No Yes No Yes No 
STRENGTH EXERCISE LEG 
CURL* 

No No No No Yes No 

STRENGTH EXERCISE 
CHEST PRESS* 

No No No No Yes No 

STRENGTH EXERCISE LEG 
EXTENSION* 

No No No No Yes No 

TV WATCHING Yes No No Yes No No 
STANDING STILL Yes No No Yes No No 
WASHING WINDOWS No No Yes No No Yes 
A total of 29 activities were considered for PA type recognition, 33 for individual PA recognition, PA intensity recognition, 
and EE estimation. 
* Only considered for energy expenditure estimation, PA intensity recognition, and individual PA recognition.  
 

 

 

 
Figure 1. Confusion matrix of recognizing physical activity type for young age group 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 March 2021                   doi:10.20944/preprints202103.0333.v1

https://doi.org/10.20944/preprints202103.0333.v1


 

 

 

 

 
Figure 2. Confusion matrix of recognizing physical activity type for middle age group 

 

 

 

 

 
Figure 3. Confusion matrix of recognizing physical activity type for old age group 

 

 

 

Figure 4. Confusion matrix of recognizing physical activity intensity for young age group 
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Figure 5. Confusion matrix of recognizing physical activity intensity for middle age group 

 

 

 

 

Figure 6. Confusion matrix of recognizing physical activity intensity for old age group 
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Figure 7. Feature importance for recognizing sedentary activities across age groups 

 

Figure 8. Feature importance for recognizing locomotion activities across age groups 
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Figure 9. Feature importance for recognizing lifestyle activities across age groups 

 

Figure 10. Feature importance for recognizing low intensity across age groups 
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Figure 11. Feature importance for recognizing light intensity across age groups 

 

Figure 12. Feature importance for recognizing moderate intensity across age groups 
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