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Abstract: Focusing on service control factors, rapid changes in manufacturing environments, the 

difficulty of resource allocation evaluation, resource optimization for 3D printing services (3DPSs) 

in cloud manufacturing environments and so on, an indicator evaluation framework is proposed 

for the cloud 3D printing (C3DP) order task execution process based on a Pareto optimal set algo-

rithm that is optimized and evaluated for remotely distributed 3D printing equipment resources. 

Combined with the multi-objective method of data normalization, an optimization model for 

C3DP order execution based on the Pareto optimal set algorithm is constructed with these agents' 

dynamic autonomy and distributed processing. This model can perform functions such as auto-

matic matching and optimization of candidate services, and it is dynamic and reliable in the C3DP 

order task execution process based on the Pareto optimal set algorithm. Finally, a case study is de-

signed to test the applicability and effectiveness of the C3DP order task execution process based 

on the analytic hierarchy process and technique for order of preference by similarity to ideal solu-

tion (AHP-TOPSIS) optimal set algorithm and the Baldwin effect. 

Keywords: Cloud Manufacturing(CMfg); 3D Printing Device Resources; HPSO; Muti-objective 

Optimization; Baldwin effect 

 

0. Introduction 

Intelligent algorithms are the most commonly used tool to solve NP-complete com-

bination optimization problems. After years of development, many different random 

search strategies have emerged[1]. They all form their own iterative search mechanisms 

by simulating the behavior and evolution of natural ecology. They are simple, universal, 

robust and easy to use in parallel processing[2]. To solve the problem of computing re-

source allocation in a cloud 3D printing service (C3DPS) resource pool, it is necessary to 

consider both the constraints of the task graph and the nodes. In the neighborhood search 

algorithm, the typical simulated annealing and tabu search algorithms are used due to 

the strong randomness and the need for only a single iteration based on an individual 

search. There is a very low probability of finding an optimal solution within the feasible 

solution set during a short iteration period. Presently, this algorithm is not suitable for 

solving combination optimization problems such as scheduling when combined with 

another algorithm application[3]. However, only the heredity and immunity algorithms 
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show good performance in various applications and other improvements in evolutionary 

learning algorithms. Others, such as artificial neural network and DNA calculation algo-

rithms, are less mature in the computational process of solving problems in mechanics as 

applied to combination optimization. In addition, the ant colony algorithm and particle 

swarm optimization (PSO) algorithm based on the swarm intelligence algorithm are the 

most widely used in scheduling problems. However, the self-learning particle swarm 

algorithm is designed for continuous-type variable numerical value optimization prob-

lems. To a certain extent, most of the improved algorithms convert the original numerical 

changes into individuals in a particle swarm, and the optimum crosscurrent operation or 

sub-optimal exchange has no obvious practical application. The optimum crosscurrent 

operation is also called genetic PSO[4].  

The evaluation of C3DPS quality belongs to the field of multiple-criteria deci-

sion-making (MCDM)[5]. A study of relevant data around the world reveals that research 

on service quality is primarily based on scientificity, reliability, a combination of quanti-

tative and qualitative aspects, and other principles. Therefore, there are three primary 

methods for comprehensively evaluating C3DPS quality: the classical comprehensive 

evaluation method of cloud services (CSs), the CS evaluation method based on mul-

ti-attribute decision-making and the quality of service (QoS)[6,7]. These methods are 

used in the analytic hierarchy process (AHP), fuzzy mathematics, the effectiveness func-

tion, principal component analysis (PCA), probability density functions (PDFs), the 

technique for order of preference by similarity to ideal solution (TOPSIS), data envel-

opment analysis (DEA), the Pareto optimal set algorithm and other methods[8]. Among 

these methods, the AHP method is a multi-objective decision analysis method combined 

with qualitative and quantitative analysis. It is primarily applied in uncertain situations 

with multiple evaluation criteria. Fuzzy mathematics is a mathematical theory and 

method used to study and manage the phenomenon of fuzziness. The utility function 

method is usually employed to represent the relationship between the utility obtained by 

the consumer in consumption and the quantity of the product portfolio[9]. The PCA is a 

statistical method. It attempts to replace the original index by recombining the original 

correlations (such as P indicators) into a new set of unrelated and interrelated indicators. 

The value of the PDF at any given point in the set of possible values taken by the random 

variable can be interpreted as providing the relative likelihood that the value of the 

random variable will equal that sample. The TOPSIS method sorts potential solutions 

according to the closeness among a limited number of negative ideal solutions and the 

preference by similarity to ideal solution (PSIS), which is a comparison of the relative 

advantages and disadvantages of existing objects[10]. The DEA method is a quantitative 

analysis method that can input and output several indicators. It uses linear programming 

to achieve a relative validity evaluation of the amendment of a decision-making unit. 

This method cannot sort all the decision-making targets[11]. 

Multi-attribute decision-making combination evaluation methods include the AHP 

method, fuzzy mathematics, the effectiveness function, the PCA method and the PDF 

method[12]. These methods have the advantage of providing a single comprehensive 

evaluation of qualitative analysis and quantitative analysis, and they overcome the de-

fects of their individual components. However, the disadvantage is that most of the 

evaluation indicators are qualitative analyses, and the number of indicators is undesira-

bly large. The TOPSIS method is suitable for small restrictions on the number and types 

of evaluation indicators. It can be objectively optimized for several decision-making op-

tions[13]. The Pareto optimal set algorithm has the advantages of simplicity, good con-

vergence and fast search speed. It is applied in cloud-service evaluation; it is efficient and 

makes it relatively easy to obtain satisfactory evaluation results. In summary, the Pareto 

optimal set intelligent optimization algorithm retains the advantages and addresses the 

disadvantages of the improved local optimal solution or global optimal solution algo-
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rithm; its use in solving the resource allocation problem is relatively suitable, and it has 

potential for solving the resource allocation problem. 

The research on index systems is mainly divided into the reputation evaluation in-

dex, QoS evaluation index, service resource combination evaluation index and other 

evaluation indexes[14]. According to the characteristics of the evaluation index, it is a 

cloud service evaluation method for multi-attribute decision-making. This method puts 

fewer restrictions on the characteristics of the evaluation index and the type of index and 

can optimize multiple decision-making schemes. An intelligent optimization algorithm 

has a simple algorithmic principle. The convergence and search speed are good, the 

evaluation efficiency is high, it is relatively easy to obtain satisfactory evaluation results, 

and the related research fields are expanding. Therefore, this paper proposes a mul-

ti-attribute decision service evaluation method based on an intelligent optimization al-

gorithm, that is, a multi-attribute decision evaluation method based on a Pareto optimal 

set algorithm. To solve the problem of computing resource allocation, it is necessary to 

consider the constraints of both the task graph edges and nodes in the solution process of 

the C3DPS resource pool[15]. Among neighbourhood search algorithms, typical simu-

lated annealing and abut search have strong randomness and use only a single individual 

based on the iterative search, so the probability of finding a feasible solution is extremely 

low in a short time (iteration time). At present, they are mostly combined with other al-

gorithms, but these are not suitable for solving optimization problems such as scheduling 

combinations. 

Among evolutionary learning algorithms, only immune algorithms and genetic al-

gorithms have been proven to show good performance in various applications and im-

provements. Other algorithms are less developed or more immature in the neighbour-

hood of optimization, such as artificial neural networks and DNA computing. In addi-

tion, the ant colony algorithm and particle swarm algorithm are widely used in sched-

uling problems. However, the self-learning mechanism of PSO was originally designed 

for continuous numerical optimization problems[16]. For discrete combination optimi-

zation problems, the speed and position learning mechanisms of these algorithms are not 

suitable. Most of the improvements convert the original numerical change into a crosso-

ver operation or exchange sub-operation between an individual and the current optimal 

solution. To a certain extent, this method is transformed into a genetic particle swarm 

algorithm, and the effect is not obvious in practical applications. In summary, the intel-

ligent optimization algorithm for a Pareto optimal set is based on the above-mentioned 

advantages and disadvantages[17]. It is a newly improved local optimal solution or 

global optimal solution algorithm that is relatively suitable and has great potential for 

solving the problem of computing resource allocation. 

1. A framework for cloud service evaluation based on a hybrid multi-objective 

BM-MOPSO evaluation model 

The Materials and Methods should be described with sufficient details to allow 

others to replicate and build on the published results. Please note that the publication of 

your manuscript implicates that you must make all materials, data, computer code, and 

protocols associated with the publication available to readers[18]. Please disclose at the 

submission stage any restrictions on the availability of materials or information. New 

methods and protocols should be described in detail while well-established methods can 

be briefly described and appropriately cited. 

Research manuscripts reporting large datasets that are deposited in a publicly 

available database should specify where the data have been deposited and provide the 

relevant accession numbers. If the accession numbers have not yet been obtained at the 

time of submission, please state that they will be provided during review. They must be 

provided prior to publication[19]. Interventionary studies involving animals or humans, 
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and other studies that require ethical approval, must list the authority that provided ap-

proval and the corresponding ethical approval code. 

Based on Pareto optimality theory and the AHP-TOPSIS evaluation model, this 

framework is used to objectively determine the weight of each evaluation set and indi-

cator by the AHP method based on MATLAB software, and then the TOPSIS method is 

used to analyse the closeness of the optimal solution and determine the overall similarity 

between an optimal and ideal solution[20]. Therefore, it is possible to construct a new 

AHP-TOPSIS evaluation ideal value approximation model for decision-making. Based on 

this thesis, this paper constructs a new AHP-TOPSIS judgment approaching the ideal 

solution, which can be used in decision-making. 
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Figure 1. Framework of the evaluation method of the C3DPS order task execution process based on 

the AHP-TOPSIS optimal set algorithm and Baldwin effect. 

One approach to cloud service evaluation is as follows: In an intelligent C3DPS 

platform, task-order requirements are normalized descriptions given in detail by 

task-order requirements.Task decomposition calls a parsing function and an analysis task 

that forms a one-to-one atomic task[21]. According to the atomic task, search matching is 

used to perform supply and demand matching of service resources, form a dual feasible 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 March 2021                   doi:10.20944/preprints202103.0283.v1

https://doi.org/10.20944/preprints202103.0283.v1


 

solution for the C3DPS resource candidate service set, and provide feedback to users. 

According to the optimization of user requirements, it then calls a Pareto optimal intel-

ligent optimization algorithm based on the C3DPS platform. This algorithm is optimized 

to objectively determine the weight of each evaluation set and indicator by the AHP 

method and construct a comprehensive AHP-TOPSIS evaluation model based on a Pa-

reto-optimal set. Finally, it performs Pareto-optimal evolutionary computations and 

many local search strategies within the multi-objective evolutionary method. Compre-

hensive superiority is calculated as an evaluation indicator in this cloud service evalua-

tion method, and it can also be used in combining and optimizing design schemes. 

Therefore, the optimal service resource is called. The framework of the evaluation 

method of the C3DPS order task execution process based on the AHP-TOPSIS optimal set 

algorithm and Baldwin effect is shown in Figure 1: 

2. Intelligent optimization algorithm for the Pareto optimal set and AHP 

2.1. Intelligent optimization algorithm for Pareto optima 

The Pareto optimal condition is as follows: In the process of information resource 

allocation, the marginal rate of technical substitution of two kinds of information re-

source X and Y in any computer resource is equal to the marginal rate of technical sub-

stitution of producing these two kinds of information resources X and Y; that is, 

A

XY XYMRT MRS= , (1) 

where MRT is an ideal state of a computing resource allocation and
A

XYMRS is a mar-

ginal rate of technical substitution of the two kinds of information resource X and Y in 

any computing resource. 

The intelligent optimization algorithm for Pareto optima is derived from the above 

concept[23]. Based on the analysis of the existing intelligent optimization search strate-

gies, a multi-objective optimization algorithm for Pareto optimal and AHP-TOPSIS 

evaluation models is proposed. It is a multi-objective evolutionary algorithm that com-

bines evolutionary computation and a multi-local search strategy. 

Definition: Assuming that is the outer set in the th generation, each individual in is 

assigned an intensity value , namely: 

( )
( ) ( )

( )
1,2...,

1

k
k ki

i Tk

t
S i n

n
= =

+
, (2) 

where , 
( ) ( ) ( ) ( ) ( ) ( ) ( 1)|{( | . . }|,k k k k k k k

i i it u u u s t u T T DomS T −=   = , 
( )k

Tn is the size 

of set 
( )kT , and 

( )k

it  is the number of individuals who dominate the set . 

A strength value is assigned such that each individual can be computed and mul-

ti-locally searched for the evolution of the Pareto optimal set intelligent optimization al-

gorithm, and this value is the fitness determined by its advantages and disadvantages, 

namely: 

( )

( ) ( )1
k

j j i

k k

i i

u T u u

f S
  

= +  , 
(3) 

Here, the fitness of an individual is equal to the sum of all the external individuals that 

dominate it. In addition, the size of the set is chosen so that the individual is infinitely 

close to the fitness value. 
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2.2. Analytic hierarchy process 

In the 1970s, Professor T. L. Saaty, an American operational research scientist, pro-

posed a multi-objective decision analysis method called the AHP, which is mainly ap-

plied to decision-making problems under multiple evaluation criteria[24]. 

The modelling steps of the AHP are as follows: 

    (1) Establish a hierarchical structure model 

The hierarchical structure model is decomposed into the various factors that are 

contained in the problem and form several levels from top to bottom according to dif-

ferent attributes[25]. The structure model framework includes the following levels: the 

highest level (the overall goal of the complex system); the middle level (the planning and 

decision-making, the measures and adopted policies, and the criteria for achieving the 

goals); and the lowest level (various strategies and constraints). 

Definition: Assuming that the set of evaluation indicators is 1 2{ , ,..., }nT t t t= , the 

evaluation indicators of each factor are compared with a pair of importance degrees, and 

the determined value
ij is set to represent the importance degree of 

it . Then, the hier-

archical structure model is as follows: 

10,ij ij
ji

 


 = , (4) 

where
ij is the scale. 

Then, the judgment matrix D is as follows: 

1 1 1

1 2

11 12 1

2 2 2

21 22 2

1 2

1 2

1 2

n

n

n

n

m m mn

n n n

n

X X X

X X X
X X X

X X X
X X X

X X XD

X X X
X X X

X X X

 
 
  
  
  = =
  
  
  
 
  

, 
(5) 

It can be seen from the above that for the positive definite reciprocal judgment matrix D, 

the maximum characteristic root
max exists and is unique, and the weight

iw is composed 

of positive elements of vectors and is unique. 

    (2)  Construct a judgment matrix 

The multi-level system is divided into several hierarchical levels according to dif-

ferent goals and functions[26]. Among them, the judgment matrix is constructed with the 

pairwise comparison method and comparison scale at the lowest level. 

The elements in each row of the judgment matrix are multiplied as follows: 

1

n

i ij
i

M 
=

=  , (6) 

iM  is calculated by taking the n-th power root: 

n
i iW M= , (7) 
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iW  in the vector is normalized: 

1

/
n

i i i

i

W W W
=

=  , (8) 

Here, the values of vector 
iW  are normalized for the consistency check. 

    (3) Determine the hierarchical order and perform a consistency check 

Here, the method determines the correlation degree between adjacent level elements 

in the above judgment matrix. Through the construction of two comparison judgment 

matrices and the mathematical method of matrix operations, the importance order of the 

related elements is determined for a certain element in the previous level. 

Definition: In checking the consistency of the judgment matrix, knowledge and 

experience can meet different conditions. The specific formula is as follows: 

max

( 1)

i
R

i i

C n
C

R n R

 −
= =

−
, (9) 

where 
iC  is the indicator of the consistency check, n is the order of the judgment ma-

trix, and 
iR is the average value of the consistency check. 

    (4)  Determine the hierarchical total ranking and perform a consistency check 

The combination weight vector of each layer element is calculated and ranked by the 

formula of the combination consistency check. Therefore, it determines the importance 

degree of each element at the bottom of the hierarchical structure model. In the tradi-

tional AHP method, it is difficult to verify the consistency of the judgment matrix, and 

this matrix is greatly affected by expert knowledge and preferences, which limits its 

promotion and application[27]. The concept of multi-indicator evaluated entropy is 

proposed, and the indicator weight solution method solves the problems of the tradi-

tional AHP method. The evaluation entropy refers to the confusion degree of the evalu-

ation value of each candidate C3DPS set in a comprehensive evaluation. 

Definition: Assuming that for a certain service request, the set of candidate C3DPSs 

is 1 2( , ,..., )nCS S S S= and that 11 12 1, ,..., nQT QT QT are defined as the evaluation values 

of the candidate C3DPSs on the indicators, the evaluation entropy of the indicators
1QT  

is: 

n
2

1 1

1

1

1

( )

1
( )

i

i

QT QT

n
Diff QT

QT

=

−

−
=



, 

(10) 

The solution formula for index evaluation entropy is introduced into other second-

ary indicators of the QoS index, and 2( )Diff QT ,..., i( )Diff QT are obtained; then, the 

relative weight corresponding to ( 1,2,..., )xQT x n=  is: 
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x

1

( )
( )

( )

x

n

x

i

Diff QT
W QT

Diff QT
=

=


, 

(11) 

where x( )W QT  is the weight value, ( )xDiff QT  is the indicator evaluation entropy of 

( )xDiff QT ,and
1

( )
n

x

i

Diff QT
=

 is the sum of the entropy values of ( 1,2,..., )xQT x n= . 

Based on Pareto optimal theory, the improved AHP-TOPSIS evaluation model is 

used to objectively determine the weight of each evaluation set and index[28]. The 

closeness of the evaluation model is determined by analyzing and making decisions to 

obtain the optimal solution that brings about an overall similarity between the best al-

ternative and the ideal scheme combined with the TOPSIS optimization method. 

3. Mathematical model of C3DPS order task execution evaluation based on the 

AHP-TOPSIS evaluation model 

In the process of multi-attribute decision-making, the weight of each attribute re-

flects the relative importance of the attributes, which directly affects the result of deci-

sion-making. Therefore, the weight of each attribute is one of the key issues in mul-

ti-attribute decision-making that determines the results of decision-making. Aiming to 

solve a multi-attribute decision-making problem in which the attribute weight infor-

mation is determined and the attribute value is an intuitionistic fuzzy number, a deci-

sion analysis method for the AHP-TOPSIS evaluation model is proposed. This analysis 

method is widely used in multi-attribute decision-making problems. The AHP-TOPSIS 

comprehensive evaluation model is a comprehensive evaluation and optimization 

method that combines the AHP and TOPSIS. The weight vector of each evaluation indi-

cator is objectively determined and calculated to achieve comprehensive superiority by 

this evaluation model[29]. The basic principle of TOPSIS is to sort the evaluation objects 

by the distance between the fuzzy positive ideal solution and its similarity to fuzzy 

comprehensive attributes in the multi-objective decision-making problem.  

3.1. Establish an initial evaluation matrix A  

Definition: Suppose that a set 1 2{ , ,..., }mA A A A= of schemes is composed of m 

schemes 1 2, ,..., mA A A and that each scheme also corresponds to a number of evaluation 

indicators 1 2, ,..., nX X X . The set of evaluation indicators is 1 2{ , ,..., }nX X X X= . Then, 

the initial evaluation indicator matrix can be expressed as: 

11 12 1

21 22 2

1 2

( )

n

n

ij m n

m m mn

X X X

X X X
A X

X X X



 
 
 = =
 
 
 

, (12) 

where ijX is the -thj evaluation indicator in the -thj scheme. 

3.2.  Establish a weighted standardized decision matrix 

The evaluation indicators can be divided into two categories: consumption indica-

tors and profit indicators. The higher the profit indicator is, the lower the consumption 

indicator. These are two kinds of indicators that can also be divided into measurement 

indicators and non-measurement indicators with different dimensions and dimensional 

units[30]. On this basis, it is necessary to strictly define the meaning of indicators and 
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provide reference standards, which will eliminate the incontestability of the resulting 

indicators and carry out dimension normalization of the evaluation indicators in the 

evaluation of non-metric indicators. 

The standardized decision calculation method for the initial evaluation matrix is 

described below. 

    (1)  The consumption indicator is 

min ( )

max ( ) min ( )

ij j ij

ij

j ij j ij

X X
b

X X

−
=

−
, (13) 

where min ( )ij j ijX X− is the difference between the evaluation indicator value and the 

minimum evaluation indicator value in the initial evaluation matrix; 

max ( ) min ( )j ij j ijX X− is the difference between the maximum value and the minimum 

value in the initial evaluation matrix. 

    (2)  The profit indicator is 

max ( )

max ( ) min ( )

j ij ij

ij

j ij j ij

X X
b

X X

−
=

−
, (14) 

where max ( )j ij ijX X− is the difference between the maximum evaluation indicator 

value and the evaluation indicator value in the initial evaluation matrix, and 

max ( ) min ( )j ij j ijX X− is the difference between the maximum value and the minimum 

value in the initial evaluation matrix. 

According to the life cycle evaluation indicator system of C3DPSs, a standardized 

decision matrix for multi-attribute decision-making is constructed. According to the ac-

cumulation process of the performance indicator pt(T, Q, Mat, R, Rl, Flex, MO  

C, Ft, SF, Sa) , the objective function of multi-objective optimization is determined, and 

the performance of the C3DPSs can be evaluated through four sub-evaluation indicator 

systems[31]. Assuming that the service resources of C3DPSs are evaluated, 

1 2{ , ,..., }nORS r r r= will be selected as a candidate set of service resources in the C3DP order 

execution process. A standardized decision matrix for multi-attribute decision-making is 

shown in Table 1. 

Table 1. Standardized decision matrix for multi-attribute decision-making. 

 1r  
2r  … ir  … nr  

T 1 1( , )T T   
2 2( , )T T   … ( , )T T

i i   … ( , )T T

n n   

Q 1 1( , )Q Q   
2 2( , )Q Q   … ( , )Q Q

i i   … ( , )Q Q

n n   

Mat 1 1( , )Mat Mat   
2 2( , )Mat Mat   … ( , )Mat Mat

i i   … ( , )Mat Mat

n n   

R 1 1( , )R R   
2 2( , )R R   … ( , )R R

i i   … ( , )R R

n n   

Rl 1 1( , )Rl Rl   
2 2( , )Rl Rl   … ( , )Rl Rl

i i   … ( , )Rl Rl

n n   

Flex 1 1( , )Flex Flex   
2 2( , )Flex Flex   … ( , )Flex Flex

i i   … ( , )Flex Flex

n n   
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C 1 1( , )C C   
2 2( , )C C   … ( , )C C

i i   … ( , )C C

n n   

Here, ( , )T T

i i  , ( , )Q Q

i i  , ( , )Mat Mat

i i  , ( , )R R

i i  , ( , )Rl Rl

i i  , ( , )Flex Flex

i i  , ( , )C C

i i  , ( , )Ft Ft

i i  , 

( , )SF SF

i i  and ( , )Sa Sa

i i   are, respectively, intuitionistic fuzzy numbers representing the 

duration time T, cost C, matching degree Mat, service response R, quality Q, reliability Rl, 

service fault tolerance Ft, flexibility Fl, safety SF and customer satisfaction Sa. For the 

performance evaluation of the C3DPSs life cycle evaluation indicator system, mul-

ti-attribute decision-making is standardized as a decision-making matrix. 

    (3)  Establish a weighted standardized decision matrix R . 

The weighted standardized decision matrix R is multiplied by the column vector of 

the matrix X with the weight values determined by the AHP method, and the weighted 

standardized decision matrix R can be obtained as: 

1 11 2 12 1

1 21 2 22 2

1 1 2 2

( )

n n

n n

ij m n

m m n mn

w b w b w b

w b w b w b
R r

w b w b w b



 
 
 = =
 
 
 

, (15) 

Here, w is a coefficient of the matrix. 

    (4)  Calculate the closeness iB+
of the evaluation objects. 

The ideal solution of the profit indicator set
1J is the maximum value of the row 

vector, and the negative ideal solution is the minimum value of the row vector[33]. The 

ideal solution of the consumption indicator set
2J is the opposite. 

1 2

1 2

{(max( | ), (min( | )}

{(min( | ), (max( | )}

n mn n mn

n mn n mn

R w b m J w b m J

R w b m J w b m J

+

−

 =  


=  
, (16) 

The matrix of the evaluation object and ideal solution is as follows: 

2

1

2

1

( )

( )

n

ij j

j

n

ij j

j

D r r

D r r

+ +

=

− −

=


= −





= −






, (17) 

where D+
and D−

are the distances between the evaluation object and the positive and 

negative ideal solutions, respectively; jr +
and jr −

are the elements corresponding to R+
and 

R−
. 

The formula for the closeness of the evaluation object is as follows: 

0 1i
i i

i i

D
B D

D D

−
+ +

+ −
=  

+
， , (18) 

 

    (5)  Construct an AHP-TOPSIS comprehensive evaluation model. 
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The evaluation matrix is constructed from the proximity analysis of the TOPSIS 

method, and the result vector F of the AHP-TOPSIS comprehensive evaluation is as fol-

lows: 

F W B=  , (19) 

In the formula, B is an evaluation matrix formed from the closeness value of each evalu-

ation object, and W is the weight calculated by the analytic hierarchy process. 

4. The solution of the C3DPS quality evaluation model 

4.1.  Hybrid multi-objective particle swarm optimization (PSO) algorithm based on the Baldwin 

effect (BM-MOPSO) 

BM-MOPSO is an intelligent algorithm based on multi-objective PSO that combines 

Baldwin's learning strategy idea, a population global target value scalar parameter, a 

scalar parameter for the population global objective value, intuitionistic fuzzy member-

ship and a ranking method. In the application of the hybrid multi-objective PSO algo-

rithm, it solves the above-mentioned C3DPS quality evaluation problem[35]. This is the 

key to the problem of adopting the learning of the Baldwin effect within a certain period 

so that the global search and learning strategies can ensure the interactive operation of 

the algorithm in a fixed period. 

    (1)  Baldwin effect learning strategy 

As a learning method, the Baldwin effect learning strategy can effectively reduce 

the selection pressure. This not only affects the characteristics of the search space but al-

so increases the polymorphism of the genetic process and transforms the shape of the 

dominant search space. A local search can also be carried out based on the Baldwin ef-

fect that improves the non dominated solution of PSO[36]. The mathematical formula of 

this learning function is as follows: 

( ),

( ),

,

zj ij zj zj ij

ij zj zj ij ij zj

ij

p k p p p p

Y p k p p p p

p Otherwise

 +  − 


= +  − 



, (20) 

where , {1,2,..., }i z m= , m is the number of particles in the swarm, j {1, 2,..., }n= , n is 

the dimension of the particle swarm and is the step size of the observation interval. 

If
ijp is greater than

zjp , particles
zjp learn from particles

ijp ; if
zjp is greater than

ijp , particles
ijx learn from particles

zjx ; if neither is dominated by the other, the parti-

cles do not learn. 

    (2)  Local search strategy based on the BM-MOPSO algorithm 

When the particle swarm performs a local search for the Baldwin effect, one of the 

following situations will occur: 

1) When searching the initial points, most particles are far away from the Pareto 

frontier in the space, and it is easy to find the dominant solution in the region, which 

leads to high search efficiency. At a certain time, the optimal solution set of the popula-

tion is sorted by Pareto dominance, and the particles are dynamically updated to the 

Pareto solution set. At the same time, the method learns from the dominant solution so 

that the particle swarm can more quickly approach the Pareto frontier. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 March 2021                   doi:10.20944/preprints202103.0283.v1

https://doi.org/10.20944/preprints202103.0283.v1


 

2) If the local search times of PSO converge to the threshold flag, the obtained solu-

tions are all non-dominated solutions, which indicates that the population has fallen into 

a local extreme point at this time. The direction of the non-dominated solutions is: 

flag

i 0

i 1 i 0

x x
d

|| x x ||=

−
=

−
 , (21) 

where ix (i 1,2,..., flag)= is the i-th non-dominated solution in the local search and 

i 0x x− is the distance from the local extreme point to the initial value in the local search. 

3) If the above two conditions are satisfied, then the number d of ix and the 

non-dominated solution q (q = 3) satisfy one of the following conditions: 

If d q , the method learns from the dominating solution so that the particle 

swarm can more quickly approach the Pareto frontier. 

If d q , the search direction changes, and the PSO can be guided and diffused in 

the optimization direction. 

The local search method of the BM-MOPSO algorithm is as follows: 

Step 1: The parameters are initialized; that is, the initial position of PSO is 0 0(x , y ) , 

its iteration number is i 0= , and the direction of the non-dominated solution is d 0= . 

Step 2: In the initial position of PSO 0 0(x , y ) , a dominating solution is randomly 

selected and marked as 1y . 

Step 3: If 1 0y y , the initial position of PSO is locally searched by the Baldwin ef-

fect learning strategy and is set to new 0 1 0x y k (y y )= +  − ( k is the number of executions of 

the Baldwin effect learning strategy); then, the method goes to step 5. If 0 1y y , then 

the Pareto solution set is dynamically updated. At the same time, the method learns 

from the dominant solution. The particle swarm can move closer to the Pareto frontier, 

ensuring that the individual particle swarm will have this learning ability. If

new 1 0 1x y k (y y )= +  − , the method goes to step 5; otherwise, it goes to step 4. 

Step 4: If d++ , then PSO calculates the direction d of the non-dominated solution. 

If d q , it reinforces learning to calculate the optimal step size s and explore the optimal 

position new 0x y d s= +  and then goes to step 5; otherwise, it goes to step 2. 

Step 5: If i flag , the method goes to step 2; otherwise, this particle swarm popula-

tion falls into a local extreme point, and newx is the next initial value of particle swarm

0x . 

4.2.  The basic process of the multi-objective particle swarm optimization algorithm based on the 

Baldwin effect 

The basic process of multi-objective BM-MOPSO is shown in Figure 2. The algo-

rithm steps are analyzed below. 
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Figure 2. The basic process of the multi-objective BM-MOPSO algorithm. 

    (1)  Particle initialization 

First, the maximum number of iterations, number of independent variables of the 

objective function, maximum velocity of particles and position information are set ran-

domly in the velocity interval and search space to obtain a one-to-one mapping between 

the service resources and particles, that is, to perform particle initialization. 

Assume that each particle is an optional combination of service resources, where a 

service resource is selected from each candidate service set list iCRS to form a combina-

tion of service resources[37]. The initial scale of the particles is the N  -population of the 

feasible dimension space
1 2{ , ,..., }nS p p p= , and each scale of particles corresponds to 

an optional combination of the number of service resources. 

For example, let the combination of C3DP optional service resources be 
5 4 1 5

1 2 3 4{ , , , }CRS CRS CRS CRS which means that a C3DPS resource is selected by the serial 

atomic task sequence 1OR to be the fifth service resource
5

1CRS in the set of service re-

sources 1CRS . The serial atomic task sequence 2OR is the fourth service resource 
4

2CRS  

in the set of service resources 2CRS [38]. 

In the same way, the order of particles mapped one by one is . A mapping example 

of the composition of service resources and particles is shown in Figure 3. 
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Figure 3. Mapping example of the composition of service resources and particles. 

    (2)  Set of fitness functions 

From the above objective function pt(OR)MO , the optimal value of each index set 

is selected by the evaluation of the C3DP order task in the feasible solution domain of 

the service resource candidate service subset. Therefore, the moderation function of the 

BM-MOPSO algorithm is calculated as follows: 

1 1 1 1
n n

1 2 3 4

1 1 1 11 1

1 1
n n

5 6 7

1 11 1

( ) ( ) ( ) at( ) ( )

( ) ( ) t(

i i i i
j j j j

i i
j j

n n n n
p p p pi

j j j j

j j j ji i

n n
p p

j j

j ji i

fitness p w T CRS w Q CRS w M CRS w R CRS

w Flex CRS w C CRS w F CRS

− − − −

= = = == =

− −

= == =

       
= + + +       

       

   
+ +   

   

    

  
1 1

n

8

1 11

) + ( )
i i
j j

n n
p p

j j

j ji

w Sa CRS

− −

= ==

   
   
   
 

, 

(22) 

In the formula,
1w ,

2w ,
3w ,

4w ,
5w ,

6w ,
7w and

8w are the weight ratios of C3DP 

equipment service resources. The larger the fitness function ( )ifitness p is, the better the 

particle
ip . 

    (3)  The range of the particle dimension and moderate function 

In the BM-MOPSO algorithm, the learning strategy based on the Baldwin effect is 

an iterative process of learning and evolution that balances the relationship between 

global search and local search. To improve the non-dominated solution of particle 

swarms, an individual particle learns in the same environment to achieve stronger sur-

vival adaptability[39]. 

After completing the Baldwin effect learning operation, the value of a certain di-

mension of the particle is larger than the value range, so it is necessary to calculate the 

particle swarm with the extreme value standardization method, which is used if the 

value is larger than the value range. 

Therefore, the value range of each dimension of the particles is a discrete value 

range{ :1 }j j

k k jp p K  . After the Baldwin effect learning operation is completed, the 

dimension value of the particles is greater than the value range, and the extreme value 

normalization method is used for the particle swarm in this excessive value range. If 
j

k jp K , the value is set to
j

k jp K= . 

The optimal position of each individual
ip of the particle swarm is now 

1 2( , ,..., )i i i ijx x x x= . The functional generalized derivative ( )f x representing the feed-
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back information in the learning and evolution process of the BM-MOPSO algorithm is 

calculated, which is defined as follows: 

1 1( ,..., ,..., ) ( ,..., ,..., )( ) i ik ik ij i ik iji

ik ik

f x x x x f x x xDf p

Dx x

+ −
= , (23) 

Here, the individual particle
ip yields

'

ip when the learning strategy based on the Bald-

win effect is carried out. For each dimension
ikx ( 1, 2,...,k j= ) of the position vector of 

individual , the formula is as follows: 

' '

1 2

' ' ' '

1 2
| | | |

1 1
1

, ,
1

min ( ) min ( , ,..., )

( )( )
min ( ,..., )

i i i i

i i ij

i i i ij
p p p p

ij ij ii i i
i ij

N N N Z
i ij

f p f x x x

N Df pN Df p
f x x

Dx Dx

 


+

−  − 



=

= + +
, (24) 

where
ik and

ikN are the parameters for adjusting the step length. The integer
ikN is the 

number of individuals in the population particle swarm 
ip , and their initial values are 

all the same; 1ik ikN N+ → and
ik is the value of the updated particle position within the 

feasible region[ , ]L Rx x [40]. Then,
i is the quotient of the range distance and the maxi-

mum iteration number: 

max

| |L R
i

x x

T


−
= , (25) 

The steps of the algorithm are as follows: 

Step 1: Initialization. This includes all parameters of the particles, such as the initial 

position and velocity. The individual optimal position of a particle is defined as the cur-

rent position, and the global optimal position is the optimal position of all particles. The 

initial position of each particle i is 1 2( , )ix x x= , the speed is 1 2( , )
G

iv v v
→

= ( 1,...,i N= ), the 

number of particles is , the number of iterations is
maxn , and the initial solutions 

0p  are 

randomly generated by pn . 

Step 2: Calculate the fitness function value of each particle. That is, the fitness func-

tion value ( )ifitness p is calculated by the functional generalized derivative ( )f x  when 

the coordinate
ix takes the coordinates into the generalized derivative. 

Step 3: Determine whether to perform local search. If the current iteration number 

meets the conditions for iteration termination ( 1
3

 of the total number of iterations), 

then local search is not performed and the algorithm moves to step 4; otherwise, step 5 

is performed. 

Step 4: Perform a global search. If the number of consecutive iterations with no 

updates meets the preset threshold, each particle will calculate the update speed and 

position in the global optimal solution according to the basic formula; otherwise, the al-

gorithm moves to step 6; 

Step 5: Perform a local search. The particles perform the local search based on the 

Baldwin effect with probability
kP , and the algorithm moves to step 6; 
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Step 6: Non-uniform mutation. Assuming that there is a particle 1( ,..., )t

jp v v= in 

the -tht generation, a random variable 
kv is selected and outputs a number between 0 

and 1, and a non-uniform mutation operator is locally mutated by the particle for the 

next generation
1 '

1( ,..., ,..., )t

k jp v v v+ = . The particle swarm will become more stable. 

Step 7: Repeat step 2 to step 6 until the current iteration number meets the condi-

tions for termination; otherwise, continue to update x i
and

iv . 

Step 8: After execution, output the calculation result. 

5. Example simulation 

To ensure the preciseness of the data, the case data were sampled from a CMfg 

platform developed by a 3D printing company in Wuhan city, which is a smart C3DPS 

platform that integrates modelling design and 3D printing. It integrates various kinds of 

C3DPSs of multiple fields and types and provides network access to different types of 

3D printing equipment. It also performs online real-time data collection. Here, the real 

data of different 3D printing devices in the platform were selected for the example sim-

ulation. 

5.1.  Simulation environment 

To verify the reliability and universality of the cloud service evaluation based on 

the hybrid multi-objective BM-MOPSO evaluation model, a verification application in 

C3DPS creative and innovation product development was used. Its simulation environ-

ment was as follows: 

a. Windows 7 operating system 

b. Intel (R) Core (tm) i5-4210H 2.90 GHZ CPU 

c. 8G memory. 

The experimental environment was as follows: 

At run time, the population size was 10, the maximum number of iterations was 100, 

the target weights were 1Q and 2Q , and the values were 0.7 and 0.3, respectively. The 

range of moderate function deterioration was set to -0.1 for the moderate functions 

1 0.20w = ， 2 0.20w = ， 3 0.10w = ， 4 0.05w = ， 5 0.10w = ， 6 0.20w = ，

7 0.05w = ， 8 0.10w = . 

According to the above multi-objective BM-MOPSO, the evaluation data and 

weight value of each candidate 3D printing device were inputted and simulated in 

MATLAB. Each algorithm was tested independently for each test function fewer than 30 

times. The convergence characteristics of the algorithms are shown in Figure 4 and Fig-

ure 5: 
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Figure 4. Convergence characteristics. 

  

(a) (b) 

Figure 5. Simulation results of the algorithm. (a) Iterative simulation of the objective function; (b) 

The final Pareto frontier based on the improved BM-MOPSO algorithm. A caption on a single line 

should be centered. 

Figure 5. Simulation results of the algorithm. 

Flow chart of cloud service evaluation implementation based on the hybrid mul-

ti-objective BM-MOPSO evaluation model 

5.2.  Analysis of hybrid multi-objective BM-MOPSO 

The Knowledge module is responsible for the management and scheduling of var-

ious types of knowledge on service resources; the Coordination module creates links 

between various coordination methods and performs operation monitoring and coordi-

nation management in the cloud service evaluation model based on the hybrid mul-

ti-objective BM-MOPSO evaluation model. Figure 6 shows the evaluation process for 

cloud services based on the hybrid multi-objective BM-MOPSO evaluation model. 
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Figure 6. Flow chart of cloud service evaluation implementation based on the hybrid mul-

ti-objective BM-MOPS evaluation model. 

A user proposes a complex manufacturing task that decomposes into 6 sub-task 

nodes 1 2 3 4 5 6=( , , , , , )T T T T T T T . After entering the task information into the platform, it 

is preliminarily matched to several 3D printing equipment resources that meet the user's 

needs. A candidate set of 3D printing equipment resources is established, that is, 

1 2 3 4 5 6=( , , , , , )S S S S S S S . Among them, task node 1S is matched with three candidate 

resources, which can be expressed by 1 11 12 13( , , )S S S S= . Each candidate resource is 

shown in Table 2. 

Table 2. Candidates for 3D printing device resources. 

Candidate set Atomic service Workshop name Equipment model 

1S  

11S  Yourui 3D printing HW-602 

12S  JIA Yi Gaoke JOYE-4035 

13S  Campus store Aurora LVO A8 

2S  

21S  WINBO WB-SH105 

22S  Beien 3D BANSOT M2 

23S  3D printing workshop Dimension SST 1200es 

24S  The third brother of Hanbang Corporate T1 

3S  

31S  Artful design workshop SLM 500 

32S  E-Plus-3D EP-M100T 

33S  Manheng EOS-M290 

4S  41S  Tongchuang 3D MOONRAY 
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42S  Flashcast Technology Studio Explorer 

43S  Yourui 3D printing DLP-1 

5S  

51S  Flashcast Technology Studio Creator Pro 

52S  Wuhan store Second-generation 3D printing 

53S  JIA Yi Gaoke JOYE-1010K 

54S  JIA Yi Gaoke JOYE-1212E 

6S  

61S  Campus Station of College of Culture FORTUS 200 mc 

62S  3D printing workshop ProJet 6000 

63S  Yunle Design Studio ULTRA 

64S  High-precision printing HOFTX2 

 

According to the different 3D printing equipment resources, the evaluation indica-

tors are optimized and quantified from the original data of each 3D printing equipment 

resource. The form of the data set is as follows: 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 31

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

c i t i r i u i e i

c i t i r i u i e i

c i t i r i u i e i

c ij t ij r ij u ij e ij

q S q S q S q S q S

q S q S q S q S q S

q S q S q S q S q SS

q S q S q S q S q S

 
 
 
 =
 
 
 
 

, (26) 

Here, the unit of ( )c ijq S is "Yuan", and the unit of ( )t ijq S is "hour". 

The above evaluation data of each candidate 3D printing equipment resource are 

specifically expressed as follows: 

1

1240 35 0.76 0.79 78

= 1300 55 0.18 0.48 94

1750 54 0.44 0.64 98

S

 
 
 
  

2

980 42 0.79 0.75 20

2200 59 0.27 0.65 34
=

1700 61 0.65 0.16 70

3200 59 0.11 0.49 30

S

 
 
 
 
 
   

3

1400 49 0.95 0.34 53

= 1300 58 0.58 0.22 64

2700 67 0.75 0.25 87

S

 
 
 
  

4

1850 30 0.50 0.69 49

= 3300 34 0.89 0.95 40

2000 24 0.54 0.13 68

S

 
 
 
    

(27) 
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5

1600 55 0.14 0.25 49

2600 36 0.84 0.25 68
=

1850 37 0.81 0.24 75

900 44 0.92 0.35 53

S

 
 
 
 
 
 

6

750 43 0.19 0.25 35

2700 37 0.61 0.47 67
=

1800 38 0.35 0.83 59

1000 68 0.58 0.54 76

S

 
 
 
 
 
 

, 

Assuming that the particle population is 14 and the number of iterations is 50, the 

weight values of the evaluation parameters in the fitness function are, respectively

1 0.2 = , 2 0.3 = , 3 0.2 = , 4 0.1 =  and 5 0.2 = . 

According to the above multi-objective BM-MOPSO, the evaluation data and 

weight value of each candidate 3D printing device are inputted and simulated in 

MATLAB. The simulation results are shown in Figure 7, in which the vertical axis is the 

fitness function value and the horizontal axis is the population number. 

 

Figure 7. Convergence curve of the fitness function. 

It can be seen from Fig. 6 that when the population number is 14, the fitness is low-

est, the optimal combination scheme is , and the fitness function value is 3.9370. That is, 

the optimal combination of 3D printing equipment resources is Yourui 3D printing 

hw-602, WINBO WB-SH105 and Qiaoyi workshop SLM 500, Flashcast Technology Ex-

plorer, Jiayi Hi-Tech JOYE-1212E, and Yunle Design Studio. 

6. Conclusions 

The global economy is transforming from a product economy to a service economy. 

Manufacturing and services are gradually merging. Individual enterprises pay close at-

tention to their own core business. By providing manufacturing services, they can in-

crease the value for stakeholders in the manufacturing value chain so that these indi-

vidual enterprises will be more closely coordinated with each other. The C3DP model is a 

new service model that supports multi-user collaboration, and it is also an application of 

cloud manufacturing in the field of 3D printing. C3DPS modelling is the basis of C3DPS 

supply and demand matching; that is, this relationship between order tasks and services 

provides an effective way to match similar elements in the C3DPS platform. A large 

number of C3DPSs are aggregated according to certain rules and form a multi-complex 

3D printing service network. 

This paper formally describes C3DPSs, proposes a QoS acquisition and calculation 

method based on a mutual evaluation mechanism under the CMfg model, and estab-

lishes a C3DPS trust evaluation model based on service matching and global trust. The 
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genetic algorithm optimizes the combination of C3DPSs so that it meets the require-

ments. Active intelligent rent-seeking for C3DPSs will be the next research direction. 
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