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ABSTRACT  

 

Since 1742, the year in which the Prussian Christian Goldbach wrote a letter to Leonhard Euler with his 

Conjecture in the weak version, mathematicians have been working on the problem. The tools in number 

theory become the most sophisticated thanks to the resolution solutions. Euler himself said he was unable to 

prove it. The weak guess in the modern version states the following: any odd number greater than 5 can be 

written as the sum of 3 primes. In response to Goldbach's letter, Euler reminded him of a conversation in 

which he proposed what is now known as Goldbach's strong conjecture: any even number greater than 2 

can be written as a sum of 2 prime numbers. The most interesting result came in 2013, with proof of weak 

version by the Peruvian Mathematician Harald Helfgott, however the strong version remained without a 

definitive proof. The weak version can be demonstrated without major difficulties and will not be described in 

this article, as it becomes a corollary of the strong version. Despite the enormous intellectual baggage that 

great mathematicians have had over the centuries, the Conjecture in question has not been validated or 

refuted until today. 

Keywords: Goldbach's conjecture, numbers prime, Arithmetic Theorem. 

 
DEFINITIONS AND SOME PROPERTIES OF WHOLE NUMBERS 
 
 
This article will be limited to only a few properties of the whole numbers that are deemed necessary for the 
logical construction of this work. The Set of Integers is represented by ℤ and the number of elements 

contained in ℤ is infinite, that is, ℤ = {… , −4, −3, −2, −1, 0, 1, 2, 3, 4, … }. ℤ can be represented without the 
neutral element ℤ∗ = {… , −4, −3, −2, −1, 1, 2, 3, 4, … }. The Set of Natural Numbers 𝑁 consists of positive 

integers and the neutral element zero, that is, 𝑁 = {0, 1, 2, 3, 4, … }, alternatively, 𝑁∗ = {1, 2, 3, 4, … }. It is 

observed that 𝑁 ⊆ ℤ. One of the properties of the Integers is that for each element n, there is a successor, 

that is, from an element n, it is possible to deduce that there is 𝑛 + 1. Property that extends to the Naturals. 

Let 𝑛 ∈ ℤ, where ℤ is the Set of Integers then follows: ∀ 𝑛 ∈ ℤ, ∃ 𝐼│𝐼 = {2𝑛 + 1}, where 𝐼 is the Set of Odd 
Numbers, 𝐼 ⊆ ℤ.  

Let 𝑛 ∈ ℤ, where ℤ is the Set of Integers, then follows: ∀ 𝑛 ∈ ℤ, ∃ 𝑃│𝑃 = { 2𝑛 }, where 𝑃 is the Set of Even 

numbers, 𝑃 ⊆ ℤ.  

There are numbers that can only be divided by itself and by the unit. These numbers form the Prime 

Numbers Set and will be represented here generically by Λ = {𝑞1, 𝑞2, 𝑞3, … }. There is an infinity of prime 

numbers, as shown by Euclid. Prime numbers are distributed infinitely and randomly along the Real line. The 

question of the distribution of prime numbers pervaded the heads of many mathematicians and culminated in 

the Prime Number Theorem. Friedrich Gauss was one of the mathematicians who worked on the 

approximations with regard to the number of prime numbers in the range 0 to 𝑛. The function that defines the 

distribution of prime numbers in 𝑛, is 𝜋(𝑛). The approaches came to an interesting result. The number of 

prime numbers less than or equal to n is given by; 
𝑛

𝑙𝑁 𝑛
, later, it was proved that for 𝑛 very large, we have 

𝑛

𝑙𝑁 𝑛
 ≈ 𝜋(𝑛), so that lim𝑛→∞

𝜋(𝑛)
𝑛

𝑙𝑁 𝑛

= 1. In this article the letter y and x will be used for composite whole 

numbers and they can be written in terms of prime numbers.  
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Consider 𝑦 = 𝑥𝑘𝑥𝑠, where 𝑥 = ∏ 𝑞𝑘
𝑘
𝑘=1  and 𝑥𝑠 = ∏ 𝜑𝑠

𝑠
𝑠=1 , rewriting 𝑦 = ∏ 𝑞𝑘 ∏ 𝜑𝑠

𝑠
𝑠=1

𝑘
𝑘=1 = 𝑞1 … 𝑞𝑘𝜑1 … 𝜑𝑡, 

where 𝑞1 ≤ 𝑞2 ≤ ⋯ ≤ 𝑞𝑘,  𝜑1 ≤ 𝜑2 ≤ ⋯ ≤ 𝜑𝑡  ∈  Λ.  This is the formalization of the Fundamental Theorem of 

Arithmetic, which in words "every composite whole number can be written in terms of prime factors and each 

number has a unique decomposition signature, except in the order of its factors". 

 

 
DEMONSTRATION OF THE EXISTENCE OF DECOMPOSITION 
 

Sinse 𝑦 is a prime, then 𝑦 = 𝑞, it is trivial  {𝑦, 1} = {𝑞, 1}. If 𝑦 is composed, then ∃𝑥𝑘│1 < 𝑥𝑘 < 𝑦 that divides 𝑦 

so that 𝑦 = 𝑥𝑘𝑥𝑠 and 1 < 𝑥𝑠, < 𝑦. Hypothetically,  𝑥𝑘 and 𝑥𝑠 can be written as the multiplication of prime 

factors, such that, 𝑥𝑘 = ∏ 𝑞𝑠
𝑘
𝑘=1 = 𝑞1𝑞2𝑞3 … 𝑞𝑘 and 𝑥𝑠 = ∏ 𝜑𝑠

𝑠
𝑠=1 = 𝜑1𝜑2𝜑3 … 𝜑𝑠, rewriting it comes; 𝑦 =

(𝑞1𝑞2 … 𝑞𝑘  )(𝜑1𝜑2 … 𝜑𝑠) = ∏ 𝑞𝑘 ∏ 𝜑𝑠
𝑠
𝑠=1

𝑘
𝑘=1 , where 𝑘, 𝑠, ≥ 1 are positive integers. Since 𝑥𝑘 and 𝑥𝑠 can be 

decomposed into their prime factors, the decomposition of 𝑦 is also obtained. 

In the above demonstration, it is considered that the primes are not necessarily distinct, so it is possible to 

regroup them so that the Fundamental Theorem of Arithmetic can be rewritten in its standard form, known as 

canonical form, that is: 𝑦 = 𝑞1
𝛼1𝑞2

𝛼2 … 𝑞𝑘
 𝛼𝑘, where 𝛼1 , … , 𝛼𝑘 are positive integers and represent the exponents 

generated by the clusters of primes that eventually repeat, in this case, each prime forms a power 𝑞𝑘
𝛼𝑘, after 

this rearrangement, there is 𝑞1 < 𝑞2 < ⋯ < 𝑞𝑘.   

 

 

DEMONSTRATION OF THE UNIQUENESS OF DECOMPOSITION 
 

Each number, when decomposed into its prime factors has a unique signature, is called the uniqueness of 

the decomposition. Let 𝑦 = 𝑞1𝑞2𝑞3 … 𝑞𝑘  , where 𝑞1 ≤ 𝑞2 ≤ ⋯ ≤ 𝑞𝑘, it is known that the decomposition is 

unique and in this case the length is 𝑘. To prove that given a decomposition of length 𝑘, it is unique, suppose 

there is another decomposition for this case and has length 1, so, 𝜑1 = 𝑦 = 𝑞1𝑞2𝑞3 … 𝑞𝑘, where  𝜑1 is prime. 

Like 𝑞1 𝑞1𝑞2𝑞3 … 𝑞𝑘, → 𝑞1 𝜑1  →  𝜑1 = 𝑞1 ⇒ 1 = 𝑞2𝑞3 … 𝑞𝑘, absurd, because for 𝑘 > 1,  there is 
1

𝑞2 
= 𝑞3 … 𝑞𝑘, an 

invertible ℤ impossible product. We conclude that for 𝑘 = 1, 𝑦 = 𝜑1 = 𝑞1, which proves that this 

decomposition is unique. By induction, it is proved that the proposition will be valid for 𝑠 + 1. In fact, doing 

𝑦 = 𝜑1𝜑2𝜑3 … 𝜑𝑠+1 = 𝑞1𝑞2𝑞3 … 𝑞𝑘, like 𝑞1 𝑞1𝑞2𝑞3 … 𝑞𝑘 → 𝑞1 𝜑1𝜑2𝜑3 … 𝜑𝑘+1, for some 𝑗 ∈  {1, 2, 3, … , 𝑠, 𝑠 + 1}, 

𝑞1 𝜑𝑗  ⇒ 𝑞1 =  𝜑𝑗. How the two factors coincide on both sides of the above equation; 𝜑1𝜑2𝜑3 … 𝜑𝑠+1 =

𝑞1𝑞2𝑞3 … 𝑞𝑘  ⇒  𝜑2𝜑3 … 𝜑𝑠+1 = 𝑞2𝑞3 … 𝑞𝑘. This equality shows that factors 𝜑𝑗  and 𝑞𝑖 are equal for all 𝑖 and 

𝑗 ∈ {2, 3, 4, … , 𝑠, 𝑠 + 1}. The length of the decomposition in the first member is é 𝑠 = (𝑠 + 1) − 1, −1 comes 

from the fact that in the first member 𝜑1 it was canceled. Furthermore, for equality, we have 𝑘 = 𝑠 + 1, which 

justifies the coincidence between the factors  𝜑𝑗  and 𝑞𝑖, proving that the uniqueness of the decomposition is 

also valid for 𝑠 + 1. Before starting the demonstration proposed in this article, it will be important to look at 

other properties of whole numbers. Let  𝑦 ∈ 𝐼 and 𝑝 ∈ 𝑃: 

 

Property 𝟏: the multiplication of an odd number by an odd number will always result in an odd number. 

Demonstration: let two integers be any 𝑛 and 𝑚;  

(2𝑛 + 1)(2𝑚 + 1) = 4𝑚𝑛 + 2𝑛 + 2𝑚 + 1 = 2(2𝑚𝑛 + 𝑛 + 𝑚) + 1. Calling the portion (2𝑚𝑛 + 𝑛 + 𝑚) of 𝑘, 

where 𝑘 ∈ ℤ, we have: 2(2𝑚𝑛 + 𝑛 + 𝑚) + 1 = 2𝑘 + 1 = 𝑦 

 

Property 𝟐: multiplying an odd with an even number will always result in an even number. Demonstration: let 

two integers be any 𝑛 and 𝑚; (2𝑛)(2𝑚 + 1) = 4𝑚𝑛 + 2𝑛 = 2(𝑚𝑛 + 𝑛). Calling (𝑛𝑚 + 𝑛) of 𝑘, where 𝑘 ∈ ℤ, 

we have: 2𝑘 = 𝑝 

 

Property 𝟑: multiplying a pair with a pair will always result in an even number. Demonstration: let two 

integers be any 𝑛 and 𝑚; (2𝑛)(2𝑚) = 4𝑚𝑛 = 2(2𝑚𝑛). Calling (2𝑛𝑚) of 𝑘, where 𝑘 ∈  ℤ, we have: 2𝑘 = 𝑝 
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Property 𝟒: adding an odd to an odd will always result in an even number. Demonstration: let any two 

integers be 𝑛 and 𝑚; (2𝑛 + 1) + (2𝑚 + 1) = 2𝑛 + 2𝑚 + 2 =  2(𝑛 + 𝑚) + 2. Calling (𝑛 + 𝑚) de 𝑘, where 𝑘 ∈ ℤ, 

we have: 2(𝑛 + 𝑚) + 2 = 2𝑘 + 2 = 𝑝 

 

Property 𝟓: adding an odd to a pair will always result in an odd number. Demonstration: let two integers be 

any 𝑛 and 𝑚; (2𝑛) + (2𝑚 + 1) = 2𝑛 + 2𝑚+=  2(𝑛 + 𝑚) + 1. Calling (𝑛 + 𝑚) de 𝑘, where 𝑘 ∈ ℤ, we have: 

2(𝑛 + 𝑚) + 1 = 2𝑘 + 1 = 𝑦 

 

Property 𝟔: adding a pair to a pair will always result in an even number. 

Demonstration: let two integers be any 𝑛 and 𝑚; (2𝑛) + (2𝑚) = 2(𝑛 + 𝑚). Calling (𝑛 + 𝑚) of 𝑘, where 𝑘 ∈ ℤ, 

we have: 2(𝑛 + 𝑚) = 2𝑘 = 𝑝 

Property 4 says that the sum of two odd numbers always results in an even number, however, although the 

primes other than 2 are odd, it has never been possible to prove that the sum of any prime numbers any 

other than 2 generates even numbers, this it happens because the quoted property is valid for compound 

numbers. There is no guarantee that this property will work if the odd ones are prime. However, with a proof, 

the Goldbach's Conjecture turns into Theorem and then it will be an extension of property 4. 

 

 
MOTTO 
 
Proposition: Let 𝑦 = 𝑥𝑘𝑥𝑠 ∈ 𝐼, where 𝐼 = {2𝑛 + 1} ⊆ ℤ, 𝑥𝑘  and 𝑥𝑠 are odd integers and 𝑝 = 𝑥𝑘 + 𝑥𝑠, 𝑝 ∈

ℤ, then there is: 𝑥2 − 𝑝𝑥 + 𝑦 = 0, where 𝑥𝑘 e 𝑥𝑠 are roots of this equation.  

 

Demonstration 

𝑦 = 𝑥𝑘𝑥𝑠                ⟹     𝑥𝑘 =
𝑦

𝑥𝑠
                                                                                                                             𝐸𝑄. 1 

𝑝 = 𝑥𝑘 + 𝑥𝑠      ⇒   𝑥𝑘 = 𝑝 − 𝑥𝑠                                                                                                                      𝐸𝑄. 2         

 

Joining 𝐸𝑄. 1 and 𝐸𝑄. 2 we have; 

𝑦 = 𝑥𝑠(𝑝 − 𝑥𝑠) = 

 𝑥𝑠𝑝 − 𝑥𝑠
2    ⇒   𝑥2 − 𝑝𝑥 + 𝑦 = 0                                                                                                                     𝐸𝑄. 3 

 

The following conclusions are limited to the Set of Natural Numbers, but are valid for the Whole Set of 

Integers, since there are odd numbers and negative pairs. 

Conclusion 1:  𝑦 is prime if, and only if, there is only one possibility for the value of 𝑝, that is, 𝑝 = 𝑦 + 1 =

𝑞 + 1. In this case the only factors are; 𝑥𝑘 = 𝑦 = 𝑞 and 𝑥𝑠 = 1 or 𝑥𝑘 = 1 and 𝑥𝑠 = 𝑦 = 𝜑, where {𝑞, 𝜑} ∈ Λ. 

Conclusion 2: 𝑦 is composed if, and only if, there are factors{𝑥𝑘 , 𝑥𝑠}│𝑥𝑘 ≠ (𝑦, 0, 1, ) and 𝑥𝑠 ≠ (1, 0, 𝑦, ) 

being  1 < {𝑥𝑘 , 𝑥𝑠} < 𝑦. For 𝑥𝑘 ≠ 0  and 𝑥𝑠 ≠ 0 ⇒ 𝑦 ≠ 0. In the case where the two factors are prime, we 

have 𝑥𝑘 = 𝑞 and 𝑥𝑠 = 𝜑 and thus 𝑦 = 𝑞𝜑. In this case, 𝑝 = 𝑞 + 𝜑.  

Conclusion 3: if and only if, 𝑝 = 𝑥𝑘 + 𝑥𝑠 is knawn, a 𝐸𝑄. 3 will determine the factors 𝑥𝑘 , 𝑥𝑠 for a given 𝑦, 

since the pair {𝑥𝑘 , 𝑥𝑠} is the solution of the equation (trivial conclusion).  

As already noted, the factors 𝑥𝑘 , 𝑥𝑠 may or may not be composed. It is known that all composite numbers 

also have divisors, 1 and himself, in addition to non-trivial divisors, so for such numbers, ∃𝑝│𝑝 = 𝑥𝑘 + 𝑥𝑠, 

where {𝑥𝑘 , 𝑥𝑠} ≠ 1 and {𝑥𝑘 , 𝑥𝑠} ≠ 𝑦 and also ∃𝑝│𝑝 = 𝑦 + 1 for 𝑦 = 𝑥𝑘 = 𝑞 and 𝑥𝑠 = 1 or for 𝑦 = 𝑥𝑠 = 𝜑 and 

𝑥𝑘 = 1. If the number 𝑦 for primo, is prime, it is only possible to obtain 𝑝 = 𝑦 + 1. This means that the 

equation 𝐸𝑄. 3 is valid for compound numbers and for prime numbers. A simple check that 𝐸𝑄. 3 is valid for 

primes follows as follows: let 𝑦 be a number of the form 𝑦 = 𝑞. 1 = 𝑞, where 𝑞 is prime, then from equation 

𝐸𝑄. 3 we have: 𝑞2 − (𝑞 + 1)𝑞 + 𝑞 = 12 − (𝑞 + 1)1 + 𝑞 = 0. That is, the pair {𝑞, 1} satisfies the equation. 

Conclusions 1 and 2 complement each other as, once the numerical value of 𝑝, is known, it is possible to 

state whether y is prime or composed from the found roots. 
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THE STRONG GOLDBACH CONJECTURE 
 
Let  𝑦 = 𝑞𝜑, where  𝑦 ∈ 𝐼, {𝑞, 𝜑} ∈ Λ and 𝑞 ≠ 2 and 𝜑 ≠ 2 → {𝑞, 𝜑} ∈ Λ, Λ ⊆ 𝐼 ⊆ ℤ, then  {𝑞, 𝜑} ∈ ℤ.  

Consider 𝑞 + 𝜑 = 𝑝                                                                                                                                     𝐸𝑄. 4                

Where 𝑝  is an integer. One must arrive at the hypothesis;  

𝑞 + 𝜑 = 𝑝 = 2𝑘, 𝑘 ∈ 𝑍                                                                                                                                 𝐸𝑄. 5                                        

Joining (𝐸𝑄. 1) and (𝐸𝑄. 4), of property 4 results; 

𝑦𝑞 + 𝑦𝜑 = (𝑞𝜑)𝑞 + (𝑞𝜑)𝜑 = (𝑞𝜑)𝑝 = 2(𝑘𝑞𝜑) = 2𝑛 = 𝑝´                                                                            𝐸𝑄. 6 

With  𝑝′ and ∈  ℤ, 𝑝′ ⊆ 𝑃.         

Note that, for property 1,  (𝑞𝜑)𝑞 and (𝑞𝜑)𝜑 are odd. From (𝐸𝑄. 4) can be obtained; 

𝜑 = 𝑝 − 𝑞                                                                                                                                                    𝐸𝑄. 7     

Joining the equations (𝐸𝑄. 6) and (𝐸𝑄. 7), we obtain; 

2𝑛 = (𝑞𝜑)𝑞 + 𝑞𝜑(𝑝 − 𝑞) =                        

(𝑞𝜑)𝑞 + 𝑞𝜑𝑝 − (𝑞𝜑)𝑞 =  

𝑝´ = 2𝑛 = 𝑞𝜑𝑝 = 2𝑘𝑞𝜑                                                                                                                               𝐸𝑄. 8 

If the Conjecture is correct, property 2 implies that 𝑝 must be even.  

So, 𝑞 + 𝜑 = 𝑝 = 2𝑘 por {𝑞, 𝜑} ≠ 2 e 2𝑘 > 4  . This is Goldbach's strong guess. 

 
 
PROOF OF STRONG GOLDBACH CONJECTURE 
 
It is known that there is 𝑝 = 𝑥𝑘 + 𝑥𝑠 for the equation 𝑥2 − 𝑝𝑥 + 𝑦 = 0. Then; 

𝑥𝑘,𝑠 =
−𝑝±√(𝑝2−4𝑎𝑦

2𝑎
                                                                                                                                       𝐸𝑄. 9.   

 Follow the test; 

𝑥 =
−𝑝±√(𝑝2−4𝑎𝑦

2𝑎
   → 

2𝑎𝑥 = −𝑝 + √(𝑝2 − 4𝑎𝑦)  → 

2𝑎𝑥 + 𝑝 = √(𝑝2 − 4𝑎𝑦), raising the two members of the equation come; 

(2𝑎𝑥 + 𝑝)2 = (𝑝2 − 4𝑎𝑦) = 

(2𝑎𝑥 + 𝑝)(2𝑎𝑥 + 𝑝) = 𝑝2 − 4𝑎𝑦 = 

4𝑎2𝑥2 + 2𝑎𝑥𝑝 + 2𝑎𝑥𝑝 + 𝑝2 = 𝑝2 − 4𝑎𝑦 = 

4𝑎2𝑥2 + 4𝑎𝑥𝑝 + 𝑝2 = 𝑝2 − 4𝑎𝑦   → 

4𝑎𝑥𝑝 = −4𝑎2𝑥2 − 4𝑎𝑦   → 

𝑝 =
−4𝑎(𝑎𝑥2 + 𝑦)

4𝑎𝑥
= 

𝑝 =
−(𝑎𝑥2+𝑦)

𝑥
= 2𝑘,  𝑥 ≠ 0                                                                                                                            𝐸𝑄. 10 

Remembering that 𝑝 ∈ ℤ, because it is the result of the sum of two integers. It is also defined that 𝑦 ∈ 𝐼 ⇒ 

{𝑥𝑘, 𝑥𝑠} ∈  𝐼. Keeping this in mind, property 4 guarantees that the numerator of 𝐸𝑄. 10 will always be even. 

Even though 𝑥 = 𝑞, where q is an odd prime, property 4 remains valid because 𝑥2 = 𝑞2 becomes a 

composite odd. Note that 𝑥 is guaranteed to be an odd one, because if it weren't, 𝑦 wouldn't be either, which 

guarantees that 𝑎𝑥2 + 𝑦 is of the form 2𝑙, where 𝑙 ∈ ℤ. Property 2 also guarantees that 𝑝 = 𝑥𝑘 + 𝑥𝑠 = 2𝑘 is 

always true, since 𝑝𝑥 = 2𝑘𝑥 = 𝑎𝑥2 + 𝑦 = 2𝑙. This equation remains valid even when {𝑥𝑘, 𝑥𝑠} = {𝑞, 𝜑}, 
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because in which case {𝑥𝑘, 𝑥𝑠} are prime, they will be prime such that {𝑥𝑘, 𝑥𝑠} = {𝑞, 𝜑} ≠ 2, otherwise, 𝑦 

could not be odd. So for 𝑦 = 𝑞𝜑 the 𝐸𝑄. 10 is; 

𝑝 =
−(𝑎𝑞2 + 𝑦)

𝑞
    ⟹      𝑝 =

−(𝑎𝑞2 + 𝑞𝜑)

𝑞
=

−𝑞(𝑎𝑞 + 𝜑)

𝑞
 = −(𝑎𝑞 + 𝜑). 

The coefficient 𝑎 arises from the equation 𝐸𝑄. 3, it is trivial that 𝑎 = 1, therefore;  𝑝 =
−(𝑞2+𝑦)

𝑞
= −(𝑞 + 𝜑).  

The direct proof that 𝐸𝑄. 10 results in an even number, regardless of whether 𝑥 is prime or does not proceed 

as follows: 

𝑝 =
−(𝑎𝑞2 + 𝑦)

𝑞
=

−(𝑞2 + 𝑦)

𝑞
; 

As 𝑞2 and 𝑦 ∈ 𝐼, one can write 𝑞2 = 2𝑛 + 1 and 𝑦 = 2𝑚 + 1, so 𝐸𝑄. 10 stays; 

 − (
𝑞2+𝑦

𝑞
) = − (

2𝑛+1+2𝑚+1

𝑞
) = −2 (

𝑛+𝑚+1

𝑞
).                                                                                               𝐸𝑄. 11 

It is known that 𝑞2 = 2𝑛 + 1 and 𝑦 = 2𝑚 + 1, that 𝑛 =
𝑞2−1

2
 and 𝑚 =

𝑦−1

2
, like this; 

− (
𝑛+𝑚+1

𝑞
) = − (

𝑞2−1+𝑦−1

2𝑞
+

1

𝑞
) = − (

𝑞2−1+𝑦−1+2

2𝑞
) = −

(𝑞2+𝑦)

2𝑞
. Knowing that 𝑞2 and 𝑦 são are odd, by 

property 4, 𝑞2 + 𝑦 results in an even number, therefore 2 (𝑞2 + 𝑦). As well as 𝑞 (𝑞2) and 𝑞 (𝑦), it can be 

done; 
𝑞2

𝑞
+

𝑦

𝑞
= (

𝑞2+𝑦

𝑞
) = 𝑧. Note that 𝑧 is an integer. Since 2 and 𝑞 are factors of 𝑞2 + 𝑦, by the Fundamental 

Theorem of Arithmetic 2𝑞 (𝑞2 + 𝑦), then; 

 −
(𝑛+𝑚+1)

𝑞
= −

(𝑞2+𝑦)

2𝑞
= 𝑘, where 𝑘 ∈  ℤ. Substituting 𝑘 in  𝐸𝑄. 11 comes: 

−2 (
𝑛+𝑚+1

𝑞
) = 2𝑘 = 𝑝 = 𝑞 + 𝜑.                                                                                                             𝐸𝑄. 12 

Goldbach's conjecture is proven to be true. As the equation is valid for any prime greater than or equal to 3, 

the first even number that is obtained must be greater than 4, that is, 𝑝 = 2𝑘 > 4, so 𝑝 = 3 + 3 = 6 is the first 

even number that it is obtained with the sum of two odd prime numbers. In this case 𝑦 = 9 and the value of 

𝑘 = 3. Substituting 𝑘 at 𝑝 = 2𝑘, the number 𝑝 = 6 is again reached. The demonstration of the weak 

Goldbach's Conjecture becomes just a Corollary of this work and easy to demonstrate. This will be left to the 

reader. 
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