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Why do stretched rubber bands not hit the hand after ejection? What is the mechanism behind
the rubber band ejection dynamics? These questions represent a fascinating scientific problem.
Because the size of a rubber band in the circumferential direction is much larger than that in the
other two directions of its cross-section, we regard the rubber band as a slender beam and establish
a mathematical model of the dynamics of the rubber band stretching and ejection. Furthermore,
we obtain the dependence of the dynamic curvature of the rubber band on the arc length and time.
We used the finite element software ABAQUS to simulate the dynamic process of a rubber band
stretching and ejection. The simulation results and dimensional analysis were performed to examine
the effect of the bending elastic rebound velocity. The mathematical model and simulation results
revealed that the relationship between the curvature and time at the end of the rubber band (s = 0)

was as follows: κ ∼ t−1/2. This research has guiding significance for the design of rubber bands as
elastic energy storage devices.
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INTRODUCTION

Stretching, ejection, and retraction of objects are u-
biquitous, including the retraction of flat elastic belts[1],
the release of catapults[2], rubber band catapults, large
catapults in amusement parks, and the strings of some
musical instruments. Rubber band ejection is a familiar
and interesting experience. The rubber band is stretched
and released, and the whole movement process very fast.
It is difficult to observe the retracted deformation state
of the rubber band during the ejection process. Howev-
er, it is amazing that the ejection of the stretched rubber
band rarely hits the finger. Oratis and Bird[3] performed
an experimental and theoretical study of two self similar
retractions during rubber band ejection and explained
the reason that the rubber band does not hit the hand.
At the beginning of the stretching and ejection process,
elastic retraction of the rubber band occurs. After the
retraction to the initial state without strain, the rubber
band as a whole moves forward at a uniform speed due to
inertia. The finger can move out of the path of the rubber
band during rebound so that it does not get hit by the
rubber band. However, the dynamics are complicated.

FIG. 1: Slingshot ejection model
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In the study of elastic retraction due to tension after
release, the traditional unidirectional springback model
only considers the effect of tension and inertia[4,5], but
the bending moment is very important in regions with
high rates of bending[6,7]. When the front end of the
rubber band begins to move, it bends dynamically in
a manner similar to that of a straight beam or bar[8,9].
Mason[10] performed a detailed experimental study of the
free contraction that occurs when one end of a stretched
rubber band is released. Vermorel et al.[1] studied the
dynamic instability of the elastic retraction by tension af-
ter release for flat rubber bands. The results of the study
confirmed the existence and importance of longitudinal
stress waves in the process of the tensile retraction of
elastomers. Wegner et al.[11,12] studied the dynamic re-
sponse after the sudden release of stretched hyperelastic
strings. Finite element simulations were used by Oratis
and Bird[3], and the results showed that in the process
of the rubber band ejection and retraction, rubber bands
are under tensile strain ε. The corresponding half angle
of the wedge angle is φ, and the initial length is (ε+1)`0,
`0. When the rubber band is released at t = 0, the rub-
ber band after material point in V retraction of speed,
the back-end can form a growing bending area. Oratis
and Bird[3] showed through experiments and theoretical
analysis that when the influence of the bending effect is
ignored in the process of elastic band pop-back shrink-
age, the following elastic band springback speed relation

is obtained: V
C =

(
ε
ε+1

)(
1

1−sinφ

)
.

The process of rubber band stretching and ejection is
very complex, and it is meaningful to analyze the dy-
namic process. Thus, Section II of this paper begins
with a mathematical model of the dynamics of rubber
band stretching and ejection, and the dynamic process
is comprehensively analyzed. In Section III, the finite
element software ABAQUS is used to verify the exper-
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imental results of Oratis and Bird[3] to ensure that the
simulation results and data are correct and to verify the
relationship between the curvature in the mathematical
model and the arc length and time. Based on the results
of dimensional analysis, simulations of the stretched e-
jection of rubber bands with different thicknesses were
conducted considering the influence of the effect of bend-
ing. Section IV draws conclusions.

MATHEMATICAL MODEL OF STRETCHED
RUBBER BAND EJECTION DYNAMICS

FIG. 2: Rubber band stretching and ejection diagram

During the springback process of rubber bands, a ben-
t region with increasing size will form at the back, as
shown in Figure 1. Oratis and Bird[3] used a beam mod-
el to study the self-similar retraction behavior during
rubber band ejection. Here, we model the region after
the longitudinal wave passes as an constant-length beam
based on the Euler–Bernoulli beam theory[13]. The beam
cross-sectional area is A, the cross-sectional moment of
inertia is I (rectangular section I = 1

12bh
3, b is the

width, h is the thickness, I = 1
4πr

4, and r is the radius).

The following relationships are defined: ∂x
∂s = cos θ(s, t),

∂y
∂s = sin θ(s, t), where θ(s, t) is the angle between the
tangent and the x-axis. The small deflection vibration
equation of the beam[14] is as follows:

FIG. 3: Beam theory mathematical model of stretched rubber
band rebound

EI
∂4y

∂s4
+ ρA

∂2y

∂t2
= 0, (1)

where y(s, t) is the deflection, s is the arc length, and t
is time.

The beam theory model contains the rotation angle

θ = ∂y
∂s and the curvature κ = ∂2y

∂s2 . Under the assump-

tion of a small displacement[14], to facilitate the study of
the elastic band springback process in this paper, Equa-
tion (1) is expressed in the form of a rotation angle θ(s, t)
as follows:

EI
∂4θ

∂s4
+ ρA

∂2θ

∂t2
= 0, (2)

Its self-similar solution is

θ(s, t) = C1
s2

t
hypergeom (

[
1

2
, 1

]
,

[
3

4
,

5

4
,

3

2

]
,− ρAs4

64EIt2
)

+ C2 Fresnels [
1√
2π

(
ρA

EI
)

1
4
s√
t
]

+ C3 FresnelC [
1√
2π

(
ρA

EI
)

1
4
s√
t
]) + C4,

(3)

where C1, C2, C3, and C4 are unknown parameters.
Applying the θ(s, t) boundary conditions: θ(0, t) = π

2 ,

θ(s, t → 0) = φ, ∂2θ
∂s2 (0, t) = 0, and ∂3θ

∂s3 (0, t) = 0, we de-
termine that C1 = C2 = 0, C3 = (2φ − π), and C4 = π

2 .
Thus,

θ(s, t) =
π

2
+ (2φ− π) FresnelC [

1√
2π

(
ρA

EI
)

1
4
s√
t
]. (4)

The material parameters of the rubber band were se-
lected as follows: the radius of the circular section r =
0.8 mm, the diameter of the rubber band D = 64 mm,
the density ρ = 1.3 g ·cm−3, E = 1.1 MPa, and the initial
wedge half-angle φ = 11.6◦.

FIG. 4: Variation of θ with s. The curves shown in red, blue,
and black correspond to times t = 0.001, 0.002, and 0.003 s.
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FIG. 5: Variation of θ with t. The arc lengths of the curves
shown in red, blue, purple, and black correspond to s = 0,
0.0001, 0.005, and 0.01 m.

FIG. 6: Three-dimensional phase diagram of θ(s, t) as a func-
tion of time t and arc length s.

Fig. 4–6 show the following. (1) When the arc length
s is zero, θ = π

2 . (2) θ increases with the arc length s
during the ejection of the rubber band. It then gradually
decreases to zero and then continues to increase in the
opposite direction, showing periodic changes. With the
increase in the arc length s, θ changes more drastically.
(3) During the rebound of the stretched rubber band in
a small arc range, the angle changes smoothly with time.
(4) In a short time period after the rubber band is re-
leased, the angle changes rapidly, and it finally increases
and changes slowly with time.

We define a dimensionless quantity ξ =

s/
[(
EIt2

)
/(ρA)

]1/4
. Thus,

θ(ξ) =
π

2
+ (2φ− π)FresnelC

[
ξ√
2π

]
. (5)

According to Equations (4) and (5), we can define the
complementary angle of θ(s, t) as ϕ(ξ), that is, ϕ(ξ) =
π/2 − θ(s, t). We then have the following: ϕ(ξ) = (π −
2φ) Fresne1C

(
ξ√
2π

)
. This differential equation is the

same as that obtained by Oratis and Bird when modeling

two self-similar retractions of a tensile elastic wedge[4].
ϕ(ξ) is obtained by taking the first derivative of ξ, as

follows: ϕ′(ξ) =
(π−2φ) cos

(
ξ2

4

)
√
π

, When ϕ′(ξ) = 0 and

ϕ(ξ) have extreme values, ξ =
√

2(2n+ 1)π, n = 0, ...

(a)

(b)

FIG. 7: (a) Variation of θ(ξ) with ξ. (b) Variation of ϕ(ξ)
with ξ.

The analysis showed that when ξ =
√

2π, the compli-
mentary angle ϕ(ξ) had a maximum value, at which time
the rubber band stretched and retracted to the initial s-
tate without strain. As the variable ξ increased gradual-
ly, the degree of change in the angle of rotation tended
to be gentle. Before the maximum supplementary angle
appeared, the recovery process of the elastic energy of
the rubber band occurred, after which the rubber band
moved in the ejection direction overall.

Combined with Euler–Bernoulli beam theory[14], the
curvature κ in the process of stretching and springback
of rubber band is obtained by Equation (4) as follows:

κ(s, t) =
∂θ(s,t)

∂s

=
(2φ− π)√

2π

(
ρA

EI

) 1
4

t
1
2 cos

[
1

4

(
ρA

EI

) 1
2 s2

t

]
. (6)

When the dimensionless quantity ξ =

s/
[(
EIt2

)
/(ρA)

]1/4
and the complementary angle

ϕ(ξ) takes the maximum value, ξ =
√

2π. Substituting
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this result into Equation (6), κ = 0 when the supplemen-
tary angle has the maximum value during the rebound
of the rubber band, i.e., the curvature is zero. At this
time, there is no bending moment, and the rubber band
elastically retracts to its unstretched initial state.

At the origin, where s = 0, we have the following:

κ =
(2φ− π)√

2π

(
ρA

EI

) 1
4

t−
1
2 . (7)

(a)

(b)

(c)

FIG. 8: (a) Variation of curvature κ with arc length s (curva-
ture is positive). The curves shown in red, blue, and purple
correspond to times t = 0.001, 0.003, and 0.005 s. (b) Vari-
ation of κ with time t (curvature is positive). Curves shown
in red and blue correspond to arc lengths of s = 0.0001 and
0.001 m. (c) Phase diagram of curvature κ(s, t) as a function
of time t and arc length s (curvature is positive).

Fig. 8 shows the following: (1) the curvature changes
more sharply with the increase in the arc length, and the
fluctuation range of the curvature decreases with the in-
crease in time when the arc length is constant; (2) with-
in a small range of time t after release, the curvature

changes dramatically during the springback process and
tends to be flat as time increases; (3) there is a non-zero
curvature at the origin (s=0), that is, there is an initial
curvature at the origin and the curvature is the maximum
curvature; with the increase in time, the curvature at the
origin gradually becomes smaller and finally decreases to
zero, which is also consistent with the phenomenon ob-
served in the simulation.

The differential equation for the deflection of the beam
during the rebound process after rubber band ejection
can be obtained. The moment in the beam is M =
−EI ∂θ∂s , which is expressed as follows:

M(s, t) =
(π − 2φ)(ρA)

1
4 (EI)

3
4 t−

1
2

√
2π

cos[
1

4
(
ρA

EI
)

1
2
s2

t
].

(8)

According to Equations (6) and (8), the curvature and
bending moment of the bending region have the same re-
lationship with the arc length and time. There is only one
constant difference between the expressions of the curva-
ture and bending moment, and this constant depends
on the cross section geometry and material parameters.
Similarly, there is an initial bending moment at the ori-
gin, and the bending moment changes sharply with the
increase in the arc length s. In a short period of time
after the rubber band is released, the bending moment
changes very sharply, and the change tends to be gentle
with the increase in time.

The shear force in beam is Q = −∂M(s,t)
∂s . Thus,

Q(s, t) =
(2φ− π)(ρA)

3
4 (EI)

1
4 st−

3
2

2
√

2π
sin[

1

4
(
ρA

EI
)

1
2
s2

t
].

(9)

FIG. 9: Variation of shear force Q with arc length s. The
curves shown in red, blue, and black correspond to times t =
0.001, 0.002, and 0.003 s.
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FIG. 10: Variation of shear force Q with time t. Curves shown
in red and blue correspond to arc lengths of s = 0.001 and
0.002 m.

FIG. 11: Three-dimensional phase diagram of shear force Q
as a function of arc length s and time t.

Fig. (9)–(11) show that (1) the shear force Q is zero at
the origin, which satisfies a symmetry condition during
elastic ejection, (2) the shear force Q increases gradually
with the arc length s, and it increases faster and faster,
and (3) the shear force changes sharply over a short time,
whereas the arc length shear force decreases gradually to
zero with time.

FINITE ELEMENT SIMULATION OF RUBBER
BAND STRETCHING EJECTION DYNAMICS

We used the material and size of the rubber band used
by Oratis and Bird[3] to verify the experimental and the-
oretical results and to ensure the feasibility of the finite
element model and the accuracy of the extracted data.

Extraction of experimental parameters of
superelastic materials

In this paper, the experimental data, the stress–strain
curve of the rubber band material (Fig. 12), and the
material parameters reported by Oratis and Bird[3] were
used in the simulation (Table ).

FIG. 12: Stress–strain curves of various kinds of rubber band-
s. The constitutive parameters of the rubber bands were ob-
tained from the report of Oratis and Bird[3] on rubber band
ejection.

A rubber band is a hyperelastic material [15−21]. Based
on the assumption that isotropy and volume are ap-
proximately incompressible, a variable-density function
is usually used to characterize rubber. At present,
the polynomial strain energy function[22] (generalized
Mooney–Revlin function), which is widely used in fi-
nite element analysis, is expressed as follows: U =∑N
i+j=N Cij (I1 − 3)

i
(I2 − 3)

j
+
∑N
k=1

1
dk

(√
I3 − 1

)2k
,

where N is the order of the function, Cij and dk are
material constants, which are usually obtained by exper-
iments, and I1, I2, and I3 are strain invariants of order
1, 2, and 3, respectively.

The finite element software ABAQUS was used
to analyze the experimental material data, and the
two-parameter Mooney–Revlin model[23,24], W =
C10 (I1 − 3) + C01 (I2 − 3), was used to study the elas-
tic band material, as shown in Fig. 12, because it has
better stability.

circumference C( cm) 5.4 10.2 20.4 91.4
width b( mm) 1.2 13 1.6 25.4

thickness h( mm) 1.1 1.7 2.0 1.7

density ρ
(
gcm−3

)
0.8 1.2 1.3 1.1

modulus of elasticity E(MPa) 1.5 1.1 1.1 1.1
coefficient C10 0.069 0.203 0.187 −0.024
coefficient C01 0.586 0.046 0.122 0.34

Table . Dimensions and material parameters of rubber
bands with rectangular cross-sections were obtained from
the report of Oratis and Bird[3] on rubber band ejection.
A circular cross section of the rubber band was assumed,
and the parameters were as follows: r = 0.8 mm, D =
64 mm , ρ = 1.3 g · cm−3, E = 1.1 MPa, φ = 11.6◦, C10

= 0.187, and C01 = 0.122.

Simulation results and verification

The material parameters for the selected model were as
follows: C = 20.4 cm, b =1.6 mm, h =1.9 mm, ρ = 1.3 g ·
cm−3, E = 1.1 MPa, ε = 0.476, φ = 14◦, C10 = 0.187,
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and C01 = 0.122. Rigid cylindrical contact was specified
at the front end of the stretched rubber band, the normal
and tangential directions were both hard contacts, and
the rubber band was modeled using the solid C3D8R
units of the ABAQUS software. The finite element model
results for the stretching and ejection of the rubber band
with the above material parameters are shown in Fig. 13
(see the attachment for the simulation dynamics results).

FIG. 13: Stretched rubber band ejection simulation.

Using the finite element model established above, the
midpoint p of the end of the rubber band (Fig. 13) was
taken as the reference point, and its speed was V .

FIG. 14: Rear rebound speed of the rubber band, V

The rebound speed V at the back end of rubber band
increased with time, but the overall change was small. In
fact, after the release of the stretched rubber band, the
rubber band began to shrink, and the rear end moved
in the ejection direction, which indicated that the elastic
recovery of the stretched rubber band was accompanied
by the rapid release of elastic energy.

After the elastic recovery process of the rubber band
was complete, the whole rubber band moved in the e-
jection direction due to inertia. According to Newton’s
second law, F = ma, when the external force is F=0, the

speed of the elastic rebound point is uniform along the
ejection direction.

Using the same modeling method, combined with the
experimental theory of Oratis and Bird[3], the stretching
and ejection of elastic bands with different strain rates,
wedge half angles, materials, and sizes were simulated
(the results are shown in Fig. 15).

FIG. 15: Experimental results of Oratis and Bird[3] and the
results of the finite element simulation in this paper (rectan-
gular cross-sections).

In Fig. 15, the red points are the experimental data of
Oratis and Bird[3], and the black points are the simula-
tion results of this work. The results were consistent with
each other, and the difference between them was small,
indicating the accuracy of the simulation and extracted
data in this work. The theoretical results obtained by
Oratis and Bird[3] ignored the bending effect, and these
results were different than the simulation results in this
paper, indicating that the influence of the bending effect
on this dynamic process must be further discussed.

Based on the elastic stretching dynamics model of the
ejection process, we examined the motion of the elastic
rebound endpoint (s = 0). The curvature is expressed as

follows: κ = 2φ−π√
2π

(
ρA
EI

) 1
4

t−
1
2 .

FIG. 16: Variation of curvature κ with time t at the end of
the elastic during retraction (curvature is positive).

Fig. 16 shows the simulation results of this paper (the
model parameters are shown in Table ). The solid line
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represents the theoretical results obtained by introduc-
ing the beam mathematical model. The curvature of
the end of the rubber band during the retraction pro-
cess decreased with time and finally reached zero, with a
decreasing trend of κ ∼ t−

1
2 . This agrees with the the-

oretical relationship given by Equation (7) and verifies
the accuracy of the mathematical model of the stretched
rubber band ejection dynamics.

Influence of bending effect on tensile ejection
dynamics

Through dimensional analysis (see the appendix), we
determine the equation for the speed of the rebound pro-
cess: v

c = f(ε, φ, hb ).
In the simulation process, we can directly see the

change of the bending area in the springback process
of the rubber band. We selected the simulation result-
s of the model shown in Fig. 13, where ε = 0.476 and
φ = 14◦. We ignored the influence of bending effect (Fig.
17).

FIG. 17: During the rebound process of the rubber band, the
influence of the bending effect is ignored

When the longitudinal wave reaches the cylinder, the
position of the longitudinal wave is ct = (1 + ε)`0 cosφ,
and the sum of half the length of the upper side and one
leg of the trapezoid was approximately equal to `0, that
is, `0 = d/2 + a. a and d are the lengths of trapezoid
leg and the upper and lower sides, respectively. The ge-
ometric relationship ct tanφ − a sinφ = d/2 yields the

following: a = 1−(1+ε) sinφ
1−sinφ l0, d = 2ε l0 φ

1−sinφ . The geo-

metric relationship is V
C = d

2/(ct · tanφ). Therefore,
V
C =

(
ε

1+ε

)(
1

1−sinφ

)
. According to this equation, the

dynamics equation obtained by ignoring the influence of
the bending effect on the springback dynamics of the
rubber band (which is independent of the cross-sectional
shape of rubber band at this time) is consistent with
the result of Oratis and Bird[3]. At the same time, it
was proven that the dimensional analysis of the elastic
rebound dynamics was correct.

Considering the influence of the bending effect on the
dynamics of the whole retraction process, the dynamic
relationship between the velocity V and the longitudinal
wave velocity C is as follows: V

C = f
(
ε, φ, hb

)
. To en-

sure that the strain ε, wedge half angle φ, and rubber
band width b are fixed values, rubber bands with differ-
ent thicknesses h are used for the simulation, and the
simulation results are shown in Fig. 18.

FIG. 18: Influence of thickness h on the springback dynamics

As shown in Fig. 18, during the springback process of
rubber bands with different thicknesses h, the thickness
of the rubber band has little influence on the spring-
back dynamics. This is mainly because the thickness
h is smaller than the diameter of the rubber band and
the main stretching length scale, and the influence of
the thickness h on the elastic dynamics is not signifi-
cant. It is speculated that rubber bands with different
cross-sectional shapes exhibit the same dynamics during
stretching ejection when considering the bending term.
The rubber band is stretched until the wedge half angle
is φ and has strain ε. The tensile stress inside the rubber
band is dominant when stretching and retracting, and
the bending effect is small at this time. When the rub-
ber band is retracted to a certain extent, the influence of
the tensile stress inside the rubber band is significantly
reduced, and the influence of bending gradually increas-
es. Thus, the influence of the bending tensile ejection
dynamics cannot be ignored.

Considering the influence of the bending of the rubber
band during springback, the experimental results of O-
ratis and Bird[3] and the simulation results in this paper
were fitted linearly, as shown in Fig. 19.

FIG. 19: Linear fit of experimental (Oratis and Bird[3])
and the simulation results in this paper (rectangular cross-
sections).

There was significant difference between the two re-
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sults. Therefore, considering the influence of the bend-
ing area on the ejection of the stretched rubber band,
the coefficient α is introduced to modify the springback
velocity relation as follows:

V

C
= α

(
ε

ε+ 1

)(
1

1− sinφ

)
, (10)

where α was determined by fitting to be 1.09.

FIG. 20: Simulation results for circular sections with and
without bending.

Based on a previous study, the cross-section was substi-
tuted for simulation, and a circular cross-section (Table
) was used to simulate the results (Fig. 20). The fitting
degree of the theoretical and finite element simulation re-
sults were improved by considering the correction factor
of the bending moment. When the cross-sectional di-
mensions of the rubber band were small compared with
the main length scale, the influence of the cross-sectional
shape and size on the elastomer stretching and ejection
velocity can be ignored within a certain range of require-
ments.

CONCLUSIONS

The conclusions of this research are as follows:
(1) A simple Euler–Bernoulli beam model was used

to analyze the stretched elastic band ejection process.
The results showed that the simple beam model of the
dynamics can describe the whole ejection process well.

(2) The bending area changed constantly during the
rebound of the rubber band. According to the mathe-
matical model of this paper, the curvature relationship
is given by Equation (6). Combined with the finite el-
ement simulation results, the results at the origin were
verified and fit well with experimental data. In addition,
the curvature value at the origin of the rubber band was
the largest in the process of stretching and ejection, and
it had an initial curvature that was not zero. The vari-
ation of the curvature at the origin with time t and arc
length s is given by Equation (7).

(3) By solving and analyzing the mathematical model
of the stretched rubber band ejection dynamics, we de-
termined that the angle θ, curvature κ, bending moment

M , and shear force Q change sharply in a short initial
period during the ejection. This also agreed with the fact
that a large amount of energy is released rapidly at the
moment of ejection, resulting in significant springback
deformation.

(4) The factors that affect the rebound velocity rela-
tionship V

C in the process of stretching and ejection can
be determined by dimensional analysis. The simulations
presented in this paper were in good agreement with the
experimental results of Oratis and Bird, which proved the
accuracy of the simulation and data extraction. Without
considering bending, the theoretical results of Oratis and
Bird were consistent with the experimental and simula-
tion results, but there were some differences. In this pa-
per, the influence of the bending effect on the stretched
elastic ejection was considered. By changing the cross-
sectional thickness h, which affects the bending moment,
and comparing the experimental results of Oratis and
Bird and the simulation data in this paper, the correc-
tion coefficient of α = 1.09 to account for bending effect
was obtained.
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[6] Audoly, Basile, and Sébastien Neukirch. “Fragmentation
of rods by cascading cracks: why spaghetti does not break
in half.” Physical review letters 95.9 (2005): 095505.

[7] Callan-Jones, A. C., P-T. Brun, and B. Audoly. “Self-
similar curling of a naturally curved elastica.” Physical
review letters 108.17 (2012): 174302.

[8] Gladden, J. R., et al. “Dynamic buckling and fragmenta-
tion in brittle rods.” Physical review letters 94.3 (2005):
035503.

[9] Cross R C, Wheatland M S. “Modeling a falling slinky.”
American Journal of Physics, 80(12) (2012): 1051–1060.

[10] Mason, P. “Finite elastic wave propagation in rubber.”
Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences 272.1350 (1963):
315–330.

[11] Wegner, J. L., J. B. Haddow, and R. J. Tait. “Unloading
waves in a plucked hyperelastic string.” (1989): 459–465.

[12] Wegner, J. L., and J. B. Haddow. “An experimental s-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 March 2021                   doi:10.20944/preprints202103.0294.v1

https://doi.org/10.20944/preprints202103.0294.v1


9

tudy of the unloading waves in a plucked hyperelastic
string.” (1990): 667–671.

[13] Bauchau, O. A., and J. I. Craig. “Euler-Bernoulli beam
theory.” Structural analysis. Springer, Dordrecht, 2009.
173–221.
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Appendix

Dimensional analysis of rubber band stretch ejection
dynamics:

Based on dimensional analysis theory[25], seven param-
eters were determined (see the table below), among which
there are three basic dimensions: L, M, and T.

variable symbol dimension
width b L
thick h L
density ρ ML−3

elastic Modulus E ML−1T−2

strain ε 1
wedge half angle φ 1
speed V LT−1

Table Dimensions of physical quantities.

Thus, this problem produces 7 − 3 = 4 dimensionless
quantities Π, shown as follows:

Π1 = ε, Π2 = φ, Π3 =
h

b
, Π4 = EρaV bhc, (11)

where a, b, and c can be solved by dimensionless condi-
tions;

dim (Π4) = ML−1T−2MaL−3aLbT−bLc

= M1+aLb−3a+c−1T−2−b,
(12)

The following must be satisfied: 1+a = 0, b−3a+c−1 =
0, and −2−b = 0. Thus, a = −1, b = −2, and c = 0. The
dimensionless quantities can be obtained by introducing
the determined a, b and c into Π4:

Π4 =
E

ρV 2
, (13)

In this formula, E represents the elastic modulus, ρ rep-
resents the density, and V represents the speed at which
the rubber band springs back to the material point. Sub-
stituting C =

√
E/ρ into the above equation to modify

the dimensionless quantity Π4, we obtain the following:
Π4 = V

C .
According to the theory of dimensional analysis, Π4 =

f (Π1,Π2,Π3), which can be written as follows:

V

C
= f(ε, φ,

h

b
). (14)

Thus, the ejection speed of the rubber band stretching
is related to the strain ε, initial wedge half angle φ, and
bending effect. The specific relationship must be deter-
mined by experiments.
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