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Abstract: Accurate forecasts of ocean waves energy can not only reduce costs for investment but it
is also essential for management and operation of electrical power. This paper presents an innova-
tive approach based on the Long Short Term Memory (LSTM) to predict the power generation of an
economical wave energy converter named “Searaser”. The data for analyzing is provided by col-
lecting the experimental data from another study and the exerted data from numerical simulation
of Searaser. The simulation is done with Flow-3D software which has high capability in analyzing
the fluid solid interactions. The lack of relation between wind speed and output power in previous
studies needs to be investigated in this field. Therefore, in this study the wind speed and output
power are related with a LSTM method. Moreover, it can be inferred that the LSTM Network is able
to predict power in terms of height more accurately and faster than the numerical solution in a field
of predicting. The network output figures show a great agreement and the root mean square is 0.49
in the mean value related to the accuracy of LSTM method. Furthermore, the mathematical relation
between the generated power and wave height was introduced by curve fitting of the power func-
tion to the result of LSTM method.

Keywords: Searaser; Flow-3D; Prediction; Long short term memory; deep neural network; Root

mean error.

1. Introduction

Based on the available data, fossil fuels are still the most important source of energy
in the world [1]. As known fossil fuels harm the environment by global warming and
climate change [2]. Therefore, in recent years, the interest in investment on systems that
use fossil fuel investment has declined. On the other hand, interest in developing non-
petroleum-based sources of fuel, especially on the renewable source of energy, has in-
creased tremendously. Among the different sources of renewable energy, solar energy,
wind power, tidal energy and geothermal energy are the most well-known ones [3]. Ocean
wave energy has the second largest potential among all ocean renewable energy sources
[4].

Absorbing the wave energy and transforming it into electricity implies wave energy
converters (WECs) that use the motion of ocean surface waves to convert ocean wave en-
ergy into electricity. In general, there are different types of WEC systems [5,6]. Due to the
important role of WECs in producing electricity from ocean waves, the precise forecast
can not only reduce costs for investment but also be essential for management and oper-
ation of electrical power. Due to this fact, investors around the world need to know infor-
mation about predicting the potential for power generation by WEC systems [7]. In these
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fields, especially utilizing the output power from WEC systems several studies were done
through numerical simulations and experiments [8,9]. In this study, a new wave energy
converter named "Searaser” was chosen because of the lower price than similar types in
the market and as it is considered as clean electricity producer with no climate gas emis-
sions involved [10].

Even though ocean waves are quite clean, safe, reliable and affordable a source of
energy, they have unpredictable uncertainties with their usage. The unwanted uncer-
tainty can threat the reliability and stability of the ocean energy systems, especially with
the large-scale integration ones [11,12]. Hence, it is essential to properly forecast ocean
wave energy to save construction costs and pilot projects during the electrical power gen-
eration. As known, the power density of wave energy is not only more abundant in the
natures than wind and solar energy but also easier to forecast [13,14]. In fact, accurately
predicting the power of ocean waves due to random data is still a challenging task in
engineering. Because of the time-consuming and expensive calculations of solving equa-
tions with complex boundary conditions, researchers are looking for a way to replace nu-
merical solutions. One of the areas that can make predictions in this area with minimal
time and cost is the use of artificial intelligence in the field of estimating the production
capacity of energy systems. Therefore, the artificial intelligence (Al) researchers in the
field of engineering have been developing the methods to predict the generated electrical
power of ocean waves energy systems from effective parameters [15,16]. Zhenqing et al.
[17] studied and simulated ocean waves and suggest a prediction model by using machine
learning methods and genetic algorithm. The main goal of this study is to demonstrate
converters by considering different wave periods, wave height and water depth. They
concluded that optimizing the converters help to solve other technical problems in this
field. Li et al. [18] conducted a study on the parameters affecting the wave power. They
provided an artificial neural network to have an accurate prediction that creates relation
between the height of the free surface of a wave and its force through a machine learning
algorithm. They identified a relation between the power capture efficiency and other pa-
rameters by analyzing the errors. Gomez et al. [19] did a research about utilizing latest
machine learning methods to introduce a new software tool with a user-friendly guide
interface to predict output using the integration of meteorological data from two data
sources. Butt et al. [20] presented a novel method of artificial intelligence to forecast sys-
tems. They predicted the load on the next 24 hours of simulation. By evaluating results by
different kinds of error they concluded that these systems are so efficient in better mainte-
nance operations. Cheng et al. [21] utilized LSTM method for predicting the power de-
mand. By comparing three different AI methods, they concluded that the LSTM method
decreases 21.80% and 28.57% in forecasting error. Lin et al. [22] studied the power predic-
tion of systems by LSTM error and optimised results. They concluded that the output re-
sults of LSTM algorithm are more accurate than those of the other methods. Also, Ni et al.
[23] utilized deep learning method to predict the power of wave energy converter. They
experimentally concluded that the high frequency waves can effect directly on the effi-
ciency of the modeling when they compare different kinds of deep learning methods. But
among all these recent studies, the relationship between the wind speed which is signifi-
cant in these kinds of simulations has been presented. Therefore, how to estimate the out-
put power directly from wind speed and build an accurate model for optimizing its effi-
ciency are two essential issues in the WEC improvements and output electrical power,
which has not yet been clarified and evident. In order to address the gaps in the studies
that have been done so far, this research has tried to predict the amount of power pro-
duced by Searaser using two methods of artificial intelligence and numerical solution at
the same time. The novelties of the recent research are as following.

e  The numerical analysis of a Searaser in the form of the computational fluid dy-
namics is proposed by Flow-3D software, which completely demonstrates the
ocean wave parameters and perfectly combines with the latest algorithm of long
short-term memory.
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e  The artificial intelligence model is reasonably utilized to predict output electrical
power based on a wind flow speed and a mathematical relation between wave
height and output power, can be obtained to help the WEC industry and investors
to predict output power saving time and cost.

2. Materials and Methods
2.1 Dataset

To use supervised learning in the field of machine learning, it is necessary to give
data to the algorithm. The input data to the utilized algorithm of this research includes
two categories of data obtained from numerical solution of equations by Flow-3D simula-
tion software and experimental data that He [24] used in his studies. For details, by using
computational fluid dynamic and numerically solving the governing equations, a rela-
tionship between wave height and output power was found and the experimental data of
He’s study [24] demonstrates the relation between wind flow speed and wave height
which is shown as Figurel. By collecting this data, we can reach the main goal of this
research, which is to find a relationship between wind speed and output power.

—— Wind velocity (m/s)

4 1| = —Wave Height (m)

Fluctuations

t(s)

Figure 1. The wind speed and wave height fluctuation in simulation time.

As shown in Figure 1, the wind velocity and wave height are variable with the time
and it causes uncertain and various output power which was demonstrated as a result of
simulation part.

2.2 Geometry and description

Electricity generation industry in the field of wave energy converter has been im-

proving and Alvin Smith registered a novel technology named as “Searaser” [25]. Searaser

harnesses the motion of ocean waves by pumping pressurized water up into high reser-
voirs and then back down into hydro-power turbines to create electricity on demand. In
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this study the performance of a Searaser with geometric dimensions based on the data
extracted from the patent was numerically evaluated [25]. The geometry of Searaser is
presented in Figure 2. In Figure 2, the three-dimensional structure of the Searaser is de-
signed by a software and presents as a two-dimensional sketch for presenting more infor-
mation. As shown, part 1 is a buoy which floats on the ocean’s water and it forced upward
of the related buoyancy force. For moving downward, the gravity force dominates other
forces during passing wave motions by considering the effect of wall fraction on a Searaser
body. The buoy moves in a chamber which is indicates as part 2. Addition to these main
parts, different components of Searaser was introduced.
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Figure2. The cross-section of a Searaser with introducing different components.

As presented in Figure 2, the inlet and outlet components are designed for the water
flow to enter and exit during the buoy movements as the known piston-cylinder mecha-
nism.

2.3 Governing equations

Flow 3D is utilized as a considering numerical solution software to analyze the solid-
fluid interactions between Searaser structure and ocean waves. This study used volume
fraction technique which is introduced as a ratio of the open to the whole volume within
a computation cell. The named technique used for such a complicated structure to utilized
the governing equations which are dedicated as Equation 1 and 2[26].

Fem@e (1)
dt
T, =[J].%”+»7 ([ v)

Where m is the Buoy mass, and V& is the velocity of center of mass. Simplification of
Equation 1 was done by assuming the fact that the buoy movement is divided into two
main parts; rotational and translational one caused by 6 degree of freedom. Hence, by
assuming the buoy as a rigid body, all of the movement takes place in the center of mass.
In this study, the “0” index introduced the buoy center of mass. Equation 3 shows the
buoy movement velocity [27].
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By utilizing the Vo as a buoy velocity, the Equation 1 should be presented as Equa-

tion 4 [29].
Fem®e 4)
dt

The total applied force to the Searaser was calculated as the summation of gravity
and hydrodynamic forces (Equation 5). Similar to this, the torques with the same indexing

were applied to the “0” point respectively (Equation 6). So the fluid governing equations
can be written as Equation 7 and 8 [28].

— — —

T =T +T,
o —Lg T4y, (6)
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Where p is the density, Afis the area fraction, V; is the volume fraction, uis the ve-
locity of the fluid, and G is gravity. For the coupling of the motion Equation 7 and 8 should
be solved in each time step and the situation that is done by FAVOR technique in Flow-
3D.

Hence, for different wave heights which were modified, Equation 9 was used as a
power-height relation [29].

1
P=——pg’HT 9
cas P8 s ©)

To solve these equations, the specific boundary conditions and simplified assumptions should be
applied. It should be noted that the numerical solution model in this problem is the finite difference
method and Range-Kutta 3rd order method has been used to solve the category of partial derivative
equations.

2.4 Boundary conditions and grid generation
To simplify the procedure, the sine waves with a different magnitude in wave char-
acteristics were used. Equation 10 shows the sine wave equation [30].

W = A4 sin(wt + @) (10)

In this equation, A shows the wave amplitude which is gained from He’s study [23].
The other wave characteristics were assumed constant. In addition to consider sine wave
as an inlet of the specific control volume, other boundary conditions are shown in Figure
3.
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Figure 3. Different boundary conditions of numerical solution.

As shown in Figure 3 “VW” is a linear wave inlet of the control volume, “S” is the
symmetric condition for three different wall, “W” is a wall with slip boundary condition
and “O” is the outflow when the water is not allowed to enter the outflow boundary. The
reason of using three different domains for numerical solution is to use different grid
sizes. Whatever goes inside the blocks, the grid size becomes smaller because the compu-
tational accuracy is more essential than outer blocks in this region. So the inner block has
the smallest grid size among the others. Similar to the other computational fluid dynamic
studies, the grid generation and independencies should be analyzed to find the suitable
grid size which has the best accuracy due to the least computational time which is shown
as in Tablel.

Table 1. The Grid generation information.

Title
Mesh Block (Number 1)

Total number of 7,000,000 5,000,000 1,000,000
elments
Run time 5days 7 hr 4 days 1 hr 2 days 20 hr

The accuracy of 95% 93% 85%
Searaser displacement
parameter



https://doi.org/10.20944/preprints202103.0302.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 April 2021 d0i:10.20944/preprints202103.0302.v2

As presented in Tablel the best selected total grid is 5,000,000 grids due to the related
accuracy. It shows that this grid size can be selected because it is as accurate as 7,000,000
grids due to the fact that it has higher computing speed and lower computational cost.
Furthermore, it presents the accuracy in displacement for each grid size during the whole
of calculation time when the input wave height is assumed 1m [31]. According to the har-
monic linear motion of buoy in a chamber, the special generator will convert these mo-
tions to electricity by utilizing the Faraday's law of induction.

2.5 Machine learning LSTM method of prediction

The electrical power of ocean waves forecasting models has become stable and highly
credible after decades of considerable improvements. However, the models require large
amount of data to train, which usually takes longer time even for a small-scale forecast.
For that reason, the machine learning and deep learning algorithms were emerged and
bloomed to improve accuracy and promptness of the prediction. Recurrent Neural Net-
work (RNN) are types of Neural Networks designed to use sequential data such as time-
series. In RNNs, the outputs can be fed back into the network as inputs creating a recur-
rent structure. RNNs are trained by backpropagation. During backpropagation, RNNs
suffer from gradient vanishing problem. The gradient is the value used to update Neural
Networks” weight. The gradient vanishing problem is when gradient shrinks as it back
propagates through time. Therefore, layers that get a small gradient do not learn and
cause the network to have short-term memory [32].

Long Short-Term Memory (LSTM) is a specialized RNN to mitigate the gradient
vanishing problem. LSTMs can learn long-term dependencies using a mechanism called
gates. Figure 4 presents an architecture of LSTM cell. These gates can learn what infor-
mation in the sequence is important to keep or throw away. LSTMs have three gates; in-
put, forget and output [33].
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Figure 4. The architecture of LSTM cell.

To save the data information that is utilized in the specific storage within hidden

layers, the “cell” has been introduced. As presented in Equations 11 and 12, f , and I '

indicate the input gate and forget gate for controlling each cell state [34].

f,=gW,.[h_ X, 1+b) (11)

i, =gW,[h_ X ]+b)) (12)

Where g indicates a non-linear sigmoid function for activation procedure. i and f in-
dexes represent the input and forget parameters, W and b presents the weight matrix and
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bias function, he1 introduces the output vector of the last time step and Xt shows the
input vector of the current time step.
Equation13 presents the relation to obtain an input’s current state.

C'=tanhW .[h, X, ]+b,) (13)

As shown in Equation13, c index introduces the recent state of each parameters. Eq.
14 describes the current cell, that i is considered to utilize both of the forget and input
gates.

Ct :ft *Ct—l +it *Cz’ (14)

By using the output gate of each cell as is written in Eq. 15, the output of the whole
network of a long short-term memory has been presented as Eq. 16.

O,=gW,.[h X, ]+b,) (15)

o index introduces the cell output parameters.

h, =0, *tanh(C)) (16)

The essential task in algorithm designing procedure of neural network is to select the
best number of neurons and relative layers. In machine learning systems which contain
neurons, the connection links between them are introduced as weighted activation. Ac-
cording to proposed usage, it was modeled by input layer. To analyze procedure, hidden
layers were used by considering several neurons which transferred data from input to
output neuron. The network’s dataset was split into training and testing sets. The main
crucial task in optimization is to minimize a difference between predicted and actual data
[35,36].

The LSTM model has been utilized with 10 LSTM layers of 10 neurons and "Sigmoid"
as an activation function. The optimized train size is 90% of total 591 input data and the
test size is 10%. Furthermore, the epoch size is 7 and walk-forward validation method
were used. The back propagation algorithm was utilized for administrated learning tech-
nique [37]. Figure 6 shows the neural network details which is used in this research.

Generated
Power

Figure 5. The specific neural network of recent study.

As presented in Figure 5, the recent study utilized a proposed LSTM Network with
an input layer time-series parameters which are followed by an LSTM layer. These layers
learn the relation between different parameters in time steps and serialized input data.
Moreover, during each of the layers, the LSTM layer’s neuron is connected to the next
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layer’s neuron for each LSTM cell. The artificial intelligence predictions have been done
by utilizing equations of LSTM method. Hence, decreasing rank procedure of the input
data was done by Mahalanobis distance (MD) method to reduce the predicting time of the
overall procedure. Our study is a kind of regression prediction which can find a relation
between the input and output data. Table 2 presents the LSTM parameters which were
introduced as effective parameters on output generated power of Searaser.

Table 2. The detailed information of LSTM method.

LSTM parameters Recent study parameters
Input parameters
1.Wave Height

C 2.Time
3.Wind slow velocity
4 Number
A Output parameters

1.Generated power

In this study, by using the numerical solutions, the collected dataset from simulation
and experimental study was imported to the LSTM Network, and then it would predict
the output parameters. Next, the data that was gained by numerical solution would be
compared with the predicted data from LSTM method. Finally, the correlation matrix has
been applied on a recognition step of the occurrence of faults.

3. Results and discussion

This section describes the results of evaluation of the wave power generation predic-
tion based on the proposed LSTM Network. Accordingly, the result of numerical solutions
and the prediction plots of correlation parameters were presented and compared with
each other. Furthermore, the Searaser’s performance was demonstrated for various input
linear-sine waves the information of which exists in Figure3. The wave height moves the
buoy in z direction and its motion will be converted to the electricity. The Equation 9
demonstrates that the output power depends on the wave height and wave period of each
time. Furthermore, the other parameters become constant during the simulation. Figure 6
shows the numerical solution of the simulation. It shows the relation of the generated
power with the whole simulation time.
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Figure 6. The variation of generated power with simulation time

The instability of the generating power at different times during the simulation is
presented. This is caused by the variation of wave heights.

To illustrate the correlation between all of the effective variables with LSTM method
further, the predicted plots were presented as a matrix of figures. The scatter plot of pre-
dicted magnitudes was shown in Figure?.

Figure 7 presents a matrix whose intersection of each row and column shows a graph
showing the relationship between the two parameters. Using this type of display causes
the dependence of all parameters on each other to be well shown.
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Figure 7. The correlation of different parameters with each other.

As presented in Figure 7, the correlation of different parameters is shown as scatter
figures. Figure 8 is a more comprehensive type of Figure 7. As Figure 8 shows, the gradient
descent for both parameters in each curve is calculated, which can be reached in Figure 7
by connecting the extreme points of each curve.
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Figure 8. The linearization of scatter data within the correlation of different parameters with each
other.

To find a higher correlated parameter among others neglected during predicting pro-
cedure, the correlation matrix could be prepared as Figure 9. This matrix shows the rela-
tion of different quantities with heat-map visualization method. It demonstrates the mag-
nitudes with colors from lighter to darker one. The lighter color shows the best relation,
so it is easy to infer that the prediction procedure finds a good relation between wave
height and power.
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Figure 9. The correlation matrix of different parameters with each other.

For comparative analysis, it is necessary to compare the predicted production power
graphs with numerical solution values to prove the efficiency of this method in using this
field as shown in Figures 9 and 10. For this reason, Figure 10 shows the power curve in
terms of simulation time. It presents the bar graph and the differences between two type
of values shows obviously.

m Nuinerical Analysis

= [STM

Power (kW)

Figure 10. Comparative analysis of the numerical solution and LSTM method.
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To evaluate the results of the simulation, it is necessary to make a comparison with
another study. Figure 11 shows that to achieve larger powers, it is necessary for wave-
lengths with higher altitudes to collide with the wave converter. Furthermore, the main
claim of our study is to introduce a relation between the generated power and wave
height. For this purpose, the output data of LSTM method were used and compared with
numerical analysis which was done by simulation software. Furthermore, it presents this
relation and the curve fitting operation and the mathematical relation introduced as a
power function.
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Figure 11. The relation between generated electrical power with wave height.

As shown in Figure 11, the recent study is compared with Babajani's study [31].
Among the differences for the difference between the results, we can point to a different
input. Wider inputs are used and the results are more acceptable. The difference in the
numerical results obtained from the simulation is only 0.05%, and this shows that the re-
sults can be trusted. As can be deduced from the comparison of the curves obtained in
Figure 11, there is a good match between the two methods of numerical solution and
LSTM. Numerical solution takes 4 days 1 hr, but predicting results by artificial intelligence
takes only 2 minutes and 23 seconds. By obtaining mathematical equations from figure
diagrams, a relation can be provided that from now on replaces a numerical solution that
increases speed and accuracy. Regarding scalability, one important aspect is to assess the
power extraction by the Searaser in the same real scale. Due to the fact, in this study,
Searaser was numerically simulated by the data extracted from the patent scale. Therefore,
the scale was 1:1 and the simulation results were close to reality. Furthermore, the data
were curve fitted and two mathematical relations were presented to attribute the output
power by the Searaser converter and the wave height, one of which was the relation pro-
vided by Babajani [31] and the other the relation presented by recent research. Equations
17 and 18 represent y1 and y2 in Figure 11.

P=011H*’ (17)

P =0.1055H % (18)
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In the following, we will examine one of the objectives of this study, which is the
power diagram in terms of wind speed. Figure 12 shows this relationship extracted from
the LSTM method.

Power (kW)
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Wind flow speed (m/s)

Figure 12. The relationship between output power and wind speed.

As can be deduced from Figure 12, the data frequency is low wind speed, and this
chart is a reliable way to predict similar models because it is a combination of experi-
mental card and simulation data modeled by artificial intelligence.

To represent the effect of selected parameter, the respective comparative analysis is
displayed here. Root mean square error (RMSE) of these relations is presented as in Table
3.

Table 3 shows that there is a good agreement between two utilized methods and it can be con-
cluded that the LSTM method is much faster and more accurate in predicting values.

Analysis Variables RSME Value
Power Output, Wave height 0.56
Power Output, Simulation Time 0.42

Power Output, Wave height, Simulation Time 0.49
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4. Conclusions

In this study, the power characteristics of Searaser are presented by analysing nu-
merical and experimental data. A LSTM Network has been developed for predicting the
power output of Searaser. By capability of the proposed LSTM prediction method, there
can also be found a relationship between wind speed and the output Power of Searaser.
According to the obtained results and the comparison between the two methods studied,
it can be inferred that the LSTM Network is able to predict Power in terms of height more
accurately and faster than the numerical solution and they were in a good agreement with
the result of the numerical analysis. The comparison between the two methods shows that
results of the machine learning method are so accurate and RSME value of the parameters
are 0.49 as a mean value. This study makes progress on Energy management and invest-
ment for ocean renewable energy systems. The present study also exhibits some limita-
tions, which open paths for future researches. Therefore, this study can be improved by
analyzing more effective parameters on output power of ocean waves such as tempera-
ture, climate change, etc. Moreover, better results can be achieved by using accurate meth-
ods as well as the developing and upgrading WEC systems.
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