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Abstract: Focusing on service control factors, rapid changes in manufacturing environments, the
difficulty of resource allocation evaluation, resource optimization for 3D printing services (3DPSs)
in cloud manufacturing environments and so on, an indicator evaluation framework is proposed
for the cloud 3D printing (C3DP) order task execution process based on a Pareto optimal set algo-
rithm that is optimized and evaluated for remotely distributed 3D printing equipment resources.
Combined with the multi-objective method of data normalization, an optimization model for
C3DP order execution based on the Pareto optimal set algorithm is constructed with these agents'
dynamic autonomy and distributed processing. This model can perform functions such as auto-
matic matching and optimization of candidate services, and it is dynamic and reliable in the C3DP
order task execution process based on the Pareto optimal set algorithm. Finally, a case study is de-
signed to test the applicability and effectiveness of the C3DP order task execution process based
on the analytic hierarchy process and technique for order of preference by similarity to ideal solu-
tion (AHP-TOPSIS) optimal set algorithm and the Baldwin effect.

Keywords: Cloud Manufacturing(CMfg); 3D Printing Device Resources; HPSO; Muti-objective
Optimization; Baldwin effect

0. Introduction

Intelligent algorithms are the most commonly used tool to solve NP-complete com-
bination optimization problems. After years of development, many different random
search strategies have emerged[1]. They all form their own iterative search mechanisms
by simulating the behavior and evolution of natural ecology. They are simple, universal,
robust and easy to use in parallel processing[2]. To solve the problem of computing re-
source allocation in a cloud 3D printing service (C3DPS) resource pool, it is necessary to
consider both the constraints of the task graph and the nodes. In the neighborhood search
algorithm, the typical simulated annealing and tabu search algorithms are used due to
the strong randomness and the need for only a single iteration based on an individual
search. There is a very low probability of finding an optimal solution within the feasible
solution set during a short iteration period. Presently, this algorithm is not suitable for
solving combination optimization problems such as scheduling when combined with
another algorithm application[3]. However, only the heredity and immunity algorithms
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show good performance in various applications and other improvements in evolutionary
learning algorithms. Others, such as artificial neural network and DNA calculation algo-
rithms, are less mature in the computational process of solving problems in mechanics as
applied to combination optimization. In addition, the ant colony algorithm and particle
swarm optimization (PSO) algorithm based on the swarm intelligence algorithm are the
most widely used in scheduling problems. However, the self-learning particle swarm
algorithm is designed for continuous-type variable numerical value optimization prob-
lems. To a certain extent, most of the improved algorithms convert the original numerical
changes into individuals in a particle swarm, and the optimum crosscurrent operation or
sub-optimal exchange has no obvious practical application. The optimum crosscurrent
operation is also called genetic PSO[4].

The evaluation of C3DPS quality belongs to the field of multiple-criteria deci-
sion-making (MCDM)[5]. A study of relevant data around the world reveals that research
on service quality is primarily based on scientificity, reliability, a combination of quanti-
tative and qualitative aspects, and other principles. Therefore, there are three primary
methods for comprehensively evaluating C3DPS quality: the classical comprehensive
evaluation method of cloud services (CSs), the CS evaluation method based on mul-
ti-attribute decision-making and the quality of service (QoS)[6,7]. These methods are
used in the analytic hierarchy process (AHP), fuzzy mathematics, the effectiveness func-
tion, principal component analysis (PCA), probability density functions (PDFs), the
technique for order of preference by similarity to ideal solution (TOPSIS), data envel-
opment analysis (DEA), the Pareto optimal set algorithm and other methods[8]. Among
these methods, the AHP method is a multi-objective decision analysis method combined
with qualitative and quantitative analysis. It is primarily applied in uncertain situations
with multiple evaluation criteria. Fuzzy mathematics is a mathematical theory and
method used to study and manage the phenomenon of fuzziness. The utility function
method is usually employed to represent the relationship between the utility obtained by
the consumer in consumption and the quantity of the product portfolio[9]. The PCA is a
statistical method. It attempts to replace the original index by recombining the original
correlations (such as P indicators) into a new set of unrelated and interrelated indicators.
The value of the PDF at any given point in the set of possible values taken by the random
variable can be interpreted as providing the relative likelihood that the value of the
random variable will equal that sample. The TOPSIS method sorts potential solutions
according to the closeness among a limited number of negative ideal solutions and the
preference by similarity to ideal solution (PSIS), which is a comparison of the relative
advantages and disadvantages of existing objects[10]. The DEA method is a quantitative
analysis method that can input and output several indicators. It uses linear programming
to achieve a relative validity evaluation of the amendment of a decision-making unit.
This method cannot sort all the decision-making targets[11].

Multi-attribute decision-making combination evaluation methods include the AHP
method, fuzzy mathematics, the effectiveness function, the PCA method and the PDF
method[12]. These methods have the advantage of providing a single comprehensive
evaluation of qualitative analysis and quantitative analysis, and they overcome the de-
fects of their individual components. However, the disadvantage is that most of the
evaluation indicators are qualitative analyses, and the number of indicators is undesira-
bly large. The TOPSIS method is suitable for small restrictions on the number and types
of evaluation indicators. It can be objectively optimized for several decision-making op-
tions[13]. The Pareto optimal set algorithm has the advantages of simplicity, good con-
vergence and fast search speed. It is applied in cloud-service evaluation; it is efficient and
makes it relatively easy to obtain satisfactory evaluation results. In summary, the Pareto
optimal set intelligent optimization algorithm retains the advantages and addresses the
disadvantages of the improved local optimal solution or global optimal solution algo-
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rithm; its use in solving the resource allocation problem is relatively suitable, and it has
potential for solving the resource allocation problem.

The research on index systems is mainly divided into the reputation evaluation in-
dex, QoS evaluation index, service resource combination evaluation index and other
evaluation indexes[14]. According to the characteristics of the evaluation index, it is a
cloud service evaluation method for multi-attribute decision-making. This method puts
fewer restrictions on the characteristics of the evaluation index and the type of index and
can optimize multiple decision-making schemes. An intelligent optimization algorithm
has a simple algorithmic principle. The convergence and search speed are good, the
evaluation efficiency is high, it is relatively easy to obtain satisfactory evaluation results,
and the related research fields are expanding. Therefore, this paper proposes a mul-
ti-attribute decision service evaluation method based on an intelligent optimization al-
gorithm, that is, a multi-attribute decision evaluation method based on a Pareto optimal
set algorithm. To solve the problem of computing resource allocation, it is necessary to
consider the constraints of both the task graph edges and nodes in the solution process of
the C3DPS resource pool[15]. Among neighbourhood search algorithms, typical simu-
lated annealing and abut search have strong randomness and use only a single individual
based on the iterative search, so the probability of finding a feasible solution is extremely
low in a short time (iteration time). At present, they are mostly combined with other al-
gorithms, but these are not suitable for solving optimization problems such as scheduling
combinations.

Among evolutionary learning algorithms, only immune algorithms and genetic al-
gorithms have been proven to show good performance in various applications and im-
provements. Other algorithms are less developed or more immature in the neighbour-
hood of optimization, such as artificial neural networks and DNA computing. In addi-
tion, the ant colony algorithm and particle swarm algorithm are widely used in sched-
uling problems. However, the self-learning mechanism of PSO was originally designed
for continuous numerical optimization problems[16]. For discrete combination optimi-
zation problems, the speed and position learning mechanisms of these algorithms are not
suitable. Most of the improvements convert the original numerical change into a crosso-
ver operation or exchange sub-operation between an individual and the current optimal
solution. To a certain extent, this method is transformed into a genetic particle swarm
algorithm, and the effect is not obvious in practical applications. In summary, the intel-
ligent optimization algorithm for a Pareto optimal set is based on the above-mentioned
advantages and disadvantages[17]. It is a newly improved local optimal solution or
global optimal solution algorithm that is relatively suitable and has great potential for
solving the problem of computing resource allocation.

1. A framework for cloud service evaluation based on a hybrid multi-objective
BM-MOPSO evaluation model

The Materials and Methods should be described with sufficient details to allow
others to replicate and build on the published results. Please note that the publication of
your manuscript implicates that you must make all materials, data, computer code, and
protocols associated with the publication available to readers[18]. Please disclose at the
submission stage any restrictions on the availability of materials or information. New
methods and protocols should be described in detail while well-established methods can
be briefly described and appropriately cited.

Research manuscripts reporting large datasets that are deposited in a publicly
available database should specify where the data have been deposited and provide the
relevant accession numbers. If the accession numbers have not yet been obtained at the
time of submission, please state that they will be provided during review. They must be
provided prior to publication[19]. Interventionary studies involving animals or humans,
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and other studies that require ethical approval, must list the authority that provided ap-
proval and the corresponding ethical approval code.

Based on Pareto optimality theory and the AHP-TOPSIS evaluation model, this
framework is used to objectively determine the weight of each evaluation set and indi-
cator by the AHP method based on MATLAB software, and then the TOPSIS method is
used to analyse the closeness of the optimal solution and determine the overall similarity
between an optimal and ideal solution[20]. Therefore, it is possible to construct a new
AHP-TOPSIS evaluation ideal value approximation model for decision-making. Based on
this thesis, this paper constructs a new AHP-TOPSIS judgment approaching the ideal
solution, which can be used in decision-making.
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Figure 1. Framework of the evaluation method of the C3DPS order task execution process based on
the AHP-TOPSIS optimal set algorithm and Baldwin effect.

One approach to cloud service evaluation is as follows: In an intelligent C3DPS
platform, task-order requirements are normalized descriptions given in detail by
task-order requirements.Task decomposition calls a parsing function and an analysis task
that forms a one-to-one atomic task[21]. According to the atomic task, search matching is
used to perform supply and demand matching of service resources, form a dual feasible
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solution for the C3DPS resource candidate service set, and provide feedback to users.
According to the optimization of user requirements, it then calls a Pareto optimal intel-
ligent optimization algorithm based on the C3DPS platform. This algorithm is optimized
to objectively determine the weight of each evaluation set and indicator by the AHP
method and construct a comprehensive AHP-TOPSIS evaluation model based on a Pa-
reto-optimal set. Finally, it performs Pareto-optimal evolutionary computations and
many local search strategies within the multi-objective evolutionary method. Compre-
hensive superiority is calculated as an evaluation indicator in this cloud service evalua-
tion method, and it can also be used in combining and optimizing design schemes.
Therefore, the optimal service resource is called. The framework of the evaluation
method of the C3DPS order task execution process based on the AHP-TOPSIS optimal set
algorithm and Baldwin effect is shown in Figure 1:

2. Intelligent optimization algorithm for the Pareto optimal set and AHP

2.1. Intelligent optimization algorithm for Pareto optima

The Pareto optimal condition is as follows: In the process of information resource
allocation, the marginal rate of technical substitution of two kinds of information re-
source X and Y in any computer resource is equal to the marginal rate of technical sub-
stitution of producing these two kinds of information resources X and Y; that is,

MRT,, = MRS}, , 1)

where MRT is an ideal state of a computing resource allocation and MRS, is a mar-

ginal rate of technical substitution of the two kinds of information resource X and Y in
any computing resource.

The intelligent optimization algorithm for Pareto optima is derived from the above
concept[23]. Based on the analysis of the existing intelligent optimization search strate-
gies, a multi-objective optimization algorithm for Pareto optimal and AHP-TOPSIS
evaluation models is proposed. It is a multi-objective evolutionary algorithm that com-
bines evolutionary computation and a multi-local search strategy.

Definition: Assuming that is the outer set in the th generation, each individual in is
assigned an intensity value , namely:

NG I P 2
=ty =h N @)

where , t* F{u|u® <u stu® eTO},T® =DomS®W UT*™®, n®is the size

of set TY, and ti(k) is the number of individuals who dominate the set .

A strength value is assigned such that each individual can be computed and mul-
ti-locally searched for the evolution of the Pareto optimal set intelligent optimization al-
gorithm, and this value is the fitness determined by its advantages and disadvantages,
namely:

(=14 Y s,

eT® AU AU
u]eT AU AU;

®)

Here, the fitness of an individual is equal to the sum of all the external individuals that
dominate it. In addition, the size of the set is chosen so that the individual is infinitely
close to the fitness value.
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2.2. Analytic hierarchy process

In the 1970s, Professor T. L. Saaty, an American operational research scientist, pro-
posed a multi-objective decision analysis method called the AHP, which is mainly ap-
plied to decision-making problems under multiple evaluation criteria[24].

The modelling steps of the AHP are as follows:
(1) Establish a hierarchical structure model

The hierarchical structure model is decomposed into the various factors that are
contained in the problem and form several levels from top to bottom according to dif-
ferent attributes[25]. The structure model framework includes the following levels: the
highest level (the overall goal of the complex system); the middle level (the planning and
decision-making, the measures and adopted policies, and the criteria for achieving the
goals); and the lowest level (various strategies and constraints).

Definition: Assuming that the set of evaluation indicators is T ={t,t,,...,t }, the
evaluation indicators of each factor are compared with a pair of importance degrees, and
the determined value ¢ is set to represent the importance degree of ;. Then, the hier-

archical structure model is as follows:
a. >0,a. = ,
120 = @

Then, the judgment matrix D is as follows:

where a; is the scale.

X1 Xz Xn
X11 xlz xln X X X
X X .. X 2 2 .., 22,
D= :21 :zz ' :Zn _ X1 Xz Xn (5)
X X o X : : :
"o X Xy X
_X1 Xz Xn_

It can be seen from the above that for the positive definite reciprocal judgment matrix D,
the maximum characteristic root A, exists and is unique, and the weight W, is composed

of positive elements of vectors and is unique.
(2) Construct a judgment matrix

The multi-level system is divided into several hierarchical levels according to dif-
ferent goals and functions[26]. Among them, the judgment matrix is constructed with the
pairwise comparison method and comparison scale at the lowest level.

The elements in each row of the judgment matrix are multiplied as follows:

M.:Ha.., (6)

M. is calculated by taking the n-th power root:

W, =M, , @)
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W, in the vector is normalized:

W, =W, /Zn:Wi ’ (8)
i=1

Here, the values of vector W, are normalized for the consistency check.

(3) Determine the hierarchical order and perform a consistency check

Here, the method determines the correlation degree between adjacent level elements
in the above judgment matrix. Through the construction of two comparison judgment
matrices and the mathematical method of matrix operations, the importance order of the
related elements is determined for a certain element in the previous level.

Definition: In checking the consistency of the judgment matrix, knowledge and
experience can meet different conditions. The specific formula is as follows:

C _&_ Ao —N
TR T (N-DR’ ©)

where C, is the indicator of the consistency check, Nis the order of the judgment ma-

trix, and R, is the average value of the consistency check.

(4) Determine the hierarchical total ranking and perform a consistency check

The combination weight vector of each layer element is calculated and ranked by the
formula of the combination consistency check. Therefore, it determines the importance
degree of each element at the bottom of the hierarchical structure model. In the tradi-
tional AHP method, it is difficult to verify the consistency of the judgment matrix, and
this matrix is greatly affected by expert knowledge and preferences, which limits its
promotion and application[27]. The concept of multi-indicator evaluated entropy is
proposed, and the indicator weight solution method solves the problems of the tradi-
tional AHP method. The evaluation entropy refers to the confusion degree of the evalu-
ation value of each candidate C3DPS set in a comprehensive evaluation.

Definition: Assuming that for a certain service request, the set of candidate C3DPSs
isCS =(S.,S,,...,S,) and that QT,;,QT,,,...,QT,, are defined as the evaluation values
of the candidate C3DPSs on the indicators, the evaluation entropy of the indicators QT,

is:

> (@, -QT)°

(10)
Diff (QT,) = ST‘l ,
1

The solution formula for index evaluation entropy is introduced into other second-
ary indicators of the QoS index, and Diff (QT,),.., Diff (QT,) are obtained; then, the

relative weight corresponding to QT, (x=1,2,...,n) is:
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w(QT,) =21 Q)

3" Diff (QT,) (11)

where W (QT,) is the weight value, Diff (QT,) is the indicator evaluation entropy of

Diff (QT,),and z Diff (QT,) is the sum of the entropy values of QT, (x=1,2,...,n).

i=1

Based on Pareto optimal theory, the improved AHP-TOPSIS evaluation model is
used to objectively determine the weight of each evaluation set and index[28]. The
closeness of the evaluation model is determined by analyzing and making decisions to
obtain the optimal solution that brings about an overall similarity between the best al-
ternative and the ideal scheme combined with the TOPSIS optimization method.

3. Mathematical model of C3DPS order task execution evaluation based on the
AHP-TOPSIS evaluation model

In the process of multi-attribute decision-making, the weight of each attribute re-
flects the relative importance of the attributes, which directly affects the result of deci-
sion-making. Therefore, the weight of each attribute is one of the key issues in mul-
ti-attribute decision-making that determines the results of decision-making. Aiming to
solve a multi-attribute decision-making problem in which the attribute weight infor-
mation is determined and the attribute value is an intuitionistic fuzzy number, a deci-
sion analysis method for the AHP-TOPSIS evaluation model is proposed. This analysis
method is widely used in multi-attribute decision-making problems. The AHP-TOPSIS
comprehensive evaluation model is a comprehensive evaluation and optimization
method that combines the AHP and TOPSIS. The weight vector of each evaluation indi-
cator is objectively determined and calculated to achieve comprehensive superiority by
this evaluation model[29]. The basic principle of TOPSIS is to sort the evaluation objects
by the distance between the fuzzy positive ideal solution and its similarity to fuzzy
comprehensive attributes in the multi-objective decision-making problem.

3.1. Establish an initial evaluation matrix A

Definition: Suppose that a set A={A, A,,..., A, } of schemes is composed of m
schemes Au A2 yeeny An and that each scheme also corresponds to a number of evaluation
indicators X,, X,,..., X, . The set of evaluation indicators is X ={X,, X,,..., X, }. Then,

the initial evaluation indicator matrix can be expressed as:

X11 X12 Xln
A= (Xij)mxn = ;21 ;22 : ;Zn ’ (12)
Xml sz an

where X;; is the -th evaluation indicator in the j-th scheme.

3.2. Establish a weighted standardized decision matrix

The evaluation indicators can be divided into two categories: consumption indica-
tors and profit indicators. The higher the profit indicator is, the lower the consumption
indicator. These are two kinds of indicators that can also be divided into measurement
indicators and non-measurement indicators with different dimensions and dimensional
units[30]. On this basis, it is necessary to strictly define the meaning of indicators and
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provide reference standards, which will eliminate the incontestability of the resulting
indicators and carry out dimension normalization of the evaluation indicators in the
evaluation of non-metric indicators.

The standardized decision calculation method for the initial evaluation matrix is
described below.

(1) The consumption indicator is

B X —min; (X;)
Y max;(X;)—-min (X;)

(13)

where X;; —min; (X;)is the difference between the evaluation indicator value and the

minimum evaluation indicator value in the initial evaluation matrix;
max; (X;;) —min; (X;) is the difference between the maximum value and the minimum

value in the initial evaluation matrix.

(2) The profit indicator is

L maxj(xij)_xij
Y max;(X;)—min, (X;)

(14)

where mMax j(Xij)— Xij is the difference between the maximum evaluation indicator

value and the evaluation indicator value in the initial evaluation matrix, and
max ; (X;) —min; (X;) is the difference between the maximum value and the minimum

value in the initial evaluation matrix.

According to the life cycle evaluation indicator system of C3DPSs, a standardized
decision matrix for multi-attribute decision-making is constructed. According to the ac-
cumulation process of the performance indicator MOPpt(T, Q, Mat, R, RI, Flex,
C, Ft, SF, Sa), the objective function of multi-objective optimization is determined, and

the performance of the C3DPSs can be evaluated through four sub-evaluation indicator
systems[31]. Assuming that the service resources of C3DPSs are evaluated,

ORS ={I,,1,,..., }will be selected as a candidate set of service resources in the C3DP order

execution process. A standardized decision matrix for multi-attribute decision-making is
shown in Table 1.

Table 1. Standardized decision matrix for multi-attribute decision-making.

r r, . I o r

T W) wv) o W) )
Q W) ) W) )
Mat  ("0") @R W W)
R (') gvs) W) )
RI 7% 0 B (70070 B (70 I 7

FleX (MFlex , VlFleX) (ﬂZFIex , VZFIeX) . (,uiFIEX , ViFlEX) . (,U:IEX , VnFlEX)
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C () vy) W) vy

Here, (¢ Vi) (2 V2) 7 oy, (i) o (P ™) o =iy (s vE) s (i v
(uF vyand (4°,v2) are, respectively, intuitionistic fuzzy numbers representing the
duration time T, cost C, matching degree Mat, service response R, quality Q, reliability RI,
service fault tolerance Ft, flexibility Fl, safety SF and customer satisfaction Sa. For the
performance evaluation of the C3DPSs life cycle evaluation indicator system, mul-
ti-attribute decision-making is standardized as a decision-making matrix.

(3) Establish a weighted standardized decision matrix R.

The weighted standardized decision matrix R is multiplied by the column vector of
the matrix X with the weight values determined by the AHP method, and the weighted
standardized decision matrix R can be obtained as:

W1b11 W2b12 Wnbln

wbh,, wb, - wbhb
R — (rij)mxn — l. 21 2. 22 ) n. 2n ) (15)
Wlbml W2bm2 e Wnbmn

Here, Wis a coefficient of the matrix.

(4) Calculate the closeness Bi+ of the evaluation objects.

The ideal solution of the profit indicator set J,is the maximum value of the row
vector, and the negative ideal solution is the minimum value of the row vector[33]. The
ideal solution of the consumption indicator set J, is the opposite.

{R* ={(max(w,b._[meJ),(min(w,b_|meJ,)}

- : : (16)
R ={(min(w,b,,, |m e J,), (max(w,b,,, | m e J,)}
The matrix of the evaluation object and ideal solution is as follows:
+ N +32
D =1’Zl(rij _rj )
j=
' 17)

D™= Zn:(ru - rj7)2

j=1

where D" and D™ are the distances between the evaluation object and the positive and

negative ideal solutions, respectively; I’j+ and I} are the elements corresponding to R"and
R™.

The formula for the closeness of the evaluation object is as follows:

D~
B '=———, 0<D" <1, 18
D".+D, (18)

(5) Construct an AHP-TOPSIS comprehensive evaluation model.
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The evaluation matrix is constructed from the proximity analysis of the TOPSIS
method, and the result vector F of the AHP-TOPSIS comprehensive evaluation is as fol-
lows:

F=WxB, (19)

In the formula, B is an evaluation matrix formed from the closeness value of each evalu-
ation object, and W is the weight calculated by the analytic hierarchy process.

4. The solution of the C3DPS quality evaluation model

4.1. Hybrid multi-objective particle swarm optimization (PSO) algorithm based on the Baldwin
effect (BM-MOPSO)

BM-MOPSO is an intelligent algorithm based on multi-objective PSO that combines
Baldwin's learning strategy idea, a population global target value scalar parameter, a
scalar parameter for the population global objective value, intuitionistic fuzzy member-
ship and a ranking method. In the application of the hybrid multi-objective PSO algo-
rithm, it solves the above-mentioned C3DPS quality evaluation problem[35]. This is the
key to the problem of adopting the learning of the Baldwin effect within a certain period
so that the global search and learning strategies can ensure the interactive operation of
the algorithm in a fixed period.

(1) Baldwin effect learning strategy

As a learning method, the Baldwin effect learning strategy can effectively reduce
the selection pressure. This not only affects the characteristics of the search space but al-
so increases the polymorphism of the genetic process and transforms the shape of the
dominant search space. A local search can also be carried out based on the Baldwin ef-
fect that improves the non dominated solution of PSO[36]. The mathematical formula of
this learning function is as follows:

pzj+kx(pij_pzj)l pzj<pij
Yy =P tkx(py—py) P <Py, (20)
p;, Otherwise

wherel, Z={L,2,...,m}, Mis the number of particles in the swarm, j={1,2,...,n},nis
the dimension of the particle swarm and is the step size of the observation interval.

If p;;is greater than p,;, particles P, learn from particles p;; if P is greater than
P, particles X;; learn from particles X;; ; if neither is dominated by the other, the parti-

cles do not learn.
(2) Local search strategy based on the BM-MOPSO algorithm

When the particle swarm performs a local search for the Baldwin effect, one of the
following situations will occur:

1) When searching the initial points, most particles are far away from the Pareto
frontier in the space, and it is easy to find the dominant solution in the region, which
leads to high search efficiency. At a certain time, the optimal solution set of the popula-
tion is sorted by Pareto dominance, and the particles are dynamically updated to the
Pareto solution set. At the same time, the method learns from the dominant solution so
that the particle swarm can more quickly approach the Pareto frontier.
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2) If the local search times of PSO converge to the threshold flag, the obtained solu-
tions are all non-dominated solutions, which indicates that the population has fallen into
a local extreme point at this time. The direction of the non-dominated solutions is:

flag
X. —X
d=) - 2o 21
iz—l:”xi_xoll -

where X;(1=12,...,flag) is the i-th non-dominated solution in the local search and

X; — X, is the distance from the local extreme point to the initial value in the local search.

3) If the above two conditions are satisfied, then the number d of X; and the

non-dominated solution q (q = 3) satisfy one of the following conditions:

If d<(, the method learns from the dominating solution so that the particle
swarm can more quickly approach the Pareto frontier.

If d>q, the search direction changes, and the PSO can be guided and diffused in
the optimization direction.

The local search method of the BM-MOPSO algorithm is as follows:

Step 1: The parameters are initialized; that is, the initial position of PSO is (XO , yo) ,

its iteration number is i =0, and the direction of the non-dominated solution is d=0 .

Step 2: In the initial position of PSO(X,,Y,), a dominating solution is randomly

selected and marked as Y, .

Step 3: If Y, <Y,, the initial position of PSO is locally searched by the Baldwin ef-
fect learning strategy and is set toX,, =Y, +kx(y,-Y,) (K is the number of executions of

the Baldwin effect learning strategy); then, the method goes to step 5. If Yy, <Y,, then

the Pareto solution set is dynamically updated. At the same time, the method learns
from the dominant solution. The particle swarm can move closer to the Pareto frontier,
ensuring that the individual particle swarm will have this learning ability. If

Xoow = Y1 T KX (Y, —Y,), the method goes to step 5; otherwise, it goes to step 4.

Step 4: If d++, then PSO calculates the direction d of the non-dominated solution.
Ifd > q, it reinforces learning to calculate the optimal step size S and explore the optimal

position X, =Y, +dxSand then goes to step 5; otherwise, it goes to step 2.

Step 5: Ifi < flag, the method goes to step 2; otherwise, this particle swarm popula-
tion falls into a local extreme point, and X, is the next initial value of particle swarm

X,

4.2, The basic process of the multi-objective particle swarm optimization algorithm based on the
Baldwin effect

The basic process of multi-objective BM-MOPSO is shown in Figure 2. The algo-
rithm steps are analyzed below.
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Figure 2. The basic process of the multi-objective BM-MOPSO algorithm.

(1) Particle initialization

First, the maximum number of iterations, number of independent variables of the
objective function, maximum velocity of particles and position information are set ran-
domly in the velocity interval and search space to obtain a one-to-one mapping between
the service resources and particles, that is, to perform particle initialization.

Assume that each particle is an optional combination of service resources, where a

service resource is selected from each candidate service set list CRS, to form a combina-

tion of service resources[37]. The initial scale of the particles is the N -population of the
feasible dimension space S ={p,, p,,..., P,}, and each scale of particles corresponds to

an optional combination of the number of service resources.

For example, let the combination of C3DP optional service resources be
{CRS;,CRS;,CRS;, CRS; }which means that a C3DPS resource is selected by the serial

atomic task sequence OR, to be the fifth service resource CRS’ in the set of service re-

sources CRS, . The serial atomic task sequence OR, is the fourth service resource CRS;

in the set of service resources CRS, [38].

In the same way, the order of particles mapped one by one is . A mapping example
of the composition of service resources and particles is shown in Figure 3.


https://doi.org/10.20944/preprints202103.0283.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 d0i:10.20944/preprints202103.0283.v1

Serial atomic OR, OR, OR, OR, OR; OR,

task sequence

Searching

Feasible solution

v v v v A 4 v
domain of C3DPS | CRS, CRS, CRS; CRS;
resources

CRS, CRS,
ISeIecting
Feasible solution
domain of C3DPS
resources
lMapping
The order of
particles

Figure 3. Mapping example of the composition of service resources and particles.

(2) Set of fitness functions

From the above objective function MOpt(OR), the optimal value of each index set
is selected by the evaluation of the C3DP order task in the feasible solution domain of

the service resource candidate service subset. Therefore, the moderation function of the
BM-MOPSO algorithm is calculated as follows:

fitness(p‘):Wl(zn:T(CRSJ"")Ji +W2(ZHZQ(CRSJ."")) +w3f[[ y Mat(CRSjp")ji +w4]l[(zn: R(CRSf")Ji ,

=1 i1\ j=L i1 \j=1

(22)

n

WSﬁ[i FIeX(CRS"pI')]i +W6(iC(CRSip3)]7 +W7f[[z Ft(Cst""))i +wsll[[i8a(CRSjpl')]i

i=1 \_j=L =1 i=1 \j=1 i=1 \_j=L

In the formula, W, , W, ,W,, W, , W, ,W,, W, and W, are the weight ratios of C3DP
equipment service resources. The larger the fitness function fitness(p') is, the better the

particle pi .
(3) The range of the particle dimension and moderate function

In the BM-MOPSO algorithm, the learning strategy based on the Baldwin effect is
an iterative process of learning and evolution that balances the relationship between
global search and local search. To improve the non-dominated solution of particle
swarms, an individual particle learns in the same environment to achieve stronger sur-
vival adaptability[39].

After completing the Baldwin effect learning operation, the value of a certain di-
mension of the particle is larger than the value range, so it is necessary to calculate the
particle swarm with the extreme value standardization method, which is used if the
value is larger than the value range.

Therefore, the value range of each dimension of the particles is a discrete value

range{pkj 1< pkj <K J-}. After the Baldwin effect learning operation is completed, the

dimension value of the particles is greater than the value range, and the extreme value
normalization method is used for the particle swarm in this excessive value range. If

i : i
P > K, the value is set to p;, = K;.
The optimal position of each individual P, of the particle swarm is now

X = (Xigs Xizs+-+%;) . The functional generalized derivative f (X) representing the feed-
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back information in the learning and evolution process of the BM-MOPSO algorithm is
calculated, which is defined as follows:

Df (py) _ F (g eees X %5000 X5 ) = F Ky ey X0 X5)
Dx;, A X

, (23)

Here, the individual particle p;yields pi' when the learning strategy based on the Bald-

win effect is carried out. For each dimension X;, ( k=12,.., j ) of the position vector of

individual , the formula is as follows:

min f(p,)= min f(xi'l,xi'z,...,xi'j)

Ipi—pil<e Ipi—pil<e
: . AN, Df ().~ (24)
= min f(xi1+—ﬂ"1N'lDf(p'),...,xij+—” J (p,))
Nip.Nip.NjeZ* Dx,, Dxij

where A4, and N, are the parameters for adjusting the step length. The integer N, is the
number of individuals in the population particle swarm [, and their initial values are
all the same; N; +1— N, and 4, is the value of the updated particle position within the
feasible region[X, , X;][40]. Then, 4 is the quotient of the range distance and the maxi-
mum iteration number:

| XL~ XR |

A=l
= (25)

max

The steps of the algorithm are as follows:

Step 1: Initialization. This includes all parameters of the particles, such as the initial
position and velocity. The individual optimal position of a particle is defined as the cur-
rent position, and the global optimal position is the optimal position of all particles. The

-G
initial position of each particleiis X, = (X;,X,), the speed is V, =(V,V,) (i=1..,N), the
number of particles is , the number of iterations is N , and the initial solutions pO are

randomly generated by N, .

Step 2: Calculate the fitness function value of each particle. That is, the fitness func-
tion value fitness(p')is calculated by the functional generalized derivative f(X) when

the coordinate X; takes the coordinates into the generalized derivative.

Step 3: Determine whether to perform local search. If the current iteration number
meets the conditions for iteration termination (< % of the total number of iterations),

then local search is not performed and the algorithm moves to step 4; otherwise, step 5
is performed.

Step 4: Perform a global search. If the number of consecutive iterations with no
updates meets the preset threshold, each particle will calculate the update speed and
position in the global optimal solution according to the basic formula; otherwise, the al-
gorithm moves to step 6;

Step 5: Perform a local search. The particles perform the local search based on the
Baldwin effect with probability P, , and the algorithm moves to step 6;
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Step 6: Non-uniform mutation. Assuming that there is a particle pt =(V,...,V J-)in

the t-th generation, a random variable V, is selected and outputs a number between 0
and 1, and a non-uniform mutation operator is locally mutated by the particle for the

next generation pt+l = (Vl, ey Vl'( yeen Vi ) . The particle swarm will become more stable.

Step 7: Repeat step 2 to step 6 until the current iteration number meets the condi-
tions for termination; otherwise, continue to update X; and V; .

Step 8: After execution, output the calculation result.

5. Example simulation

To ensure the preciseness of the data, the case data were sampled from a CMfg
platform developed by a 3D printing company in Wuhan city, which is a smart C3DPS
platform that integrates modelling design and 3D printing. It integrates various kinds of
C3DPSs of multiple fields and types and provides network access to different types of
3D printing equipment. It also performs online real-time data collection. Here, the real
data of different 3D printing devices in the platform were selected for the example sim-
ulation.

5.1. Simulation environment

To verify the reliability and universality of the cloud service evaluation based on
the hybrid multi-objective BM-MOPSO evaluation model, a verification application in
C3DPS creative and innovation product development was used. Its simulation environ-
ment was as follows:

a. Windows 7 operating system

b. Intel (R) Core (tm) i5-4210H 2.90 GHZ CPU
c. 8G memory.

The experimental environment was as follows:

At run time, the population size was 10, the maximum number of iterations was 100,
the target weights were Q,and Q,, and the values were 0.7 and 0.3, respectively. The

range of moderate function deterioration was set to -0.1 for the moderate functions

w,=020, w,=020, w,=010, w,=005, w,=010, w,=0.20,
w, =0.05, w; =0.10.

According to the above multi-objective BM-MOPSQO, the evaluation data and
weight value of each candidate 3D printing device were inputted and simulated in
MATLAB. Each algorithm was tested independently for each test function fewer than 30
times. The convergence characteristics of the algorithms are shown in Figure 4 and Fig-
ure 5:
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Figure 5. Simulation results of the algorithm.

Flow chart of cloud service evaluation implementation based on the hybrid mul-
ti-objective BM-MOPSO evaluation model

5.2. Analysis of hybrid multi-objective BM-MOPSO

The Knowledge module is responsible for the management and scheduling of var-
ious types of knowledge on service resources; the Coordination module creates links
between various coordination methods and performs operation monitoring and coordi-
nation management in the cloud service evaluation model based on the hybrid mul-
ti-objective BM-MOPSO evaluation model. Figure 6 shows the evaluation process for
cloud services based on the hybrid multi-objective BM-MOPSO evaluation model.
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Figure 6. Flow chart of cloud service evaluation implementation based on the hybrid mul-
ti-objective BM-MOPS evaluation model.

A user proposes a complex manufacturing task that decomposes into 6 sub-task
nodes T=(T,T,,T,,T,,T;,Ts) . After entering the task information into the platform, it

is preliminarily matched to several 3D printing equipment resources that meet the user's
needs. A candidate set of 3D printing equipment resources is established, that is,

S$=(5,,S,,S;,S,,S;,Ss) . Among them, task node S, is matched with three candidate

resources, which can be expressed by S; =(S,;,S,,,5,;). Each candidate resource is

shown in Table 2.

Table 2. Candidates for 3D printing device resources.

Candidate set

Atomic service

Workshop name

Equipment model

Yourui 3D printing
JIA Yi Gaoke
Campus store
WINBO
Beien 3D
3D printing workshop
The third brother of Hanbang
Artful design workshop

E-Plus-3D
Manheng

Tongchuang 3D

HW-602
JOYE-4035
Aurora LVO A8
WB-SH105
BANSOT M2
Dimension SST 1200es
Corporate T1
SLM 500
EP-M100T
EOS-M290

MOONRAY
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S, Flashcast Technology Studio Explorer
Sis Yourui 3D printing DLP-1
S, Flashcast Technology Studio Creator Pro
S S, Wuhan store Second-generation 3D printing
: S, JIA Yi Gaoke JOYE-1010K
S, JIAYi Gaoke JOYE-1212E
Sq1 Campus Station of College of Culture FORTUS 200 mc
S S, 3D printing workshop ProJet 6000
i Ses Yunle Design Studio ULTRA
Ses High-precision printing HOFTX2

According to the different 3D printing equipment resources, the evaluation indica-
tors are optimized and quantified from the original data of each 3D printing equipment
resource. The form of the data set is as follows:

(0.(S) a(Sy) 6(Sy) a,(5) .Sy ]
A.(S2) a.(Sy) a.(5.) a.(S,) a.(Sy)

S, = qc(si3) qt(SiS) qr(sia) qu(sis) qe(sia) (26)

~

0G5y a(Sy)  a Sy au(Sy)  a.(Sy) |
Here, the unit of |, (S;;) is "Yuan", and the unit of g}, (S; ) is "hour".

The above evaluation data of each candidate 3D printing equipment resource are
specifically expressed as follows:

980 42 0.79 0.75 20

1240 35 0.76 0.79 78 2200 59 0.27 065 34
S,=|1300 55 0.18 0.48 94 5= 1700 61 0.65 0.16 70

11750 54 0.44 0.64 98 3200 59 0.11 0.49 30 -

(1400 49 0.95 0.34 53 1850 30 0.50 0.69 49
S,=[1300 58 0.58 0.22 64|S,=|3300 34 0.89 0.95 40

12700 67 0.75 0.25 87 2000 24 054 0.13 68
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1600 55 0.14 0.25 49 750 43 0.19 0.25 35
- 2600 36 0.84 0.25 68 s = 2700 37 0.61 0.47 67
® 11850 37 081 0.24 75| ° |1800 38 0.35 0.83 59|,

900 44 0.92 0.35 53 1000 68 0.58 0.54 76

Assuming that the particle population is 14 and the number of iterations is 50, the
weight values of the evaluation parameters in the fitness function are, respectively

a,=02, ,=03, ,=0.2, a,=0.1 and o, =0.2.

According to the above multi-objective BM-MOPSO, the evaluation data and
weight value of each candidate 3D printing device are inputted and simulated in
MATLAB. The simulation results are shown in Figure 7, in which the vertical axis is the
fitness function value and the horizontal axis is the population number.

7

651 E

55F 1

451 5

35 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Figure 7. Convergence curve of the fitness function.

It can be seen from Fig. 6 that when the population number is 14, the fitness is low-
est, the optimal combination scheme is , and the fitness function value is 3.9370. That is,
the optimal combination of 3D printing equipment resources is Yourui 3D printing
hw-602, WINBO WB-SH105 and Qiaoyi workshop SLM 500, Flashcast Technology Ex-
plorer, Jiayi Hi-Tech JOYE-1212E, and Yunle Design Studio.

6. Conclusions

The global economy is transforming from a product economy to a service economy.
Manufacturing and services are gradually merging. Individual enterprises pay close at-
tention to their own core business. By providing manufacturing services, they can in-
crease the value for stakeholders in the manufacturing value chain so that these indi-
vidual enterprises will be more closely coordinated with each other. The C3DP model is a
new service model that supports multi-user collaboration, and it is also an application of
cloud manufacturing in the field of 3D printing. C3DPS modelling is the basis of C3DPS
supply and demand matching; that is, this relationship between order tasks and services
provides an effective way to match similar elements in the C3DPS platform. A large
number of C3DPSs are aggregated according to certain rules and form a multi-complex
3D printing service network.

This paper formally describes C3DPSs, proposes a QoS acquisition and calculation
method based on a mutual evaluation mechanism under the CMfg model, and estab-
lishes a C3DPS trust evaluation model based on service matching and global trust. The
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genetic algorithm optimizes the combination of C3DPSs so that it meets the require-
ments. Active intelligent rent-seeking for C3DPSs will be the next research direction.
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