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Abstract: Diagnostics and decomposition of atmospheric disturbances in a planar flow are consid-1

ered and applied to numerical modeling results with the direct possibility to use in atmosphere2

monitoring especially in such strong events which follow magnetic storms and other large scale3

atmospheric phenomena. The study examines a situation in which the stationary equilibrium4

temperature of a gas may depend on a vertical coordinate, that seriously complicates the problem5

solution. The relations connecting perturbations for acoustic and entropy (stationary) modes are6

analytically established and led to the solvable diagnostic equations. These perturbation structures,7

found as the equation solutions specify acoustic and entropy modes in an arbitrary stratified gas8

under the condition of stability. These time-independent diagnostic relations link gas perturbation9

variables of the acoustic and the entropy modes. Hence, they provide the ability to decompose the10

total vector of perturbations into acoustic and non-acoustic (entropy) parts uniquely at any instant11

within the all accessible heights range. As a prospective model, we consider the diagnostics at the12

height interval 120-180 km, where the equilibrium temperature of a gas depends linearly on the13

vertical coordinate. For such a heights range it is possible to proceed with analytical expressions14

for pressure and entropy perturbations of gas variables. Individual profiles of acoustic and entropy15

parts for some data, obtained by numerical experiment, are illustrated by the plots for the pure16

numerical data against ones obtained by the model. The total energy of a flow is determined for17

both approaches and its height profiles are compared.18

Keywords: acoustics of non-uniform media, wave mode diagnostics,entropy mode, initialization19

of hydrodynamic field20

1. Introduction21

Theoretical and numerical models, that describe dynamics of gases and liquids22

affected by external forces are of great interest in geophysics, meteorology, and wave the-23

ory [1–6]. The external forces and sources of energy, as well as momentum transfer, make24

the background of a fluid non-uniform. Hence, equilibrium thermodynamic parameters25

should depend on spatial coordinates. It drastically complicates the definition of linear26

modes (motions of infinitely small magnitude) taking place in such non-uniform media,27

so-called "non-exponential". The number of roots of the dispersion equation, if it is28

possible to determine them, agrees with the number of types of motion, and equals29

the number of balance equations [4]. Each of the balance equations represents a partial30

differential equation (PDE) which contains the first-order derivative with respect to31

time. In the case of isothermal gas in equilibrium with pressure and density depending32

exponentially on the coordinate (named often the "exponential atmosphere"), and in the33

simplest case of a planar flow, the dispersion relations may be introduced over the total34

wavelength range. Such a model is widely used for the classification of wave modes35

in practice as a "zero approximation". The realistic non-exponential case needs either36

consideration of the atmosphere as a layered medium or, for the short waves, making37

use of the Wentzel, Kramers, Brillouin (WKB) method [3]. Generally, such sources as38
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tsunami, lying at the bottom of the Atmosphere excite combined waves with the leading39

front formed by quasiplane acoustics [7].40

There are three types of motion in a one-dimensional (1D) exponential atmosphere:41

two acoustic modes of different direction of propagation, and the entropy mode, corre-42

sponding to zero frequency for a linear lossless flow [1,2]. The entropy mode, however,43

is not stationary in a viscous fluid that conducts heat, and with a non-linearity account44

[1,4,8]. In the flows exceeding one dimension, the buoyancy, or "internal" waves ap-45

pear [3,4]. For Rossby and Poincare waves description see, e.g. [4,6] The first results46

that allow distinguishing modes due to relations of specific perturbations have been47

obtained namely relative to the motion of an exponentially stratified ideal gas in the48

constant gravitational field [6,8,10]. Mathematically, such relations are fixed as ones of49

eigenvectors and corresponding projecting operators of the evolution operator, defined50

by the basic balance system.51

Experimental observation of wave and non-wave disturbances is not easy, there52

are special facilities as "Sura" [11] based on the active experiment of ionosphere ex-53

citation that allows measuring directly the atmosphere parameters variations at the54

ionosphere heights [12]. Only recently an attempt to apply the diagnostic method, based55

on projecting operators technique, was realized within a set of such measurements. The56

projecting technique was developed for a space-evolution operator, that allows to apply57

it to atmosphere parameters relations at a vicinity of a point of observation. It allowed to58

distinguish up- and down- directed acoustic wave via the real dataset [13], in this work59

the algorithm of entropy mode diagnosis was elaborated, see also [14].60

This work considers the dynamics of ideal atmosphere gas perturbations over a61

background of equilibrium temperature, dependent on height, affected by a gravitational62

field and other geophysical impacts. The main aim of this study is the diagnostics as63

decomposition of a disturbance to wave and non-wave modes in the case of arbitrary64

stable stratification. This is helpful in the interpretation of experimental data related65

to the significantly disturbed atmosphere (e.g. by storms), it also may be useful in a66

validation of a numerical modelling [15]. Especially, it is important in establishing the67

location of wave sources, and modelling the atmosphere’s warming [16,17], related to68

the atmosphere gas wave heating. The theory should base on the balance equations and69

rely upon physically justified boundary conditions and simplifications [18], its mode70

decomposition should be instructive in a specific mathematical statement of problem71

formulation [19,20].72

In this study, which develops ideas of [21], the modes of a planar flow are deter-73

mined by means of relations between specific perturbations that are time-independent.74

We name such relations as "diagnostic relations". They are valid for arbitrary dependence75

of the equilibrium temperature on a coordinate for the case of a stable atmosphere. These76

relations give the ability to distinguish modes from the total field analytically at any77

instant, solving the diagnostic equations, that are the direct corollary of the mentioned78

diagnostic relations, It serves as a tool to predict their dynamics, and to conclude about79

the energy of modes (which remains constant in time). This is undoubtedly important in80

applications in meteorology and diagnostics of atmospheric dynamics, including the81

understanding of such phenomena as variations of the equilibrium temperature of the82

stratosphere, e.g. so-called warming [22] conventionally understood as period-average.83

Such phenomenon may be explained in the framework of non-linear interaction of acous-84

tic wave and entropy modes in presence of a dissipation [17,23], named as "heating"85

in laboratory acoustics. The whole exposition is also important in the diagnostics of86

wave and non-wave modes in order to follow experimental observations and numerical87

simulations [15] as an element of atmosphere dynamics monitoring [9]. The authors of88

[9] stress, that the acoustic component of a perturbation is the first that reach ionosphere89

heights, that is important for the mentioned hazard phenomena detection .90

As the practical example of the general theory and the particular model applica-91

tions we use the dataset of numerical modelling of an atmospheric perturbation by92
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the source, positioned at the vicinity of Earth surface [18],[19]. The theory uses the93

standard atmosphere H(z) profile [24] at the z ∈ [0, 500] km range with the applica-94

tion of diagnostic equations solution with the right-hand-side (RHS), discretized as the95

dataset from a numerical experiment we use. We, however, should omit intervals of96

instability with non-positive energy density. To proceed we choose a diagnostic at the97

interval at which the H(z) profile is well approximated by a linear function. It is the98

heights range z ∈ [120, 180] km, for which we elaborate the model with the explicit form99

of the diagnostic equation solution. For such interval, we compare the results of the100

general theory digitization and the result of a more compact model, based on explicit101

approximation of the H(z) profile at the pointed height range.102

We begin from the basic system of balance equations and derive the diagnostic ones103

(Sec. 2). In the final subsection, we solve the differential diagnostic equation by the104

method of factorization. Next, we apply the obtained relation to the datasets, obtained105

by numerical solution of an atmosphere perturbation problem [18] within the heights106

range z ∈ [120, 180] km, using the H(z) profile from standard atmosphere [24]. It results107

in entropy mode contribution profiles (Sec. 5). In the Sec. 5.2 we build the model for the108

mentioned heights interval repeating the calculations, when possible, analytically, see109

also [25]. The results, obtained by the direct applications of the theory to the dataset on110

the base of the standard atmosphere profile within the range of approximate linearity111

and the model results are compared.112

2. Diagnostic relations113

2.1. Basic balance equations for arbitrary stable stratification114

The case of the non-exponential atmosphere in equilibrium permits to fix the
entropy and acoustic mode without subdivision into "upwards" and "downwards"
directed acoustic waves [21], see also [10]. The main functional parameter in this case,
the local atmosphere’s scale height H(z) depends on height as, e.g. in [24]. The background
density which supports the equilibrium distribution of temperature T(z), takes the form:

ρ(z) =
ρ(0)H(0)

H(z)
exp

(
−
∫ z

0

dz′

H(z′)

)
, (1)

where the pressure scale height is

H(z) =
p

ρg
=

T(z)(Cp − Cv)

g
. (2)

Here the conventional gas parameters are used: g - gravity acceleration, Cp,v are the
molar heat capacities at constant p,v correspondingly. It is convenient to introduce the
quantity ϕ′ instead of perturbation in density

ϕ′ = p′ − γ
p
ρ

ρ′, (3)

where the parameter γ = Cp/Cv. We will name it the entropy perturbation, because in a115

limit with g = 0 and constant background temperature T, ϕ′ represents the deviation of116

the ideal gas entropy from the equilibrium one [27].117

As it was done in [25] we use the conventional set of variables:

P = p′ · exp

 z∫
0

dz′

2H(z′)

, (4)

Φ = ϕ′ · exp

 z∫
0

dz′

2H(z′)

, (5)
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U = V · exp

− z∫
0

dz′

2H(z′)

, (6)

where P, Φ, U are the new quantities defined in this way (Eqs, (4,5,6)) and V is the
vertical velocity of the flow. The system of momentum-energy-mass balance equations
in new variables reads (see [10,25]):

∂U
∂t

=
1

ρ(0)

(
γ− 2

2γH(0)
− H(z)

H(0)
∂

∂z

)
P +

Φ
γH(0)ρ(0)

, (7)

∂P
∂t

= −γgH(0)ρ(0)
∂U
∂z
− gH(0)ρ(0)

γ− 2
2H(z)

U, (8)

∂Φ
∂t

= − ν(z)
H(z)

gH(0)ρ(0)U, (9)

where ν(z) is positive:

ν(z) = γ− 1 + γ
dH(z)

dz
> 0, (10)

that guarantee the positive definition of energy density, defined at the Sec. 6.118

2.2. Relation between pressure and entropy perturbations for acoustic and entropy modes119

The relation that links the pressure and entropy perturbation within the acoustic
mode, for arbitrary stable stratification of 1D atmosphere can be obtained by substituting
the Eq.(9) into the Eq.(8) [25]. As a result, the diagnostic relation between the pressure and
entropy perturbations within the acoustic mode follows:

Pa =

(
γ− 2
2ν(z)

+ γ
∂

∂z
H(z)
ν(z)

)
Φa. (11)

The first equation in the basic system (7) for U0 = 0 fixes the diagnostic link in the
stationary (entropy) mode:

Φ0 =

(
−γ− 2

2
+ γH(z)

∂

∂z

)
P0. (12)

The relations (11) and (12) can be rewritten as

Pa + DaΦa = 0, (13)

Φ0 + D0P0 = 0, (14)

where the operators

Da = −
(

γ− 2
2ν(z)

+ γ
∂

∂z
H(z)
ν(z)

)
, (15)

D0 = −
(
−γ− 2

2
+ γH(z)

∂

∂z

)
(16)

are the first order differential operators. We name the Eqs.(13,14) as diagnostic rela-120

tions, that define the acoustic and entropy mode in the 1D atmosphere with arbitrary121

stratification.122

2.3. Diagnostic equations123

Let us introduce operator-valued two-component vector:(
1 Da

)
, (17)
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and the column that represents the vector of state:(
P
Φ

)
, (18)

where
P = Pa + P0, Φ = Φa + Φ0. (19)

The action

(
1 Da

)( P
Φ

)
= P+ DaΦ = Pa + DaΦa + P0 + DaΦ0 = P0 + DaΦ0 = P0−DaD0P0,

(20)
defines the second order ordinary differential equation, we would name as the diagnostic
one:

(1− DaD0)P0 = P + DaΦ = f0(z). (21)

So, to extract the entropy mode, we need to solve the differential equation (21) with ap-124

propriate boundary conditions. Similar consideration with a solution form is presented125

at [21] in different units. The acoustic mode either could be extracted in the same manner126

or simply using the identity P = Pa + P0.127

There is also a similar alternative, which also leads to a second order differential
diagnostic equation but for Pa. This alternative is implemented by the action of the row
operator vector on the column vector function

(
D0 1

)( P
Φ

)
= D0P + Φ = D0Pa + Φa + D0P0 + Φ0 =

= D0Pa + Φa = −D−1
a Pa + D0Pa = (D0 − D−1

a )Pa. (22)

The diagnostic relation (14) is taken into account. The derivation results in the second
order equation

DaD0Pa − Pa = fa(z) = DaD0P + DaΦ (23)

see also [25], where the derivation is absent. The operator at the LHS of the second
diagnostic equation (23) transforms as

DaD0 − 1 =

(
γ− 2
2ν(z)

+ γ
∂

∂z
H(z)
ν(z)

)(
−γ− 2

2
+ γH(z)

∂

∂z

)
− 1. (24)

3. On the dataset128

We process the set of numerical experiment data consisting of horizontal coordi-129

nate, vertical coordinate, pressure, background pressure, density, background density,130

temperature, wave perturbation of temperature, wave perturbation of pressure, wave131

perturbation of density. The mentioned physical values are given as files such that for the132

fixed horizontal coordinate the vertical coordinate zi is presented for the range [0,500]133

km with the steps that varies with a height difference from 150 m to 2000 m. The fixed134

time and horizontal coordinate seem to be convenient since the one-dimensional theory135

is considered. Data set was provided to authors by the sources, related to the paper [19].136

The model, used in this paper [29], is a numeric solution of the full two-dimensional non-137

linear system of hydrothermodynamic balance equations. The program that processes138

the dataset allows solving the diagnostic equations (21,23) with reasonable accuracy of139

about a few percents, as estimated by the Runge rule.140

According to the equations rhs (21,23) and the diagnostic equations (14,13), such a141

study requires pressure and entropy data for constructing function f0(z), fa(z), where142

the link of the variables P, Φ with original, pressure and density wave perturbations p′143

and ρ′ directly measured or calculated ones, are described by the relations (4) and (5).144
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Figure 1. Wave perturbation of temperature from a local source of pressure fluctuations for the
considered moment of time. Result of numeric modeling [19]. Courtesy of. Yu. Kurdjaeva.

3.1. Standard atmosphere H(z) profile145

In this section we prepare the atmosphere characteristics for numerical calculations,
starting from the atmospheric scale height calculated as

H(zi) = Hi =
RsT(zi)

g
, (25)

where zi - i-row element of the discrete data array for vertical coordinate, Hi - the value
of the atmosphere scale height at the height zi, T(zi) - the value of the temperature at the
reference height zi, Rs = R/M = 287.1 J/(kg·K) - the specific gas constant for dry air
[24]. The height scale profile is built directly by the table for background temperature

Figure 2. The height scale H(zi) profile obtained according to the formula (25) [24].
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T(zi) , taken from [24]. The function (10) we approximate as follows

νi(zi) = γ− 1 + γ
dH(z)

dz

∣∣∣∣∣
z=zi

≈ γ− 1 + γ
Hi+1 − Hi−1

zi+1 − zi−1
. (26)

The expression shows how we estimate the derivatives (excluding the first and last146

points, where the left and right derivatives approximations are used).147

3.2. Linear approximation of H(z)148

According to the graph for the atmosphere’s scale height in Fig.2, we will focus on149

the approximately linear part in the interval z ∈ [120; 180] km.

Figure 3. Standard atmosphere H(zi) for zi within 120 km to 180 km range (in blue) and its linear
approximation represented by formula (27) (in green).

150

Note, that the difference between the dependence of H(z) taken from the dataset
and the linear approximations, given in Fig. 3 within 120 km to 180 km range, is almost
invisible at such scale. This gives an argument to use such linear approximation in
further modelling. To provide the model test, we put H(z) depending linearly on the
coordinate z like:

H(z) = αz− H (27)

where the curves at the Figure 3 adjustment is provided by the following choice

H = 12000 m, (28)

α = 0.192. (29)

The function H(z) = 0.192z− 12000 graph is shown in red in Fig.3.151

For the linear H(z) case the function (10) is:

ν(z) = γ− 1 + γ
dH(z)

dz
= γ− 1 + γα. (30)
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4. Solution of a disgnostic equation for linear dependence of H(z) by factorization152

method153

4.1. Operator factorization154

Let us choose the equation (21), where

1− DaD0 = 1− γ2 (H(z))2

ν(z)
∂2

∂z2 − 2αγ · γ H(z)
ν(z)

∂

∂z
+

γ2 + 2αγ2

4ν(z)
, (31)

for the entropy mode (1− DaD0)P0 = f0, or, on base of linear approximation of H(z), it,
by the factorization, writes by the following(

D2 + ED − A
)

P0 = (D− φ)(D− ψ)P0 = −(γ + αγ− 1) f0 = −ν(z) f0, (32)

where, for the factorization convenience, the following expressions are introduced

D = γH(z)
∂

∂z
, E = αγ, A =

γ2 + 2αγ2

4
, (33)

φ = E− ψ, (34)

ψ =
1
2

√
E2 + 4A− 1

2
E. (35)

The operator of the second diagnostic equation (23) for the acoustic mode is oppo-155

site to one of the first diagnostic equation, hence its solution differs only by the RHS156

(inhomogeneity).157

4.2. On boundary conditions158

4.2.1. General remarks. Diagnosis.159

A statement of the problem for the second order equations as (21,23) implies two160

boundary conditions either at the ends of the interval of consideration or both at one161

end of the heights range.162

Generally, the inhomogeneous equation with the linear operator A

Au = f0 (36)

is solved up to general solution of the homogeneous one:

u = A−1 f0 + uh, (37)

Auh = 0. (38)

The function uh is fixed by a set of boundary condition. In the case of the second order163

differential equation, we should choose two such conditions that determine the constants164

C, C1.165

In the problem of diagnostics, its formulation is more complicated. We have two
ODE for the variables P0 and Pa of the same form of the operator, but with different RHS,
The statement of the problem should also keep the condition

P0 + Pa = P, (39)

within the whole range of the problem including the boundary.166

4.2.2. Boundary problem.167

The condition (39) being read literally, impose the condition

Pa(z2) = P(z2)− P0(z2). (40)
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It, together with
P0(z1) = 0, P′0(z1) = 0, (41)

and
Pa(z1) = P(z1). (42)

closes the diagnostics problem formulation we investigate within this work.168

4.3. Solution of the first and second diagnostic equations169

The general solution of the equation (32) formally reads as

P0 = (1− DaD0)
−1(P + D0Φ). (43)

It is found by the conventional factorization of the first order operators at (32). We write
the solution as

P0 = − (γ + αγ− 1)
γ2 S

z∫
z1

T
SZ

z′′∫
z1

f0

TZ
dz′dz′′ +

CS
γ

z∫
z1

T
SZ

dz′ + C1S, (44)

where S = Z
1

αγ (−
1
2 E+ 1

2

√
E2+4A) = Za, T = Z−

1
αγ (

1
2 E+ 1

2

√
E2+4A) = Zb, Z = αz + H.170

Thinking about the entropy mode presence as a result of the heating by a wave
propagating from the bottom end of the interval z ∈ [z1, z2], we choose the pair of
conditions for the entropy mode variable P0 and its derivative

P0(z1) = 0, P′0(z1) = 0, (45)

that mimics an (approximate) absence of the entropy mode at a vicinity of the lower point171

z1. The second condition of (45) responds to the diagnostic relation (14), i.e. Φ0 = 0.172

In such a case the conditions for the acoustic component looks

Pa(z1) = P(z1). (46)

The boundary values in the (46) are taken either from an experiment or from a173

dataset obtained from numerical modeling.174

The constants of integration C, C1 are defined from the boundary conditions (45).
C1 is determined by the condition

P(z1) = C1Z(αz1 − H)a = 0, (47)

therefore C1 = 0, i.e.

P0 = − (γ + αγ− 1)
γ2 S

z∫
z1

T
SZ

z′′∫
z1

f0

TZ
dz′dz′′ +

CS
γ

z∫
z1

T
SZ

dz′. (48)

The second condition at z1, the relation (45), gives for the derivative the following,

P′0 = −γ + αγ− 1
γ2

S′
z∫

z1

T
SZ

z′′∫
z1

f0

TZ
dz′dz′′ +

T
SZ

z∫
z1

f0

TZ
dz′dz′′

+
CS′

γ

z∫
z1

T
SZ

dz′ +
C
γ

T
Z

.

(49)
Plugging z = z1 gives

P′0(z1) =
C
γ

T
Z

=
C
γ

(αz1 − H)−
1

αγ (
1
2 E+ 1

2

√
E2+4A)

(αz1 − H)
= 0, (50)

hence, the constant C is also zero.175
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Very similar, the second diagnostic equation (23) is solved as

Pa = −(1− DaD0)
−1(DaD0P + DaΦ) = (1− DaD0)

−1(− fa). (51)

Subtracting the equations (21) and (23) yields

P0 + Pa = (1− DaD0)
−1( f0 − fa) = (1− DaD0)

−1(P + DaΦ− DaD0P− DaΦ) = P,
(52)

this identity is convenient for the solutions test.176

The expression for Pa differs from (44) by the source ( fa) and by the constants of
integration, that gives

Pa =
(γ + αγ− 1)

γ2 S
z∫

z1

T
SZ

z′′∫
z1

fa

TZ
dz′dz′′ +

C′S
γ

z∫
z1

T
SZ

dz′ + C′1S. (53)

From the boundary conditions (46) it follows

Pa(z1) = C′1S(z1) = P(z1). (54)

The coefficients C′ and C′1 are expressed from the last two formulas. Finally:

Pa =
γ + αγ− 1

γ2 S
z∫

z1

T
SZ

z′′∫
z1

fa

TZ
dz′dz′′ +

P′(z1)Z(z1)

T(z1)
S

z∫
z1

T
SZ

dz′ +
P(z1)

S(z1)
S. (55)

4.3.1. The second boundary problem. Acoustic mode177

We left the first boundary condition for the acoustic mode

Pa(z1) = C′1S(z1) = P(0), C′1 =
P(0)
S(z1)

. (56)

The condition at the upper boundary is more complicated

Pa(z2) =
(γ + αγ− 1)

γ2 S
z2∫

z1

T
SZ

z′′∫
z1

fa

TZ
dz′dz′′ +

C′S
γ

z2∫
z1

T
SZ

dz′ +
Pa(0)

S
S(z2) (57)

and at the same time
Pa(z2) = P(z2)− P0(z2), (58)

that yields

C′ =

P(z2)−P0(z2)
S(z2)

− γ+αγ−1
γ2

z2∫
z1

T
SZ

z′′∫
z1

fa
TZ dz′dz′′ − P(0)

S(z1)

1
γ

z2∫
z1

T
SZ dz′

, (59)

but guarantees the natural condition

Pa(z2) + P0(z2) = P. (60)

Note, that the entropy components of a disturbance are evaluated from the diag-178

nostic relations: Φ0 from (14) and the variable Φa from (13).179
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5. Applications to data of a numeric experiment180

5.1. Discrete representation of functions and operators for the standard atmosphere H(z) case181

From (21) we derive:
f0(zi) = Pi + Da,iΦi, (61)

where according to the (15):

Da,i = −
γ− 2

2νi(zi)
− γ

Hi
νi(zi)

∂

∂z
− γ

(
H(z)
νi(z)

)′∣∣∣
z=zi

. (62)

In the same way the function (23)

fa(zi) = Da,iD0,iPi + Da,iΦi (63)

where according to the (16):

D0,i =
γ− 2

2
− γHi

∂

∂z
. (64)

The functions Pi and Φi are defined through a dataset using formulas (4),(5) that
for the real H(zi) case are:

Pi = P(zi) = p′(zi) · exp

 zi∫
0

dz′

2H(z′)

 ≈ p′(zi) · exp

(
i

∑
j=1

∆zj

2H(zj)

)
, (65)

Φi = Φ(zi) = ϕ′(zi) · exp

 zi∫
0

dz′

2H(z′)

 ≈ ϕ′(zi) · exp

(
i

∑
j=1

∆zj

2H(zj)

)
. (66)

Figure 4. The plot a) is the graph of the function f0(zi) obtained by the formula (61) and the plot
b) is the graph of fa(zi) obtained by the formula (63) for the case of standard atmosphere H(zi)

case represented by the formula (25).

The oscillations of the RHSs of the diagnostic equations for P0,a (Figs 4), apart from182

a small variation of the functional parameter H(z), appear due to the application of183

differentiation operation to the dataset components as in (62), which scale of coordinate184

differences and errors are noticeable.185

It is seen at the Figs 5, that the result of the diagnosis as vertical structure of the186

contributions P0,a in the pressure perturbation P looks much more smooth because its187

definition contains integration.188
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Figure 5. The plot a) is the graph of the solution P0(z) obtained by the formula (44) and b) is the
graph of of the solution Pa(z) obtained by the formula (53) for the case of standard atmosphere
H(zi) case represented by the formula (25).

5.2. Representation of functions and operators for the linear H(z) case189

For linear approximation of H(z) of the form (27), the operators (15) and (16) have
the form:

Da = −
(

γ− 2
2(γ− 1 + γα)

+ γ
∂

∂z
αz− H

γ− 1 + γα

)
, (67)

D0 = −
(
−γ− 2

2
+ γ(αz− H)

∂

∂z

)
. (68)

For linear dependence of H(z) function f0(z) from (21) can be calculated as:

f0(z) = P + DaΦ = P− γ− 2 + 2αγ

2(γ− 1 + γα)
Φ− γ(αz− H)

γ− 1 + γα

∂Φ
∂z

(69)

and function fa(z) from (23):

fa(z) = DaD0P + DaΦ =
1

γ− 1 + γα

(
− 1

4
(γ− 2)(γ− 2 + 2αγ)P+ (70)

+ 2αγ2(αz− H)
∂P
∂z

+ γ2(αz− H)2 ∂2P
∂z2 −

1
2
(γ− 2 + 2αγ)Φ− γ(αz− H)

∂Φ
∂z

)
(71)

where pressure and entropy perturbation functions (4),(5) are:

P = p′ · exp

 z∫
z1

dz′

2H(z′)

 = p′ · exp
(

1
2α

(ln (αz− H)− ln (αz1 − H))

)
, (72)

Φ = ϕ′ · exp

 z∫
z1

dz′

2H(z′)

 = ϕ′ · exp
(

1
2α

(ln (αz− H)− ln (αz1 − H))

)
. (73)

Here z1 - initial coordinate or in the case of a discrete dataset for the vertical coordinate,
that yields:

P(zi) = p′ · exp
(

1
2α

(ln (H(zi))− ln (αz1 − H))

)
, (74)

Φ(zi) = ϕ′ · exp
(

1
2α

(ln (H(zi))− ln (αz1 − H))

)
. (75)

We see, that the plots look as smooth as ones at Fig. 5. It is the result of the190

integration that acts as a "smoothing" operation, as opposite to differentiation. Such191
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Figure 6. The plot a) is the graph of the function f0(z) obtained by the formula (69) and the
plot b) is the graph of fa(z) obtained by the formula (71) for the case of linear dependence H(z)
represented by the formula (27)

phenomena are well-known in the theory of inverse problems. The plots of the Fig 8

Figure 7. The plot a) is the graph of the solution P0(z) obtained by the formula (44) and b) is the
graph of of the solution Pa(z) obtained by the formula (53) for the case of linear dependence H(z)
represented by the formula (27)

192

represent one of the principal results of this work: it shows that there is a discrepancy193

between the profile obtained by the direct dataset processing and handling by means194

of the apparatus built by the analytical approximation of the theory elements. The195

difference, however, is not so big, the linear model allows to estimate the entropy mode196

profile. The transition to energy distribution leads to the results for which the difference197

almost disappear, see Fig. 9.198

6. Comparison of the models and discussion of the results199

The plots of the Fig 8 represent one of the principle result of this work: it shows that200

there is a discrepancy between the profile obtained by the direct dataset processing and201

handling by means of the apparatus built by the analytical approximation of the theory202

elements. The difference, however, is not so big, the linear model allows to estimate the203

entropy mode profile. The addition of independent results of calculations of P0 and Pa204

gives the curve closely matching with the graph of a function P represented by formula205

(4), which is consistent with the main idea of the expansion into modes P = P0 + Pa.206

The transition to energy distribution leads to the results for which the difference almost207

disappear, see Fig. 9.208
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Figure 8. Comparison of the entropy mode P0(z) (a) and the acoustic one Pa(z) (b) obtained using
the formulas (44) and (53), respectively, for the cases of standard atmosphere H(z) (25) (in blue)
and linear height scale dependence H(z) model (27) (in green).

The authors believe that the analytical models are more desirable than numerical209

methods, which are usually time-consuming, require a high-performance computer, and210

special attention to underlying algorithms, their convergence, and stability investigation.211

On the other hand, reasonably simple analytical models also, when complemented by a212

numerical approach, are much more efficient.213

Speaking about the modes extraction at the level of the pressure-entropy vector
disturbances field we observe the difference of the results, visible at the plots of the
Figure 8. The difference (by module about 5 percents) originated from the significant
non-coincidence of the functional parameter ν(z). Namely, it is constant, in the case of
the model (approximately equal to 0.79 ), but vary, oscillating from 0.73 to 0.92, being
calculated directly from standard atmosphere data H(z), differentiating in (10) via the
conventional derivative approximation. Estimation of the energy E(z), the total energy
of all modes at the coordinate range [0, z], is given by the following expression

E(z) =
1
2

z∫
0

dz
(

ρV2 +
p′2

γp
+

φ′2

γν(z)p

)
, (76)

see the profiles at the Figure 9.214

Note, that the energy profiles for the cases of the direct standard atmosphere use215

and the model, based on explicit linear dependence application gives the curves which216

difference is scarcely visible (the difference about the percent), hence we propose to use217

the total energy values and the profiles (76) for the model mode weights estimation.218

7. Conclusions219

The main result of the presented work constitutes in the diagnostic equation, which220

solution gives the vertical profile of the acoustic mode contribution in the entropy221

perturbation. This result is illustrated by application to realistic numerical modeling of222

the atmosphere perturbation by a source positioned near Earth surface. The next result of223

the study presents the model of the diagnostic algorithm that uses the restricted heights224

interval, at which the H(z) dependence is very close to linear. Its restriction guarantees225

the stability condition and the energy density positively defined. The dependence of226

explicit approximation on z allows proceeding with the diagnostic equation solution in227

explicit form. The resulting diagnostic operations are compared with ones of numerical228

calculations at the whole available heights range under consideration. The extracted229

acoustical and entropy modes contributions in perturbation of the gas entropy profiles230

are plotted and compared with the models’.231
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Figure 9. Energy calculated by the equation (76) for the cases of standard atmosphere (in blue)
and linear dependence (in green) of the height scal H(z) for z ∈ [120; 180] km., see the relation
(27).

One of the important ingredients of diagnostics is the possibility to estimate the232

relative weight of a mode contribution. It is also important to evaluate an error of233

this estimation, cumulative measurements errors and the theoretical and numerical234

discrepancies. Such possibility is directly based on the energy density definition with235

the positive functional parameter nu at a height range under consideration. It, as known,236

leads to the norm definition in a functional space of the state vector.237
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