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Abstract—An extension of the models used to generate fractal
traffic flows is presented by means of the formulation of a model
that considers the use of one-dimensional chaotic maps. Based on
the disaggregation of the temporal series generated by the model,
a valid explanation of behavior of the values of Hurst exponent is
proposed and the feasibility of their control from the parameters
of the proposed model is shown.
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. INTRODUCTION

The chaotic behavior of systems is an intermediate paradigm
between two dogmatic scientific and philosophical concepts of
the universe: absolute knowledge upheld by determinism, and
total ignorance at the hands of randomness. Paradoxically, and
supported by the existence of the above two dogmatic positions,
an assertion as natural as the one made points at the main
failure in the analysis of systemic behaviors: the extended use
of dichotomies to characterize them.

It is in this scenario that the theory of chaos, defined by
Kellert as the qualitative study of periodic and unstable
behavior in deterministic and non-linear dynamic systems [1],
invades and establishes the omnipresence of unpredictability as
a fundamental trait of common experience [2]. Then, the theory
of chaos, instead of trying to understand the behavior of systems
in a merely quantitative manner to determine exactly their future
states, it concerns with understanding of a long-term behavior,
searching for patterns under a holistic philosophy rather than a
reductive philosophy.

As can be seen and inferred from the ideas given above,
and in full agreement with the spirit of this research, it is
neither possible nor practical to approach the problem of the
characterization of the behavior of the systems of interest
considering the full conceptual extension of the theory of
chaos, and for that reason it is accepted that chaos is the
phenomenon by which low-order non-linear systems show an
apparently random complexity and behavior [3]. These systems
are of low-order because they can be described correctly by a
reduced number of variables and parameters. They are also
dynamic systems, i.e., with the variables of interest, which are
deterministic, evolve over time, because the values of those
variables at any instant of time can be determined only from

their previous values given a set of dynamic laws. Finally, those
dynamic laws that describe the system evolution in time are
non-linear [4].

At this point it is convenient to make it clear that chaotic
systems differ from conventional dynamic systems in the sense
that they are intrinsically unpredictable, a fact that is evident
even when its subjacent dynamic laws are of a deterministic
character. But the above does not have to lead to the belief that
chaos implies unpredictability, since that is only partially true
because of existence of two main sources of unpredictability,
namely the inaccuracy of the initial data, and its origin as a
characteristic inherent to certain nonlinear relations between
numerical variables [5]. Therefore, the definition of chaos as a
property of a system refers to its sensitivity to the initial
conditions, i.e. that given two trajectories arbitrarily close to
one another in the phase space of a chaotic system, they diverge
at an exponential rate given by the Lyapunov global exponent.

Note that it is certainly paradoxical for an essentially
deterministic system, with deterministic dynamic laws, to show
a chaotic behavior, since the basic premise of dynamic systems
is that the knowledge of the initial conditions makes possible
the determination of the system future behavior at any time. In
practice, the initial conditions can only be specified with finite
precision. These uncertainties introduced in the initial conditions
for case of chaotic systems increase exponentially, and that
explains the unpredictability of their behavior. Strictly, chaos
involves the possibility of making good short-term predictions,
but it makes impossible any long-term prediction of a practical
order [6]. A direct result of the above is that very simple
systems, even with only one degree of freedom, can give rise to
surprisingly complex behaviors.

The notion of chaos often appears linked to the notion of
fractal introduced by Mandelbrot [7], and even though it has
not been proved rigorously, fractal properties seem inherent in
chaotic processes, so apparently chaos and fractal sets are
independent and unrelated concepts [8]. However, keeping in
mind that the fractal dimension concept raises a generalization
of the notion of dimension through the introduction of the non-
integer values for their specification, an extensively reported
fact in its applications [9]; unexpectedly all chaotic systems
tend to evolve asymptotically in their phase space toward a
bounded region called strange attractor that has a non-integer
dimension, i.e., a fractal. It can thus be argued that very often
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the strange attractors are fractals in their nature and are capable
of exhibiting their complexity over different time or space
scales. Because of the above it is therefore possible to state that
the concepts of fractal geometry can be used to describe the
evolutionary characteristics of chaotic systems, and chaotic
systems in turn can be used conveniently as generators of
fractal structures, thereby implying self-similarity and therefore
its characterization index: Hurst exponent (H).

It should be pointed out that since there is no simple
definition of fractals, they are generally defined in terms of
their attributes, such as, for example, the slow decay of their
variances, the hyperbolic tail distribution of the time density
between successive arrivals, the infinite order moments or
poorly defined statistics, 1/f noise, long-range dependence, self-
similarity, and the previously mentioned non-integer dimension,
among others [10], [11]. The presence of such characteristics in
the traffic flows of actual high-speed computer networks is,
therefore, the ultimate aim of the whole discussion presented.

The statistically self-similar behavior of traffic flows in the
present high-speed computer networks is a fact that has been
extensively reported for different levels of telematic systems
coverage, transmission technologies, wireless systems, control
and signaling protocols, ATM queueing network behavior, and
applications, particularly in video [12].

Similarly, the problem of the characterization of traffic has
received considerable attention in the literature, giving rise to a
number of proposals of stochastic models, see [13]-[18].

However, and in spite of all the efforts underlying the
arguments and methodologies stated above, two problem
situations inherent in the generation of traffic with long-range
dependence are ubiquitous, namely the degree of representatives
of Hurst exponent as a unique parameter for characterizing its
effects on the performance of the tails systems in which it
appears, and the behavior shown by its value in the self-similar
second order series obtained within the interval of interest for
H; 0.5 < H < 1. In this respect, [19] shows in an isolated way
both problems and their implications.

Il.  CHAOTIC MAPS AND SELF-SIMILAR TRAFFIC

The use of chaotic maps as models of traffic was proposed
for the first time in [3], starting from the pioneering work [20],
and in essence a chaotic map is a variant of the On/Off traffic
model of [21], with the basic difference that its basis lies in the
discrete dynamics instead of in the probabilistic approaches.

A chaotic system characterized by a certain non-linear
function f: D — D with D € R™ is available. The system
evolves according to the process equation, defined by f, which
for a discrete system is given by

x[K] = f (X[k —1], u[k —1]; ) + v[K], )

where, x[K] is the system state vector, u[k] the input excitation,
v[K] the noise vector of the process, and 6 is the vector of the
system parameters.

In general, the state of the system cannot be observed
directly, so samples of it (or of functions of it) are required that
are obtained by means of a measuring process given by
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yIk] = g(x[k]) + w[k], withk =0,...,N, (2

where g is the measurement function (which can be known or
not), y[k] is the measurements vector, and w[k] is the noise
vector of the measurement.

A chaotic map is an application f: X — Y that associates
each element x € X < R™ with a single elementy € Y < RY,
where X is the domain of fand Y is the arrival set of f.

Let f: D — D be an application with D € R™. An iterated
map is the system formed by the set of m equations given by

x[n] = f (x[n—1];9). 3)

As seen from (3), a chaotic map is a class of discrete
autonomous system, and this work deals exclusively with one-
dimensional maps, a fact for which it is convenient to establish
that a one-dimensional chaotic map is an application f: D — D,
with D < R such that

x[n]= f(x[n-1];0). 4)

The definition of chaos as a property of a chaotic system
refers to its sensitivity to the initial conditions. Considering a
chaotic map defined by x.+1 = f(X) and two trajectories with
almost identical initial conditions Xo and Xo+s, Where & — 0, its
sensitivity to the initial conditions is described by

[ (% +2) = £ (%,)] = sexp(NA(x,)), )

where fN(-) represents the N ™ iteration of the map, and A(Xo) is
Lyapunov global exponent which describes the exponential
divergence. For the map to be chaotic this parameter must be
positive for most of the xo [22]. Then (5) implies which points
that begin with similar initial conditions develop along different
trajectories.

Let f: I — I be an application. It is said that f (x) is a one-
dimensional piecewise affine map (PWA) if there is a finite
number of points eg < ... < ewm, such that the interval | = [eo, ew]
can be subdivided into M smaller intervals E; = [e;_1, &), with
i=1,..,M-1and Ey = [em_1, em], within which f(x) is affine.
Mathematically, a PWA map is expressed as

F00 = 3 (ax+b) ¥, (4, ©)

where ¥ denotes the characteristic function defined as follows.

Let Wgr: D — {0, 1} be an application with D < R. It is said
that ‘Pr is the characteristic function of region R if

v - 1 xeR R
R710, xgR’

In other words, f(x) has a similar behavior within each of
the M intervals E; into which the arrival interval | is divided as
if it were observed in the whole interval I.

A one-dimensional map composed of two intervals, in
which the state variable x, evolves in time according to two
functions fi(-) and f,(+) that satisfy condition (5), allows writing
it, from the development of (4), as
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] %), 0<x,<d

Yo {fz(xn), dex <1’ ®)
This notation makes it possible to conceive a frame
generation process considering that the source of origin is in a
passive state or in an active state (in a similar way as the case
of the On/Off models) at a given moment n, as a function of
whether the value of the state variable x, is above or below a
certain activation threshold d. In this way all the iterations of
the map in the active state correspond to frame (burst of frames)
generation processes, and all the iterations of the map in the
passive state to time processes between successive arrivals.

Under the same reasoning, and considering the permanence
of the map in one or the other previous states, the evolution of
the mesh arrival process is described from the characteristic
function (7), which, for the sake of consistency with the notation
used in (8), can be written as

0, 0<x,<d

. 9
1, d<x, <1 ®)

Yo = y(xn)={

An interesting interpretation of the above model is reported
in [23] considering it formed by two dynamic layers, one hidden
given by x, and one visible specified by yn.

It is particularly interesting to see that the behavior of a
trajectory over which the map given by (8) evolves is such that
it does not have to visit the two regions of its phase space with
equal frequency, and furthermore, there is no reason to
consider, even within the same attractor, a uniform probability
density function of the generated sequences, so it is reasonable
to ask about the frequency with which a given trajectory visits
each region of the map in an observation interval of n iterations,
as well as about the way of calculating such probability density
function from an initial condition Xxo.

In this respect, the reply to both questions is found in the
density distribution of the map states, pn(x), [24]

pr = D 0T=x, () (10)

where 6(x) is Dirac delta function and the evolution of pn(X) is
in agreement with the equation of Frobenius-Perron [25]

Pra(¥) = [ Slx— f(2)]p, (2)dz (11)

In the case of a one-dimensional map given by X1 = f(Xn),
with x, € [0,1], n =0, 1, 2,..., from (10) we have that

P00 = fim 30X~ 1,061 (12)

If p(x) does not depend on xo, the system is ergodic [24], and
therefore it is true that

fim 4> (x) = fim -+ > ol ' ()= P99k (13)

However, since pn(X) must be stationary because of (13),
i.e., it does not have to depend on instant n, it is known as the
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invariant density of map f(x) [26], and it describes the iteration
density of x, in the interval (0, 1) when n — oo. Therefore, pn(X)
is a self-function of the Frobenius-Perron operator with self-
value 1, and therefore

p(¥) = [51x~ T (D)]p(2)dz. (14)

A concise presentation of the set of facts, that give rise to
the treatment of traffic considering its self-similar and LRD
nature, converge in the need to capture its fluctuations on
different time scales in order to make assertive forecasts of the
yield of communications systems. In this respect, the self-
similarity contributes with the parsimony required to specify
the statistical details of the variables involved from a minimum
set of modeling parameters, and a model based on the theory of
complexity contributes the robustness needed to cohere those
parameters with information.

1. SPECIFICATION OF THE CHAOTIC MODEL

Consider the nonlinear double intermittence map
& +X +cX™ , O0<x <d
Xn+1 :{ 1 n 1 n (15)

—&,+X%, —C,(1-x )", d<x <1’
whereci=(1—a—d)/d™ c;=(d— &)/ (1 —d)™ [4].
If m;=1and & =0, from (15) we get the model of a non-
linear chaotic intermittent map [3]

_{g+xn+cxnm , O0<x,<d (16)

" (x, —d)/@-d), d<x <1
wherec=(1-&-d)/d™ with ¢ 0 d.

The map parameters (& m, and d) are used to control the
probability of permanence in the inactive state, the traffic load;
i.e., the mean rate of mesh arrival, and the degree of self-
similarity density, H. Specifically, the fit of the ¢ parameter
incides on the probability of permanence of the iterations of the
map in the inactive state, while the traffic load depends on
parameters m and d [27].

The condition ¢ [1 d is well defined, at least theoretically, if
£ = 0, which leads to the control of the limit of the range of
temporal scales over which LRD is observed. In [27] it is
shown that if &£ = 0, permanence time can be of any length, but
as ¢ increases above 0, the escape time from the region tends to
a fixed upper limit.

Considering m = 1 with the purpose of decreasing the
degree of the function that characterizes the inactive state of the
map implies generating traffic with short-range dependence
(SRD), which is verified from the relation existing between H
and m given by H = (3m —4) / (2m — 2), with m = max {mz, m,}
[28], i.e., H = 0.5. In other words, a geometric type decay takes
place for the map regions, which is synonymous of uncorrelated
traffic, i.e., traffic with SRD.

Therefore, the proposed map together with its characteristic
function is given by
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X 4+ x" . 0<x <d Fig. 3.sh0vys the graphic aspect of the traffic genergted for
Xpr =%, o " (17) N =1000 iterations, d = 0.5 and m = 2 (for the case of Fig. 2).
(x,—d)/d", d<x,<1
and TABLE I. SPECIFICATION OF THE MODEL PARAMETERS
0. 0<x <d N d m Show in
—v(x)=J" nT o 18 1 Fig. 1
Rewriting (17) in the form TABLE II. SPECIFICATION OF THE MODEL PARAMETERS
f(X) =X, + X , O0<x,<d H
= { fl N/dn , (19) N d m R/S Var
,(X)=(x,—d)/d", d<x <1 1 0.50 0.42
. 1.2 0.51 0.46
from the development of (14) applying (19) we get 1000 05 14 054 050
g N ‘ 1.6 0.68 0.58
— _ _ 18 0.73 0.68
p(xX) = j Sx— f,(0]p(2)dz +£5[x f,(0]p(2)dz, (20) : o S
an equation for which Schuster [22] establishes the existence of TABLEIIl.  SPECIFICATION OF THE MODEL PARAMETERS
onl_y one physicall_y relevant solution that is obtained from o
takingz=1/f(x), i.e., N d m RIS Var
4 4 1 0.50 0.44
(x) = p(f,(x) i p(f;"(x) , 1) 1.2 051 0.47
ref-t gt 1.4 0.61 0.56
() £, (F,7(¥) 1000 03 5 07 oo
, . . . 18 0.78 0.72
where f, represents the first derivate of f. Then the expression 2 0.90 0.82
for the invariant density is given by
, ( ) TABLE IV. SPECIFICATION OF THE MODEL PARAMETERS
p() =3 LI withy, = £/ (x), (22) y - . H
i= £ (y;) RIS Var
] o ) - 1 0.51 0.44
which allows obtaining the system load, i.e., the probability of 1.2 0.53 0.50
remaining in active state, from the integration of (22) between 1000 01 14 0.66 0.56
the limits d and 1. : 16 0.75 0.65
18 0.81 0.72
2 0.92 0.82
IV. EXPERIMENTAL RESULTS
The self-similar behavior with LRD of the traffic generated ®
by the proposed map is confirmed by means of the calculation :
of Hurst exponent using the rescaled range analysis (R/S) and 04
the aggregate variance analysis (Var) [29]. B
In the R/S analysis the value of H is obtained directly from %0, =
the slope of the logarithmic plot, while in the Var analysis H is
obtained from the relation H =1 - £/ 2 where 0 < #< 1 [30].
02 04 o'.s 0.6 08 1‘0 db 50 6:0 0

In this first stage of research no online traffic is generated
because we are dealing only with the validation of model; and
instead of it all algorithms are programmed in MATLAB.

As a first point, two values are specified in Table | for
parameter m, keeping the number of the map iterations N and
parameter d fixed.

Tables Il to 1V show experiments varying parameters m and
d for a constant number of iterations of the model, to obtain the
Hurst parameter H.

Fig. 1 and Fig. 2 show the behavior of X1 and y, for the
data of Table I. Fig. 1(b) shows only the first 80 iterations for
Yn, Since the rest, up to iteration N = 1000, are equal to zero.

xln+1]

x[n]

O]

Figure 1. Behavior of the model considering N = 1000, d = 0.5, and m = 1.
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Figure 2. Behavior of the model considering N = 1000, d = 0.5, and m = 2.
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Figure 3. Traffic generating by the map. N = 1000, d = 0.5, and m = 2.

Tables V to VII present values of H for random traffic
sequences extracted from the original series used to formulate
Tables 11 to IV. These random sequences are formed from the
extraction of the number of samples specified under Random
N, and they are then analyzed as samples of traffic generated
directly by the model.

TABLE V. HURST EXPONENT FOR DISSAGREGATED SERIES
N Rand. N d m H
) R/S Var
1 0.42 0.37
1.2 0.45 0.43
14 0.51 0.48
1000 500 05 16 0.55 0.52
1.8 0.65 0.58
2 0.72 0.66
TABLE VI. HURST EXPONENT FOR DISSAGREGATED SERIES
N Rand. N d m H
) R/S Var
1 0.44 0.38
1.2 0.47 0.45
14 0.53 0.51
1000 500 03 16 0.62 0.57
1.8 0.67 0.62
2 0.75 0.67
TABLE VII. HURST EXPONENT FOR DISSAGREGATED SERIES
N Rand. N d m H
) R/S Var
1 0.43 0.38
1.2 0.45 0.42
14 0.52 0.50
1000 500 01 16 0.57 0.52
1.8 0.63 0.57
2 0.71 0.66

V. DISCUSSION OF RESULTS

The model shows that the generation of self-similar traffic
with LRD can be approached from the control of parameters m
and d considering a fixed number of iterations, as shown from
the results given in Tables Il to IV. However, because of its
simplified present formulation, control of the permanence times
in each state is not possible. In that respect, a general model
like that of [26] does allow that with good accuracy. A simple
example to illustrate that need is built on the basis of requiring
that the traffic of a system should have a certain H, for example
0.90. Examining Table 11l and Table IV it is found that this
requirement can only be satisfied by means of a change in the
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boundary of the iteration regions, which is impractical because
of its repercussions on the characteristic function. It is a need
that requires urgent attention.

Control of the degree of self-similarity of the generated
traffic seems to be effective for the subjacent temporal series.
The analysis of the results shown in the Tables V to VII is
fundamental because it reflects the underlying problem:
controlling the effect of locality on Hurst exponent. It is seen
that the traces formed from random sections of the original
samples reflect the behavior of the whole, and also that Hurst
exponent can be considered by itself as a valid indicator to
characterize the effects of the generated self-similar traffic with
LRD on the performance of the tail systems in which it
appears. The lack of a formal mathematical proof of this fact is
acknowledged, but in a first instance, based on the effect that
the characteristic function has on the perception of the system,
an appropriate substantiation is found.

VI. CONCLUSIONS

The feasibility of having an efficient and effective self-
similar traffic generator from the parsimony of its model is
shown, a fact made evident by an adequate control of the value
of Hurst exponent. Furthermore, Hurst exponent is shown to be
completely valid as a representative parameter to characterize
self-similar traffic.

It is shown that the value of Hurst exponent in the
disaggregation of self-similar temporal series depends on the
original model of the traffic. In this respect, based on subsets of
samples obtained randomly, it is seen that its value shows a
tendency to remain constant and in that way adequately
characterize the segments in question.

Finally, the most relevant fact for the future development of
this research is the practical proof that m = 1 must be discarded
as an option for the formulation of a chaotic model generator of
self-similar traffic because it inevitably leads to SRD traffic, as
shown by the results given in Tables Il to VII, so it is shown to
be impossible to work only with a linear model.
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