
Article

TEMS: An Algorithm to Minimize Energy Consumption and
Elapsed Time for IoT Workloads in a Hybrid Architecture

Julio C.S. Anjos 1* , João L.G. Gross 1 , Kassiano J. Matteussi 1 ,Gabriel V. González 2 ,
Valderi R.Q. Leithardt 3 and Claudio F.R. Geyer1

Citation: Anjos, J.C.S.; Gross, J.L.G;
Matteussi, K.J.; Leithardt, V.R.Q.;
González , G.V; Geyer, C.F.R. TEMS: An
Algorithm to Minimize Energy
Consumption and Elapsed Time for IoT
Workloads in a Hybrid Architecture.
DNA 2021, 1, 1–16. https://doi.org/

Received:
Accepted:
Published:

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional claims
in published maps and institutional
a�liations.

Copyright: © 2021 by the authors.
Submitted to DNA for possible open
access publication under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).

1 Federal University of Rio Grande do Sul, Institute of Informatics, UFRGS/PPGC, Porto Alegre, RS, Brazil, 91501-970;
{jcsanjos, jlggross, kjmatteussi,geyer}@inf.ufrgs.br

2 Faculty of Science, Expert Systems and Applications Laboratory, University of Salamanca, 37008 Salamanca, Spain;
gvg@usal.es

3 Instituto Politécnico de Portalegre, VALORIZA Research Center, Portalegre, Portugal, 7300-555;
valderi@ipportalegre.pt

* Correspondence: jcsanjos@inf.ufrgs.br; Tel.: +55 51 3308 6168 (Julio Anjos)

Abstract: Advances in communication technologies have made the interaction of small devices, such1

as smartphones, wearables, and sensors, scattered on the Internet, bringing a whole new set of complex2

applications with ever greater task processing needs. These Internet of Things (IoT) devices run on3

batteries with strict energy restrictions. They tend to o�oad task processing to remote servers, usually4

to Cloud Computing (CC) in datacenters geographically located away from the IoT device. In such a5

context, this work proposes a dynamic cost model to minimize energy consumption and task processing6

time for IoT scenarios in Mobile Edge Computing environments. Our approach allows for a detailed cost7

model, with an algorithm called TEMS that considers energy, time consumed during processing, the cost8

of data transmission, and energy in idle devices. The task scheduling chooses among Cloud or Mobile9

Edge Computing (MEC) server or local IoT devices to better execution time with lower cost. The simulated10

environment evaluation saved up to 51.6% energy consumption and improved task completion time up to11

86.6%.12

Keywords: Mobile Edge Computing; Internet Of Things; Cost Minimization Model; Energy Consumption;13

Scheduling Algorithm14

1. Introduction15

International Data Corporation (IDC) report appoints there will be 41.6 billion IoT devices16

up to 2025 with a potential for data generation up to 79.4 ZB [1]. In such a context, IoT17

applications have evolved the use of arti�cial intelligence, arti�cial vision, and object tracking,18

which require high computing power [2,3]. They usually rely on task processing o�oad and19

data storage to remote Cloud Computing (CC) Data Centers to boost processing time and20

reduce battery energy consumption [4]. Unfortunately, those remote servers are geographically21

located away from the end-user and IoT device, resulting in high latency due to delay and22

congestion over the communication channels [5–7]. Moreover, the use of a centralized control23

(provider-centric) cannot deliver proper connectivity or even support computation closer to the24

edge of the network, thus becoming ine�cient for highly distributed scenarios.25

Mobile Edge Computing (MEC) can represent an option to increase the performance of CC26

applications, as it denotes a network architecture designed to provide low latency with adequate27

Quality of Service (QoS) to end-users [8,9]. Besides, MEC relies on top of high-speed mobile28

networks such as 5G to allow fast and stable connectivity for mobile devices and users. Thus,29

CC services can be deployed close to mobile devices, in the MEC layer, bringing processing and30

storage closer to cellular base stations [10].31

Nevertheless, energy consumption remains a clear issue to be overcome on mobile device32

networks, such as MEC environments [11]. Most IoT sensors and mobile devices run on batteries33

with limited energy capacity. Furthermore, IoT devices need to handle lots of data, which is also34

Version March 10, 2021 submitted to DNA https://www.mdpi.com/journal/dna

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://orcid.org/0000-0003-3623-2762
https://orcid.org/0000-0003-0280-665X
https://orcid.org/0000-0002-9131-6849
https://orcid.org/0000-0002-6536-2251
https://orcid.org/0000-0002-0446-9271
https://orcid.org/0000-0002-8602-2336
https://doi.org/10.3390/dna1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/dna
https://doi.org/10.20944/preprints202103.0285.v1
http://creativecommons.org/licenses/by/4.0/

Version March 10, 2021 submitted to DNA 2

energy-consuming. Thus, reducing energy consumption in networks with IoT devices is a goal35

worth exploring.36

State-of-the-art presents a set of studies that use MEC to o�oad tasks to o�er local37

processing for IoT devices. Some works [4,12–16] have measured the energy consumption for38

data transmission or even using Dynamic Voltage and Frequency Scaling (DVFS) techniques. In39

contrast, this proposal enables a most detailed cost model, including energy and time consumed40

during processing and the cost of data transmissions. CC is also considered an option for41

processing when local resources are depleted, making the network more reliable in stress42

scenarios [17].43

This work explores the scheduling problems in Edge Computing environments, considering44

energetic consumption in a dynamic cost model to mitigate energy consumption in MEC45

environments. An algorithm called the Time and Energy Minimization Scheduler (TEMS)46

scheduling algorithm implements dynamic cost minimization policies correlating the system47

resource allocation with the more inexpensive cost for executing tasks. A simulator has also48

been developed for the MEC evaluation with IoT devices and associated CC resources. The49

TEMS algorithm gathers data about the environment and associated energy and time costs to50

decision-making about the task scheduling. MEC Simulator is available at https://github.com/51

jlggross/MEC-simulator.52

The main contributions of this work are:53

i) The methodology covers a considerable number of energy and time metrics for task54

processing and data transmissions, including the accounting of CPU cores idle energy55

consumption;56

ii) The CPU processing time and energy consumption optimization using DVFS technique;57

iii) The scheduling policies consider task processing in the IoT device itself, in a local MEC58

server, and in a remote Data Center from CC at the same time;59

The remainder of this paper is organized as follows. Section 2 discusses previous related60

work found in the literature. Section 3 declares the problems in MEC environments. Section 461

introduces the dynamic cost minimization model for the system with three di�erent allocation62

policies, local processing in the IoT device, local processing in the MEC server, and remote CC63

processing. Section 5 introduces the TEMS heuristic scheduling algorithm designed to solve the64

cost minimization model of the system. Section 6 details the implementation and shows the65

results of the experiments using the TEMS scheduling algorithm. Finally, Section 7 presents the66

conclusions.67

2. Related Work68

The energy consumption decrease and mitigating response latency to applications in IoT69

environments are a well-known issue but an open question since the �rst Edge Computing70

architectures [18]. However, the strategic use of CC as the only alternative to task processing71

adds higher latency to IoT applications [19].72

Few proposals use CC as an option to task execution [11,20,21]. Other approaches use Fog73

Computing to allow local processing in IoT devices such as the works [13,22–24] or without74

applying the CC [25]. The MEC architecture is assessed in the studies of [4,11,12,21]. In contrast,75

TEMS is a three-layer architecture that combines MEC and CC added to local IoT computation.76

This approach also provides a cost model, with the energy and run time evaluations on the �y,77

including the data transmission costs.78

As for the parameters used in third-party cost models, the energy consumption of task79

processing is used by all works mentioned. However, the energy consumption for data trans-80

missions is shown in the works [4,12–14]. The processing time of tasks is evaluated in major of81

the works, except to [22,24] and the spent time on data transmissions is limited to studies of82

[4,11–13,21].83

On the other hand, the energy consumption of the equipment in the idle state is measured84

exclusively in [22,24]. Models that include the battery level of the IoT devices are only [4,12,13].85

Our proposed model uses the DVFS technique [15,16] to allow both the dynamic minimization86

of energy and execution time during task processing.87

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://github.com/jlggross/MEC-simulator
https://github.com/jlggross/MEC-simulator
https://github.com/jlggross/MEC-simulator
https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 3

All these execution time and energy consumption variables are consolidated in our model.88

A monitor for battery levels of IoT devices allows rational energy consumption. Two task policy89

types, critical - to deal with deadline constraints- and regular -to deal with common executions-90

are employed in the scheduling algorithm.91

3. Problem Statement92

A single cost model needs to evaluate deploying all used variables to data transmissions93

such as time and energy consumption. Also, must choose the local to task execution among MEC94

or Fog, or Cloud environments. This is a multiple-objective optimization problem. Therefore,95

�nd a minimal cost to all these system variables is an NP-Hard problem.96

The solution must consider the energy consumption, such as the computation variables,97

energy to send tasks, energy consumption to data download, energy for the task processing,98

energy cost with CPU idle, and battery level. Also, it requires estimating the execution time to99

variables, like time spent on task transmission, wait time in queues, task runtime, and time spent100

on downloads. Simultaneously, the system must choose one among three distinct environments101

to produce the best performance considering energy optimize.102

Thus, the computation to solve these issues is hard to model. Deciding between three103

di�erent environments is another complex task due to needing to produce good data and task104

distributions. We propose a dynamic solution in real-time for each task using an Integer Linear105

Programming (ILP) optimization to achieve this challenge.106

4. Model to minimize cost dynamically107

This section introduces the model to minimize cost dynamically.108

4.1. Architecture and Task Processing Flow109

Figure 1 exhibits the architectural scheme on three decoupled layers under a bottom-up110

view:111

• IoT Layer (L1): IoT device layer generates application tasks. These devices have a limited112

processing capability and operate with batteries;113

• MEC Layer (L2): MEC server layer has a restricted number of CPUs and less processing114

capability than the CC environment. MEC servers are closer to the IoT devices, producing115

smaller communication delays;116

• CC Layer (L3): CC Data Centers compose this layer. These servers are high processing117

capability geographically distributed and far located from the IoT devices. They also add118

high network latency due to data transmission with more communication hops, if compared119

to other layers.120

Figure 1. System architecture for the TEMS algorithm.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 4

Table 1 summarizes the notation used throughout this proposal.121

Table 1: Notation adopted for the model description.

Symbol Description
D A set of mobile IoT devices
j An individual mobile device.
S The number of MEC servers.
sc The source code.
d The input data.
r Data transfer rate.
I Mutual interference rate.
d′i The generated results forward back to the origin.
t The deadline associated with the task.
W The number of wireless channels.
A The task set that will be executed.
i An individual task.
H The communication channel associated with the task.
hi The wireless channel associated to task i.
W The bandwidth associated with the channel.
PL A CPU core set.
k An individual core.
plj,n A core n for a mobile device j.
E Energy consumption in idle time.
C E�ective commutative capacitance.
Cc A CPU cycle for a CPU core.
CcT Total clock cycles.
Vlocal Voltage in the IoT processor device.
P Power consumed.
T Total execution time.
Ti,mec Total execution time in the MEC server.
f Processor frequency.
Sj Local MEC server.
PS A processor in the MEC server.
fmec Frequency of one core in a MEC server processor.
Cmec E�ective commutative capacitance in a processor in the MEC server.
Vmec Voltage in the MEC processor device.
g(Sl ,j) Channel gain between the local MEC server and the mobile device.
Pi,mec The Consumed power in MEC server.
Ei,mec The dynamic energy consumed in MEC server.
Costi,mec The total cost in MEC server.

The model associates the cost in terms of energy consumed and elapsed time for the122

allocation policy of each layer, taking into account task processing and data transmissions costs.123

The DVFS technique is used to calculate processing costs, proving the best pair of CPU core124

voltage and CPU core operating frequency that reduces total cost. Finally, the TEMS scheduler125

seeks the best cost among all three allocation policies and selects the lowest one. The scheduler126

decides between MEC and CC layers to o�oad a task. Otherwise, the processing takes place on127

the device itself.128

The rest of this section covers an extension of the cost model previous work shown in [26].129

First, it is introduced assumptions about the network and the architecture components. After130

that, the cost models for local computing in the IoT device, local computing in the MEC server,131

and remote computing in the Cloud are shown. Finally, the individual costs are combined into a132

�nal equation that represents the total cost.133

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 5

4.2. Network Model134

The network is composed of mobile IoT devices, MEC servers, and a Cloud provider. The135

wireless links determine the communication channels between IoT devices and MEC servers, as136

in Figure 1. Each task represents a tuple Ai = (Ci, sci, di, ti) composed of CPU cycles needed137

to conclude an execution (Cc), the source code (sc), the input data (d), and the deadline (t)138

associated with the task. The deadline associated represents if a task is normal (t = 0) or it is139

critical (t > 0).140

Also, each scheduled task has a wireless channel (H = {h1, h2, ..., ha}) from the IoT device141

to MEC and from the MEC to CC with its correspondent bandwidth (W). If the task runs in the142

local device, it does not have an associated channel.143

4.3. Local Computing in the IoT Device144

Each mobile device has a respective number of CPU cores (PLj = {plj,1, plj,2, ..., plj,n}).145

The energy consumption in idle time is computed in Equation 1 based on a total number of146

CPU cycles (Cci), operating frequency (flocal,j,k), voltage supply (Vlocal,j,k) and in the e�ective147

commutative capacitance (Clocal,j,k) of each core, which dependents of the chip architecture148

[21]. Equation 1 computes the local dynamic energy consumed by the IoT device.149

The total execution time of task is calculated based on total cycles CcTi [27] where i ∈ A150

to a CPU core j ∈ PL in Equation 2. The dynamic power consumed during the execution is151

∝ CV2 f [28] in Equation 3.152

Ei,local = Pi,local ∗ Ti,local (1)

Where,
Ti,local =

CcTi

flocal,j,k
(2)

Pi,local = Clocal,j,k ∗V2
local,j,k ∗ flocal,j,k (3)

Considering battery level and latency as model constraints, a device Dj must decide153

whether it is more appropriate to process the task locally or remotely. As the battery level154

is a critical factor in the decision, the system will appreciate a policy that reduces energy155

consumption. The local cost of one task i is expressed in Equation 4.156

Costi,local = ulocalT ∗ Ti,local,total + ulocalE ∗ Ei,local (4)

The coe�cients ulocalT ∈ [0, 1] and ulocalE ∈ [0, 1] are weightings, where ulocalT +157

ulocalE = 1. These variables represent a trade-o� between execution time and energy consump-158

tion and minimize one of the costs, according to Wang et al. [4].159

4.4. Local Computing in the MEC Server160

A local MEC server can have several CPU cores. Thus, the CPU cores available on a161

local server Sj are given by PSj = {psj,1, psj,2, psj,3, ..., psj,n}. Each core psj,k has an operat-162

ing frequency (fmec,j,k), an e�ective commutative capacitance (Cmec,j,k), and a supply voltage163

(Vmec,j,k).164

IoT devices and MEC servers cause mutual interference between each other (Ii) because165

they use the same wireless channel. Thus, the data transfer rate (r(hi)) to o�oad task i to the166

channel (hi) attenuates according to Shannon’s formula [21]. The data transfer rate is determined167

in Equation 5 and the mutual interference between wireless channels is computed in Equation 6.168

r(hi) = W ∗ log2

(
1 +

pj ∗ g(Sl ,j)

N + Ii

)
(5)

Ii = ∑
n∈A|{i}:hn=hi

pj′ ∗ g(S′l ,j′) (6)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 6

For Equation 5, the variable pj is the transmission power of a mobile device j during169

o�oading task i to the local server, and N is the power of the thermal noise of the wireless170

channel.171

In the local server, data and source code need to be sent to the application processing, and172

the generated results must be sent back to the origin. Thus, the time required for an IoT device173

to sent data (Equation 7) and after to do the result download (Equation 8) from the local server174

can be computed as.175

Ti,mec−up(hi) =
sci + di
ri(hi)

(7)

Ti,mec−down(hi) =
d′i

ri(hi)
(8)

The total time required to complete the task execution in the local server considers the176

send (Equation 7), the download (Equation 8), and the task execution time in the MEC server177

calculated like in Equation 2. The total time for a MEC server is given as in Equation 9.178

Ti,mec,total = Ti,mec−up(hi) + Ti,mec+

Ti,mec−down(hi)
(9)

The energy spent for the data communications from the IoT device to the local MEC server179

and vice versa is calculated by (Equation 1), which can be either the time to sent (mec-up) or180

download (mec-down) data. Furthermore, the dynamic energy consumed by the MEC server is181

calculated in the same fashion as that in the IoT device (Equation 1). Equation 10 gives the total182

dynamic energy consumption.183

Ei,mec,total = Ei,mec−up(hi) + Ei,mec+

Ei,mec−down(hi)
(10)

Moreover, the cost computation for the local server is expressed in Equation 11.

Costi,mec = umecT ∗ Ti,mec,total+

umecE ∗ Ei,mec,total
(11)

4.5. Remote Computing in the Cloud184

The CPU cores in CC are not distinguished because they are a single shared resource185

comparable to a CPU processor. It is not really a device. The CC equations are analogous to186

those of the local MEC server. Data transference between MEC and CC is composed of both the187

elapsed time and consumed energy to produce a total cost. The elapsed time is expressed by188

(Equation 12) and (Equation 13), while consumed energy is expressed in Equations 14 and 15.189

Ti,cloud−up =
si + di

r
(12)

Ti,cloud−down =
d′i
r

(13)

Ei,cloud−up = pwireless ∗ Ti,cloud−up (14)

Ei,cloud−down = pwireless ∗ Ti,cloud−down (15)

Note that in Equations 12 and 13, r is not dependent on hi , because transmissions between190

MEC and CC are done on �ber optic cables, and there is no mutual interference e�ect attenuating191

the data transmission rate. CC processing time (Equation 16) and dynamic energy consumed192

(Equation 17) are calculated the same way for MEC servers. The total elapsed time and total193

energy consumption for CC are as follows.194

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 7

Ti,cloud,total = Ti,mec−up(hi) + Ti,cloud−up + Ti,cloud+

Ti,cloud−down + Ti,mec−down(hi)
(16)

Ei,cloud,total = Ei,mec−up(hi) + Ei,cloud−up + Ei,cloud+

Ei,cloud−down + Ei,mec−down(hi)
(17)

Finally, the cost to run a single task i in the Cloud is given in Equation 18 as.195

Costi,cloud = ucloudT ∗ Ti,cloud,total+

ucloudE ∗ Ei,cloud,total
(18)

The idle energy cost of CC is not considered, since the CPU o�er is virtually in�nite.196

Therefore it does not make sense to account for this cost, which would cause the system to have197

equally in�nite cost.198

For every task i the minimum cost is chosen between all three allocation policies, one from199

each layer, as in Equation 19.200

Costi = min(Costi,local , Costi,mec, Costi,cloud) (19)

The total system cost, represented by Equation 20, is equal the sum of all task costs plus201

the idle energy of CPU cores from IoT devices and from MEC servers.202

Costsystem =
A

∑
i=1

Costi + Elocal,idle + Emec,idle (20)

4.6. Model Constraints for IoT Device Battery203

A healthy battery level is essential to the proper operation of IoT devices. If the battery204

level Bj of an IoT device j is below a Lower Safety Limit (LSL), task allocation on the device205

is disabled to keep the device alive with the remaining battery. If Bj reaches zero, all tasks206

generated by device j are canceled. Therefore, to prevent this from happening, the cost equations207

are subject to the following constraints: Bj > Ei,local , Bj > Ei,mec−up(h). These constraints are208

considered in the scheduling algorithm.209

5. The TEMS Algorithm210

The Time and Energy Minimization Scheduler (TEMS) heuristic scheduling algorithm was211

developed in order to execute the dynamic cost minimization model with reduced computational212

cost.213

Algorithm 1 exhibits four steps of TEMS. Step 1 is the step detection that forms a data set214

of IoT devices, MEC servers, and con�guration of communication channels. The battery levels215

of the IoT devices are collected, and the LSL is established. The algorithm regards the number216

of cores into CPU available in each IoT device and MEC server, the operating frequency, and217

operating voltages. This process can also occur in CC Data Centers, but the number of CPUs is218

expected to be unlimited.219

Algorithm 1: TEMS
Result: Task mapping to the processing nodes

1 execute Step 1 - Task of information collection and system setup
2 repeat
3 execute Step 2 - Task allocation
4 execute Step 3 - Task conclusion monitor
5 execute Step 4 - New tasks and device battery level monitor
6 until user decides to keep running

Algorithm 2 details step 2 from TEMS, which is the task allocation decision-making process220

of the scheduler. Here, �rstly tasks are classi�ed between critical and regular.221

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 8

Algorithm 2: Step 2 – Task allocation
1 foreach task Ai from list of critical tasks do
2 foreach free CPU core plj,k ∈ PLj do
3 policy 1: it calculates IoT device execution time
4 foreach free CPU core psj,k ∈ PSj do
5 policy 2: it calculates MEC server execution time and transmission times
6 policy 3: it calculates CC execution time and transmission times
7 it is evaluate IoT battery level and o�oad task to the CPU core with minimal total time
8 foreach task Ai from list of regular tasks do
9 foreach free CPU core plj,k ∈ PLj do
10 policy 1: it calculates energy consumption, execution time and cost for the IoT device
11 foreach free CPU core psj,k ∈ PSj do
12 policy 2: it calculates energy consumption for dynamic processing and data transmission
13 policy 2: it calculates execution time and transmission times
14 policy 2: it calculates MEC server cost
15 policy 3: it calculates energy consumption for dynamic processing and data transmission
16 policy 3: it calculates execution time and transmission times
17 policy 3: it calculates CC total cost
18 it is evaluate IoT battery level and o�oad task to the CPU core with minimal cost

The time and energy consumption for task processing on the di�erent CPU cores of the222

network is calculated, as well as the time and energy consumption of the data transmissions223

for MEC servers and CC Data Centers. Critical tasks are the �rst to be scheduled due to the224

sensitivity of the deadline. They are ordered by the deadline and allocated by the lowest total225

elapsed time. Then regular tasks are ordered by creation time and allocated by the minimum226

total cost. The battery level of IoT devices is continuously evaluated in lines 7 and 18 to check if227

the constraints are respected.228

Step 3 monitors the task completion status. When one task was completed, the CPU core229

resources are released to turn available for new allocations in step 2. However, tasks that use230

CC resources do not need to release them since CC is supposed to have unlimited resources,231

absorbing any number of tasks. Task cancellation may occur if the elapsed time is higher than232

the deadline or if the IoT device runs out of battery.233

Finally, in step 4, the battery level from each IoT device is collected, and after it creates234

new tasks again. Execution continues as long as tasks are being created.235

5.1. Algorithm Complexity236

The TEMS algorithm complexity analysis considers the four steps in Algorithm 1. The237

task of information collection and system setup occur a single time in the system setup. This238

step identi�es "n" mobile devices added to the network, and it has "m" processor cores. There239

are a total of "n" local MEC servers with the "m" core processors and a number of "n" wireless240

network channels to "n" tasks with a tuple of four variables each. The algorithm must choose241

among "n" possible options with three variables each and nine coe�cients to the cost equation.242

Thus for step 1, the complexity is as in Equation 21.243

nm + nm + n + 4n + 3n + 9 =

2nm + 8n + 9 = O(nm)
(21)

However, as the smartphone nowadays has a limit of eight cores. Also, simple IoT devices,244

for instance, Arduino Mega 2560, have a single core. On the other hand, MEC servers can be245

composed of up to �ve Raspberry Pi IV with four cores. Thus, the processor cores number is246

less than the amount of then IoT devices, i.e., m << n, and if m is a mensurable and a �nite247

number, then it is reasonable to think that m ≈ k and in this scenario O(nm) = O(kn) ≈ O(n).248

Therefore, in step 1 the complexity is O(n).249

In step 2, the task allocation has a sort function with O(nlog(n) complexity in the worst250

case and O(n) in the best case. A seek is executed two times among n tasks into n local devices251

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 9

and MEC servers to achieve the lower execution time and energy consumption. This task has252

O(n2) complexity. Also, the cloud allocation tasks have O(1) complexity. TEMS algorithm was253

developed with Python programming, and the Python sorting executes three times. Thus, the254

complexity for step 2 is described as in Equation 22.255

3 O(nlog(n)) + 2 [O(n2) + O(1)] =

2 O(n2) + 3 O(nlog(n)) + 2 O(1) = O(n2)
(22)

Thus, the step 2 has a complexity O(n2).256

Step 3 has n interactions of simple tasks, so O(n), and step 4 seeks the battery level in n257

IoT devices, i.e., O(n).258

Hence, considering all TEMS algorithm steps and exchanging these steps by respective
individual complexity as in Equation 23.

O(TEMS) = O(n) + O(n2) + O(n) + O(n) = O(n2) (23)

Therefore, the TEMS Algorithm complexity is O(n2).259

6. Evaluation260

This section explains the simulation details and the di�erent experimental scenarios used.261

6.1. Simulated Hardware and Software Stack262

The simulated environment was designed with low, mid-range and high processing power263

devices for IoT, MEC and CC layers, respectively. For IoT devices we chose Arduino Mega264

2560, with �ve operating frequencies and corresponding supply voltages for DVFS. The MEC265

servers were simulated on top of 5 Raspberry Pi 4 Model B boards, each board with a Quad-core266

Cortex-A72 1.5GHZ (ARM v8) 64-bit, summing a total of 20 CPU cores per server. These CPU267

cores have three operating frequencies and corresponding supply voltages. Table 2 speci�es268

the voltage-frequency pairs, and the capacitance of the underlying hardware architecture of269

IoT and MEC devices. These values combined are used to calculate the power consumed by a270

device according to the selected values.271

Table 2: Devices variables for power calculation.

Hardware Voltage-Frequency Pairs Capacitance

IoT device
(5V-16MHz), (4V-8MHz),
(2,7V-4MHz), (2.3V-2MHz),
(1.8V-1MHz)

2.2 nanoFarad

MEC Server (1.2V-1,500MHz), (1V-1,000MHz),
(0.825V-750MHz), (0.8V-600MHz) 1.8 nanoFarad

For CC we chose Data Centers with Intel Xeon Cascade Lake processors of 2.8 GHz per272

CPU core, reaching up to 3.9 GHz with Turbo Boost on1. Here, there are no voltage or capacitance273

variables. Instead, the resulting power is used, 13.85 Watts and 24.28 Watts, for con�guration274

with and without Turbo Boost, respectively.275

The network throughput was con�gured to achieve up to 1 Gbps speed and latencies to 5ms,276

for both 5G and �ber optics communications [29] [30]. Moreover, two vehicular applications277

were de�ned [31], one with high processing workload and high task creation time (Application278

1), and another with low processing workload and low task creation time (Application 2).279

Application 2 creates more tasks than Application 1 in the same time interval, but each task has280

lower processing requirements. Table 3 shows the characteristics of each application.281

1 Technical information can be found in the datasheets of the electronic components.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 10

Figure 2. Task allocation for Application 1 and Application 2.

Table 3: Characteristics of chosen applications.

Characteristics Application 1 Application 2
Task generation rate (s) 10 0.1
Input Data (MB) 36.3 4
Result data size (bytes) 1,250 625
Computational workload (Millions of CPU cycles) 2,000 20
Critical Tasks (% from total tasks) 10 50
Deadline for critical tasks (milliseconds) 500 100

6.2. Experiments and Results282

The tested scenarios used di�erent con�gurations for parameters such as the computational283

workload of each task, coe�cients for energy consumption, and elapsed time. Also, it evaluated284

the size of data entry and results, task generation rate, deadline of critical tasks, level of batteries285

for IoT devices, and use of DVFS. The main goal is to see the TEMS algorithm respond to task286

allocation and energy and time reduction. The results are discussed below.287

6.2.1. Use of MEC servers288

This experiment evaluates how TEMS behaves when varying the number of MEC servers289

in the system. Application 1 is used and the workload is con�gured according to description290

in Table 3. The tested scenario has 500 tasks distributed to 100 IoT devices in two di�erent291

cases, one with a single MEC server, in Figure 2.(a) and (c) and another with two MEC servers,292

in Figure 2.(b) and (d). Figure 2 depicts the results for the execution of Application 1 and293

Application 2 in both cases with 10 · 106 CPU cycles294

The energy and time coe�cients were set, respectively, to 4/5 and 1/5, that is, a high295

weight was given to the energy consumed so that it could be minimized. In Figure 2 from plot296

2.a to plot 2.b and from plot 2.c to plot 2.d there is an increase in the number of MEC servers,297

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 11

from one to two, which made fewer tasks be to allocated in the CC layer. This positively impacts298

the total energy consumed because tasks running in the MEC layer demand less energy when299

the workload is higher. However, when the workload is composed of little tasks with a high300

transfer rate, the scheduler tends to maintain all tasks nearest from devices due to deadline301

restrictions.302

Table 4 shows the relationship between the number of MEC Servers related to energy303

consumption. When comparing cases A and B with a third case C with no MEC servers, the304

reduction in energy consumption for case A was 42.51%, while for case B 44.71%. In case C,305

tasks are just o�oaded to the Cloud, adding too much energy consumption to the system. Thus,306

the use of MEC servers helps the system to lower the total energy consumed.307

Table 4: The MEC Server bene�t related to the energy consumption.

Variables One MEC
Case A

Two MEC
Case B

Without MEC
Case C

ECPU(J) 2,752.26 1,725.18 5,074.35
ETrans(s) 835.60 1,725.17 1,166.21
Emec(J) 3,587.86 3,450.35 6,240.56
TCORE(s) 956.21 1,225.64 347.07
TTrans(s) 199.75 159.69 290.31
TTOTAL(s) 1,155.96 1,385.33 637.38
Trans = Tmec−up + Tmec−down

With Application 2, that has lower workload compared to Application 1, the allocation308

pro�le changed. Most allocations took place on the device itself, regardless of the number309

of MEC servers. The cause to this phenomenon is due to the low processing workload of310

Application 2. The hardware of IoT devices presents higher energy consumption per CPU cycle.311

However, it does not require data transmissions, which add energy cost and elapsed time to the312

system. Thus, for a small processing workload, IoT devices are the �rst allocation option.313

6.2.2. IoT device battery consumption314

Figure ?? shows an experiment executed for Application 2 with 10,000 tasks, 100 IoT315

devices and 2 MEC servers. Initially, Figure 3(a) shows the tasks are allocated according to316

their type. Regular tasks run on the IoT device itself due to the lower cost among all allocation317

policies, while critical tasks run on the server, as the total time is reduced compared to the IoT318

device, even though the energy cost is higher. Thus, tasks are distributed for local processing in319

the IoT device and in the MEC server.320

Figure 3(b) represents the battery level of one IoT device of the system. At around 15321

microseconds, the battery level reaches the LSL, which corresponds to 10% of the maximum322

battery capacity. From this moment forward, TEMS no longer allows tasks to run on the IoT323

devices, causing a sudden increase in the number of allocations to the MEC server for the newly324

created tasks.325

Our analysis indicates that low battery levels quickly reach LSL and make IoT devices326

unavailable for processing. High computational workloads also negatively a�ect the battery327

level. Therefore, a battery with a healthy energy level and adequate task processing workloads,328

allows the allocation to be performed on the IoT device, without making it unavailable due to329

lack of battery, contributing to total cost reduction.330

6.2.3. Variation of input data size331

This experiment evaluates how the costs of each allocation policy change according to the332

data size for tasks from Application 1. We built a simulation with 500 tasks, 100 IoT devices,333

two MEC servers and energy cost coe�cient con�gured to 4/5. Four di�erent input sizes were334

used, 3.6 MB, 36 MB, 362 MB, and 3.6 GB.335

As stated in Figure 4, as data entry size increases, the calculated costs progress in the336

MEC and CC allocation policies. The cost to execute in the IoT devices remains the same, as no337

data transmissions are carried out. When data entry size scales, allocation policies that require338

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 12

(a) Task allocation in the system. (b) Battery consumption of IoT devices.

Figure 3. Task allocation behavior for Application 2 when IoT device battery level reaches the LSL.

data transmissions become very costly, and allocation on the device itself turns increasingly339

advantageous. This increase in cost for MEC and CC policies is quite evident in Figure 4(b), for340

inputs of 3.6 GB, even the cost scale had to be adjusted to represent the values better. Therefore,341

it is crucial to design applications so that data transfers over the network are not too large per342

task, avoiding high data transmission costs.343

(a) Cases A, B and C. (b) Case D.

Figure 4. Policy costs for input data size variation on Application 1.

We also designed two other cases, one with 5,000 tasks and 362 MB per task and another344

with 500 tasks and 3.6 GB per task, with roughly 1.8 TB in total each. The system energy345

consumption and the total elapsed time for the 500 tasks case were 59,160.92 Joules (J) and346

14,515.21 seconds. For the experiment with 5,000 tasks, the costs were 45,011.49 J and 10,305.94347

s, that is, a decrease of 23.92% and 29%, respectively. Therefore, tasks should preferably not be348

super data-intensive, if dependent on MEC or CC, as data transmissions add additional energy349

and time expenses.350

6.2.4. Use of di�erent energy and time coe�cients351

This experiment used Application 2 in four di�erent scenarios. Each case with 500 tasks,352

100 IoT devices, and one MEC server. The energy coe�cients were set to 1/5, 2/5, 3/5, 4/5353

and the time coe�cients to 4/5, 3/5, 2/5 and 1/5.354

Table 5 lists the minimum costs perceived by the system task scheduler for each case. The355

lowest calculated cost was the same for cases 2 and 3, with MEC as an o�oading option. Case 1356

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 13

had the lowest calculated cost among all coe�cient pairs. In these three cases the time coe�cient357

had high values, and MEC was chosen because task execution got the lowest processing times.358

For case 4, the allocation took place on the IoT device itself, with DVFS con�gured at 8 MHz359

and 4 V. Now, energy has a high-value coe�cient, which made the scheduler choose the policy360

that provided the lowest energy cost, reducing total cost.361

Table 5: Costs for Application 2, varying the cost coe�cients for energy and time.

Case uEuEuE uTuTuT
Cost
10−310−310−3

ETotalETotalETotal
mJ

TTotalTTotalTTotal
ms

Freq.
MHz

Voltage
V Policy

C1 1/5 4/5 18.59 145.50 33.36 1,500 1.20 MEC
C2 2/5 3/5 25.97 142.76 34.69 750 0.83 MEC
C3 3/5 2/5 33.18 142.76 34.69 750 0.83 MEC
C4 4/5 1/5 35.44 70.40 250.00 8 4.00 IoT

To reduce energy consumption, the best option is to use 4/5 as an energy coe�cient. With362

this con�guration, the minimization of energy consumption is prioritized, saving up to 51.6%363

compared to the other cases. Alternatively, to reduce task completion time, coe�cients from364

cases 1, 2 and 3 are better, with a reduction of up to 86.6% compared to case 4. For cases 1 to 3, a365

considerable reduction in total elapsed-time was perceived because running the task in the IoT366

device for the evaluated application made the time component spike.367

6.2.5. Impact of task generation rate variation368

In this experiment we chose Application 2 to execute on four scenarios, with task generation369

rates of 0.05, 0.1, 0.2, and 0.3 seconds. All scenarios were con�gured with 500 tasks, 100 IoT370

devices and 1 MEC server. Figure 5 shows that small task generation rates �ood the network371

with tasks, rapidly consuming all local resources. As an e�ect, TEMS allocates the majority of372

tasks to the CC layer, even though time and energy costs are higher, because no local CPU core373

is available. Although, when task generation rate increases, tasks enter the network in more374

sparse time periods, and local resources can absorb much of the processing demands. In this375

scenario, less o�oading is done to the CC layer, reducing total system costs.376

Figure 5. Task allocation for di�erent task generation rates.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 14

Task generation rates should be designed with a time interval that favors usage of local377

resources, which may help reduce total costs depending on the application and the costs of each378

allocation policy.379

By con�guring deadlines with very restrictive time limits, the experiments showed that380

critical tasks were canceled because the scheduler could not �nd an allocation policy to achieve381

task completion. To avoid this behavior, deadlines must be appropriately con�gured so that at382

least one allocation policy has su�cient time to process and complete the task correctly.383

6.2.6. Using the DVFS technique384

With DVFS enabled, total energy consumption decreased by 13.74%, while total time385

increased by 28.32% compared to DVFS o�. This demonstrates the e�ectiveness of the proposed386

model and the scheduling algorithm in minimizing the total energy consumption. Although the387

whole time may have been longer in the approach with DVFS, it is not a problem because tasks388

were completed within the time limit imposed by the deadline.389

Challenges about the time complexity of the DVFS technique have already been discussed390

by Chen et al. [32]. Our model addresses this problem by limiting the possible voltage-frequency391

pairs used to calculate dynamic power for task execution, allowing results to be obtained in392

feasible execution time.393

7. Conclusion394

Energy and time reduction are mostly needed for environments where large volumes395

of data and mobile devices are connected to the Internet with restricted QoS requirements396

and battery limitations. The TEMS algorithm chooses the most suitable allocation options in397

the system, reducing energy waste and elapsed time. The experiments indicated that the cost398

coe�cient regulations are essential for the �nal cost perceived by the scheduling algorithm.399

Adequate coe�cients allowed a decrease of energy consumption up to 51.6% and an execution400

time reduction up to 86.6%, ending critical tasks inside the deadline. Thus, the system becomes401

more sustainable, and the user experience is kept stable.402

The use of MEC servers helps increase the battery life of the IoT devices and enables agile403

task execution. Moreover, using the DVFS technique caused exciting results, supporting the404

energy consumption decrease. This work allowed contributions such as the TEMS algorithm405

and combining data transmission to the cost model. The model also considers idle costs, data406

transmission rate interference, using the DVFS technique, and the interaction with the CC layer407

to provide computational resources whenever the local network becomes overloaded.408

As future works, we can indicate the progression of the system cost model to more �ne409

grain, with the insertion of new variables and new environments to explore applications in410

di�erent scenarios such as industry, healthcare, aviation, and mining.411

Acknowledgments: "SmartSent" (#17/2551-0001 195-3), CAPES (Finance Code 001), PNPD program,412

CNPq, PROPESQ-UFRGS-Brasil and FAPERGS Project "GREEN-CLOUD - Computação em Cloud com413

Computação Sustentável" (#16/2551-0000 488-9). Proyeto Uso de algoritmos y protocolos de comunicación414

en dispositivos con énfasis en la privacidad de los datos and Laboratório de Telecomunicações de Portugal415

IT—Branch Universidade da Beira Interior, Covilhã.416

Funding: This work has partially supported by PROPESQ-UFRGS-Brasil and by "Fundação para a Ciência417

e a Tecnologia" under Projects UIDB/04111/2020 and FORESTER PCIF/SSI/0102/2017. And Junta De Castilla418

y León—Consejería De Economía Y Empleo: System for simulation and training in advanced techniques419

for the occupational risk prevention through the design of hybrid-reality environments with ref. J118.420

Author Contributions: Conceptualization, J.C.S.A, J.L.G.G and K.J.M; methodology, J.C.S.A, J.L.G.G and421

C.F.R.G; simulator, J.L.G.G; validation, J.C.S.A and J.L.G.G; writing–original draft preparation, J.C.S.A,422

K.J.M, J.L.G.G and V.R.Q.L; writing–review and editing, G.V.G and J.C.S.A423

Con�icts of Interest: The authors declare no con�ict of interest.424

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 15

Abbreviations425

The following abbreviations are used in this manuscript:426

IDC International Data Corporation
CC Cloud Computing
MEC Mobile Edge Computing
QoS Quality of Service
DVFS Dynamic Voltage and Frequency Scaling
TEMS Time and Energy Minimization Scheduler
ILP Integer Linear Programming
CPU Central Processing Unit
IoT Internet of Things
LSL Lower Safety Limit
ARM Advanced RISC Machines

427

References
1. Reinsel, D.; Gantz, J.; Rydning, J. The Digitalization of The World: From Edge to Core, us44413318 ed.; Vol. 1, IDC White Paper, Seagate Inc:

Framingham, Massachusetts, 2018; pp. 1–28.
2. Chen, T.Y.H.; Ravindranath, L.; Deng, S.; Bahl, P.; Balakrishnan, H. Glimpse: Continuous, Real-Time Object Recognition on Mobile Devices.

Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems; Association for Computing Machinery: New York, NY,
USA, 2015; SenSys ’15, pp. 155–168. doi:10.1145/2809695.2809711.

3. Matteussi, K.J.; Zanchetta, B.F.; Bertoncello, G.; Dos Santos, J.D.D.; Dos Anjos, J.C.S.; Geyer, C.F.R. Analysis and Performance
Evaluation of Deep Learning on Big Data. 2019 IEEE Symposium on Computers and Communications (ISCC), 2019, pp. 1–6.
doi:10.1109/ISCC47284.2019.8969762.

4. Wang, C.; Dong, C.; Qin, J.; Yang, X.; Wen, W. Energy-e�cient O�oading Policy for Resource Allocation in Distributed Mobile Edge
Computing. 2018 IEEE Symposium on Computers and Communications (ISCC), 2018, pp. 00366–00372. doi:10.1109/ISCC.2018.8538612.

5. Matteussi, K.J.; Geyer, C.F.R.; Xavier, M.G.; Rose, C.A.F.D. Understanding and Minimizing Disk Contention E�ects for Data-Intensive
Processing in Virtualized Systems. 2018 International Conference on High Performance Computing Simulation (HPCS), 2018, pp. 901–908.
doi:10.1109/HPCS.2018.00144.

6. Aijaz, A. Towards 5G-enabled Tactile Internet: Radio resource allocation for haptic communications. 2016 IEEE Wireless Communications
and Networking Conference Workshops (WCNCW), 2016, pp. 145–150.

7. Sales Mendes, A.; Jiménez-Bravo, D.M.; Navarro-Cáceres, M.; Reis Quietinho Leithardt, V.; Villarrubia González, G. Multi-Agent Approach
Using LoRaWAN Devices: An Airport Case Study. Electronics 2020, 9. doi:10.3390/electronics9091430.

8. Haouari, F.; Faraj, R.; AlJa’am, J.M. Fog Computing Potentials, Applications, and Challenges. 2018 International Conference on Computer
and Applications (ICCA), 2018, pp. 399–406. doi:10.1109/COMAPP.2018.8460182.

9. Silva, L.A.; Leithardt, V.R.Q.; Rolim, C.O.; González, G.V.; Geyer, C.F.R.; Silva, J.S. PRISER: Managing Noti�cation in Multiples Devices with
Data Privacy Support. Sensors 2019, 19. doi:10.3390/s19143098.

10. Yu, Y. Mobile edge computing towards 5G: Vision, recent progress, and open challenges. China Communications 2016, 13, 89–99.
doi:10.1109/CC.2016.7833463.

11. Sarangi, S.R.; Goel, S.; Singh, B. Energy E�cient Scheduling in IoT Networks. Proceedings of the 33rd Annual ACM Symposium on Applied
Computing; Association for Computing Machinery: New York, NY, USA, 2018; SAC ’18, pp. 733–740. doi:10.1145/3167132.3167213.

12. Zhang, G.; Zhang, W.; Cao, Y.; Li, D.; Wang, L. Energy-Delay Tradeo� for Dynamic O�oading in Mobile-Edge Computing System With
Energy Harvesting Devices. IEEE Transactions on Industrial Informatics 2018, 14, 4642–4655. doi:10.1109/TII.2018.2843365.

13. Gedawy, H.; Habak, K.; Harras, K.A.; Hamdi, M. Awakening the Cloud Within: Energy-Aware Task Scheduling on Edge IoT Devices.
2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2018, pp. 191–196.
doi:10.1109/PERCOMW.2018.8480266.

14. Skarlat, O.; Schulte, S.; Borkowski, M.; Leitner, P. Resource Provisioning for IoT Services in the Fog. 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA), 2016, pp. 32–39.

15. Chen, Y.L.; Chang, M.F.; Yu, C.W.; Chen, X.Z.; Liang, W.Y. Learning-Directed Dynamic Voltage and Frequency Scaling Scheme with
Adjustable Performance for Single-Core and Multi-Core Embedded and Mobile Systems. Sensors 2018, 18, 3068. doi:10.3390/s18093068.

16. Jin, X.; Goto, S. Hilbert Transform-Based Workload Prediction and Dynamic Frequency Scaling for Power-E�cient Video Encoding. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 2012, 31, 649–661. doi:10.1109/TCAD.2011.2180383.

17. Anjos, J.C.S.; Matteussi, K.J.; De Souza, P.R.R.; Grabher, G.J.A.; Borges, G.A.; Barbosa, J.L.V.; González, G.V.; Leithardt, V.R.Q.; Geyer, C.F.R.
Data Processing Model to Perform Big Data Analytics in Hybrid Infrastructures. IEEE Access 2020, pp. 1–1. doi:10.1109/ACCESS.2020.3023344.

18. Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing
2009, 8, 14–23. doi:10.1109/MPRV.2009.82.

19. Alkhalaileh, M.; Calheiros, R.N.; Nguyen, Q.V.; Javadi, B. Data-intensive application scheduling on Mobile Edge Cloud Computing. Journal
of Network and Computer Applications 2020, 167, 102735. doi:j.jnca.2020.102735.

20. Bui, N.H.; Pham, C.; Nguyen, K.K.; Cheriet, M. Energy e�cient scheduling for networked IoT device software update. 2019 15th International
Conference on Network and Service Management (CNSM). IEEE, 2019, pp. 1–5.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.1145/2809695.2809711
https://doi.org/10.1109/ISCC47284.2019.8969762
https://doi.org/10.1109/ISCC.2018.8538612
https://doi.org/10.1109/HPCS.2018.00144
https://doi.org/10.3390/electronics9091430
https://doi.org/10.1109/COMAPP.2018.8460182
https://doi.org/10.3390/s19143098
https://doi.org/10.1109/CC.2016.7833463
https://doi.org/10.1145/3167132.3167213
https://doi.org/10.1109/TII.2018.2843365
https://doi.org/10.1109/PERCOMW.2018.8480266
https://doi.org/10.3390/s18093068
https://doi.org/10.1109/TCAD.2011.2180383
https://doi.org/10.1109/ACCESS.2020.3023344
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/j.jnca.2020.102735
https://doi.org/10.20944/preprints202103.0285.v1

Version March 10, 2021 submitted to DNA 16

21. Yu, H.; Wang, Q.; Guo, S. Energy-E�cient Task O�oading and Resource Scheduling for Mobile Edge Computing. 2018 IEEE International
Conference on Networking, Architecture and Storage (NAS), 2018, pp. 1–4. doi:10.1109/NAS.2018.8515731.

22. Wan, J.; Chen, B.; Wang, S.; Xia, M.; Li, D.; Liu, C. Fog Computing for Energy-Aware Load Balancing and Scheduling in Smart Factory. IEEE
Transactions on Industrial Informatics 2018, 14, 4548–4556. doi:10.1109/TII.2018.2818932.

23. Galache, J.A.; Yonezawa, T.; Gurgen, L.; Pavia, D.; Grella, M.; Maeomichi, H. ClouT: Leveraging Cloud Computing Techniques for Improving
Management of Massive IoT Data. 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications, 2014, pp.
324–327.

24. Wu, H.; Lee, C. Energy E�cient Scheduling for Heterogeneous Fog Computing Architectures. 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), 2018, Vol. 01, pp. 555–560. doi:10.1109/COMPSAC.2018.00085.

25. Anjos, J.C.S.; Matteussi, K.J.; De Souza, P.R.R.; da Silva Veith, A.; Fedak, G.; Barbosa, J.L.V.; Geyer, C.R. Enabling Strategies for Big Data
Analytics in Hybrid Infrastructures. 2018 International Conference on High Performance Computing Simulation (HPCS), 2018, pp. 869–876.
doi:10.1109/HPCS.2018.00140.

26. Gross, J.L.G.; Matteussi, K.J.; dos Anjos, J.C.S.; Geyer, C.F.R. A Dynamic Cost Model to Minimize Energy Consumption and Processing Time
for IoT Tasks in a Mobile Edge Computing Environment. Service-Oriented Computing; Kafeza, E.; Benatallah, B.; Martinelli, F.; Hacid, H.;
Bouguettaya, A.; Motahari, H., Eds.; Springer International Publishing: Cham, 2020; Vol. 12571, p. 101–109. doi:10.1007/978-3-030-65310-1_8.

27. Tanenbaum, A.S.; Austin, T. Structured Computer Organization, 6th ed.; Prentice Hall, 2012.
28. Liu, Y.; Yang, H.; Dick, R.P.; Wang, H.; Shang, L. Thermal vs Energy Optimization for DVFS-Enabled Processors in Embedded Systems. 8th

International Symposium on Quality Electronic Design (ISQED’07), 2007, pp. 204–209. doi:10.1109/ISQED.2007.158.
29. Gupta, A.; Jha, R.K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232.

doi:10.1109/ACCESS.2015.2461602.
30. Brogi., A.; Forti., S.; Ibrahim., A. Deploying Fog Applications: How Much Does It Cost, By the Way? Proceedings of the 8th International Con-

ference on Cloud Computing and Services Science - Volume 1: CLOSER,. INSTICC, SciTePress, 2018, pp. 68–77. doi:10.5220/0006676100680077.
31. Jansson, J. Collision Avoidance Theory with Application to Automotive Collision Mitigation. PhD thesis, Department of Electrical

Engineering Linköping University, SE–581 83 Linköping, Sweden, 2005.
32. Chen, Y.L.; Chang, M.F.; Yu, C.W.; Chen, X.Z.; Liang, W.Y. Learning-Directed Dynamic Voltage and Frequency Scaling Scheme with

Adjustable Performance for Single-Core and Multi-Core Embedded and Mobile Systems. Sensors 2018, 18, 3068. doi:10.3390/s18093068.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0285.v1

https://doi.org/10.1109/NAS.2018.8515731
https://doi.org/10.1109/TII.2018.2818932
https://doi.org/10.1109/COMPSAC.2018.00085
https://doi.org/10.1109/HPCS.2018.00140
https://doi.org/10.1007/978-3-030-65310-1_8
https://doi.org/10.1109/ISQED.2007.158
https://doi.org/10.1109/ACCESS.2015.2461602
https://doi.org/10.5220/0006676100680077
https://doi.org/10.3390/s18093068
https://doi.org/10.20944/preprints202103.0285.v1

