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Abstract: Diagnostics and decomposition of atmospheric disturbances in a planar flow are consid-
ered and applied to numerical modeling results with the direct possibility to use in atmosphere
monitoring especially in such strong events which follow magnetic storms and other large scale
atmospheric phenomena. The study examines a situation in which the stationary equilibrium
temperature of a gas may depend on a vertical coordinate, that seriously complicates the problem
solution. The relations connecting perturbations for acoustic and entropy (stationary) modes are
analytically established and led to the solvable diagnostic equations. These perturbation structures,
found as the equation solutions specify acoustic and entropy modes in an arbitrary stratified gas
under the condition of stability. These time-independent diagnostic relations link gas perturbation
variables of the acoustic and the entropy modes. Hence, they provide the ability to decompose the
total vector of perturbations into acoustic and non-acoustic (entropy) parts uniquely at any instant
within the all accessible heights range. As a prospective model, we consider the diagnostics at the
height interval 120-180 km, where the equilibrium temperature of a gas depends linearly on the
vertical coordinate. For such a heights range it is possible to proceed with analytical expressions
for pressure and entropy perturbations of gas variables. Individual profiles of acoustic and entropy
parts for some data, obtained by numerical experiment, are illustrated by the plots for the pure
numerical data against ones obtained by the model. The total energy of a flow is determined for
both approaches and its height profiles are compared.

Keywords: acoustics of non-uniform media, wave mode diagnostics,entropy mode, initialization
of hydrodynamic field

1. Introduction

Theoretical and numerical models, that describe dynamics of gases and liquids
affected by external forces are of great interest in geophysics, meteorology, and wave the-
ory [1-6]. The external forces and sources of energy, as well as momentum transfer, make
the background of a fluid non-uniform. Hence, equilibrium thermodynamic parameters
should depend on spatial coordinates. It drastically complicates the definition of linear
modes (motions of infinitely small magnitude) taking place in such non-uniform media,
so-called "non-exponential”. The number of roots of the dispersion equation, if it is
possible to determine them, agrees with the number of types of motion, and equals
the number of balance equations [4]. Each of the balance equations represents a partial
differential equation (PDE) which contains the first-order derivative with respect to
time. In the case of isothermal gas in equilibrium with pressure and density depending
exponentially on the coordinate (named often the "exponential atmosphere"), and in the
simplest case of a planar flow, the dispersion relations may be introduced over the total
wavelength range. Such a model is widely used for the classification of wave modes
in practice as a "zero approximation". The realistic non-exponential case needs either
consideration of the atmosphere as a layered medium or, for the short waves, making
use of the Wentzel, Kramers, Brillouin (WKB) method [3]. Generally, such sources as
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tsunami, lying at the bottom of the Atmosphere excite combined waves with the leading
front formed by quasiplane acoustics [7].

There are three types of motion in a one-dimensional (1D) exponential atmosphere:
two acoustic modes of different direction of propagation, and the entropy mode, corre-
sponding to zero frequency for a linear lossless flow [1,2]. The entropy mode, however,
is not stationary in a viscous fluid that conducts heat, and with a non-linearity account
[1,4,8]. In the flows exceeding one dimension, the buoyancy, or "internal" waves ap-
pear [3,4]. For Rossby and Poincare waves description see, e.g. [4,6] The first results
that allow distinguishing modes due to relations of specific perturbations have been
obtained namely relative to the motion of an exponentially stratified ideal gas in the
constant gravitational field [6,8,10]. Mathematically, such relations are fixed as ones of
eigenvectors and corresponding projecting operators of the evolution operator, defined
by the basic balance system.

Experimental observation of wave and non-wave disturbances is not easy, there
are special facilities as "Sura" [11] based on the active experiment of ionosphere ex-
citation that allows measuring directly the atmosphere parameters variations at the
ionosphere heights [12]. Only recently an attempt to apply the diagnostic method, based
on projecting operators technique, was realized within a set of such measurements. The
projecting technique was developed for a space-evolution operator, that allows to apply
it to atmosphere parameters relations at a vicinity of a point of observation. It allowed to
distinguish up- and down- directed acoustic wave via the real dataset [13], in this work
the algorithm of entropy mode diagnosis was elaborated, see also [14].

This work considers the dynamics of ideal atmosphere gas perturbations over a
background of equilibrium temperature, dependent on height, affected by a gravitational
field and other geophysical impacts. The main aim of this study is the diagnostics as
decomposition of a disturbance to wave and non-wave modes in the case of arbitrary
stable stratification. This is helpful in the interpretation of experimental data related
to the significantly disturbed atmosphere (e.g. by storms), it also may be useful in a
validation of a numerical modelling [15]. Especially, it is important in establishing the
location of wave sources, and modelling the atmosphere’s warming [16,17], related to
the atmosphere gas wave heating. The theory should base on the balance equations and
rely upon physically justified boundary conditions and simplifications [18], its mode
decomposition should be instructive in a specific mathematical statement of problem
formulation [19,20].

In this study, which develops ideas of [21], the modes of a planar flow are deter-
mined by means of relations between specific perturbations that are time-independent.
We name such relations as “diagnostic relations”. They are valid for arbitrary dependence
of the equilibrium temperature on a coordinate for the case of a stable atmosphere. These
relations give the ability to distinguish modes from the total field analytically at any
instant, solving the diagnostic equations, that are the direct corollary of the mentioned
diagnostic relations, It serves as a tool to predict their dynamics, and to conclude about
the energy of modes (which remains constant in time). This is undoubtedly important in
applications in meteorology and diagnostics of atmospheric dynamics, including the
understanding of such phenomena as variations of the equilibrium temperature of the
stratosphere, e.g. so-called warming [22] conventionally understood as period-average.
Such phenomenon may be explained in the framework of non-linear interaction of acous-
tic wave and entropy modes in presence of a dissipation [17,23], named as "heating"
in laboratory acoustics. The whole exposition is also important in the diagnostics of
wave and non-wave modes in order to follow experimental observations and numerical
simulations [15] as an element of atmosphere dynamics monitoring [9]. The authors of
[9] stress, that the acoustic component of a perturbation is the first that reach ionosphere
heights, that is important for the mentioned hazard phenomena detection .

As the practical example of the general theory and the particular model applica-
tions we use the dataset of numerical modelling of an atmospheric perturbation by
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the source, positioned at the vicinity of Earth surface [18],[19]. The theory uses the
standard atmosphere H(z) profile [24] at the z € [0,500] km range with the applica-
tion of diagnostic equations solution with the right-hand-side (RHS), discretized as the
dataset from a numerical experiment we use. We, however, should omit intervals of
instability with non-positive energy density. To proceed we choose a diagnostic at the
interval at which the H(z) profile is well approximated by a linear function. It is the
heights range z € [120,180] km, for which we elaborate the model with the explicit form
of the diagnostic equation solution. For such interval, we compare the results of the
general theory digitization and the result of a more compact model, based on explicit
approximation of the H(z) profile at the pointed height range.

We begin from the basic system of balance equations and derive the diagnostic ones
(Sec. 2). In the final subsection, we solve the differential diagnostic equation by the
method of factorization. Next, we apply the obtained relation to the datasets, obtained
by numerical solution of an atmosphere perturbation problem [18] within the heights
range z € [120,180] km, using the H(z) profile from standard atmosphere [24]. It results
in entropy mode contribution profiles (Sec. 5). In the Sec. 5.2 we build the model for the
mentioned heights interval repeating the calculations, when possible, analytically, see
also [25]. The results, obtained by the direct applications of the theory to the dataset on
the base of the standard atmosphere profile within the range of approximate linearity
and the model results are compared.

2. Diagnostic relations
2.1. Basic balance equations for arbitrary stable stratification

The case of the non-exponential atmosphere in equilibrium permits to fix the
entropy and acoustic mode without subdivision into "upwards" and "downwards"
directed acoustic waves [21], see also [10]. The main functional parameter in this case,
the local atmosphere’s scale height H(z) depends on height as, e.g. in [24]. The background
density which supports the equilibrium distribution of temperature T(z), takes the form:

. p(0)H(0) : gy
p(z) = exp(— 0 H(z’))’ 1)

where the pressure scale height is

7 T(z)(C,—C
Hz) = 2 = OG- C) @)
%4 8
Here the conventional gas parameters are used: g - gravity acceleration, Cp, are the
molar heat capacities at constant p,v correspondingly. It is convenient to introduce the
quantity ¢’ instead of perturbation in density

o' =p - 'r%p’, ©)

where the parameter y = C,/C,. We will name it the entropy perturbation, because in a
limit with ¢ = 0 and constant background temperature T, ¢’ represents the deviation of
the ideal gas entropy from the equilibrium one [27].

As it was done in [25] we use the conventional set of variables:

4 d ,
P=yp- exp( ZH?Z/))’ (4)
0

z d ’
=g exp( ZH?Z/))’ ®)
0
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z gz
U:V-exp (- ZI‘I?’Z’))’ (6)
0

where P, ®, U are the new quantities defined in this way (Egs, (4,5,6)) and V is the
vertical velocity of the flow. The system of momentum-energy-mass balance equations
in new variables reads (see [10,25]):

au _ 1 Y—2 H(z) 0 P
= 50 (v~ A o2) " TR 7
o = —sHOp0) 5] ~gHOPO) J U, ®
= HsHOROU, ©)
where v(z) is positive:
V(@) = y—144HE) o, (10)

dz

that guarantee the positive definition of energy density, defined at the Sec. 6.

2.2. Relation between pressure and entropy perturbations for acoustic and entropy modes

The relation that links the pressure and entropy perturbation within the acoustic
mode, for arbitrary stable stratification of 1D atmosphere can be obtained by substituting
the Eq.(9) into the Eq.(8) [25]. As a result, the diagnostic relation between the pressure and
entropy perturbations within the acoustic mode follows:

_(r=2_ ., 9H{
Fo= (21/(2) Ty, v(z) )q)a' ()

The first equation in the basic system (7) for Uy = 0 fixes the diagnostic link in the
stationary (entropy) mode:

-2 0

@ = (-272 e L )R (12)

The relations (11) and (12) can be rewritten as

Py +Dy®,; =0, (13)
(I)O + DOPO =0, (14)
where the operators
_ (r—2, 0 H(@)
Do = <2v(z) Ty v(z) )’ (15)
__(_r=2 9
Dy = ( 22 yH(z) az) (16)

are the first order differential operators. We name the Eqs.(13,14) as diagnostic rela-
tions, that define the acoustic and entropy mode in the 1D atmosphere with arbitrary
stratification.

2.3. Diagnostic equations

Let us introduce operator-valued two-component vector:

(1 D), (17)
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and the column that represents the vector of state:

P
(3)

where
P =P+ Py, ® = D, + y. (19)
The action
p
( 1 Dq )( o ) =P+ Dy® =P+ Dg®s+ Py + Da®Py = Py + Da®o = Py — DaDo P,
(20)
defines the second order ordinary differential equation, we would name as the diagnostic
one:
(1—DyDg)Py = P+ D, ® = fy(2). (1)

So, to extract the entropy mode, we need to solve the differential equation (21) with ap-
propriate boundary conditions. Similar consideration with a solution form is presented
at [21] in different units. The acoustic mode either could be extracted in the same manner
or simply using the identity P = P, + F.

There is also a similar alternative, which also leads to a second order differential
diagnostic equation but for P,. This alternative is implemented by the action of the row
operator vector on the column vector function

p
(DO 1 )( o > = DgP 4+ ® = DyP; + P, + DoPy + O =

= DyP, 4+ ®, = —D,'P, + DyP, = (Dg — D, 1) P,. (22)

The diagnostic relation (14) is taken into account. The derivation results in the second
order equation
D,DyP, — P, = f4(z) = DaDoP + D,® (23)

see also [25], where the derivation is absent. The operator at the LHS of the second
diagnostic equation (23) transforms as

DDy —1 = @/ZZ? + yaazf((zz))) (—72_2 + 'yH(z);Z) 1 (24)

3. On the dataset

We process the set of numerical experiment data consisting of horizontal coordi-
nate, vertical coordinate, pressure, background pressure, density, background density,
temperature, wave perturbation of temperature, wave perturbation of pressure, wave
perturbation of density. The mentioned physical values are given as files such that for the
fixed horizontal coordinate the vertical coordinate z; is presented for the range [0,500]
km with the steps that varies with a height difference from 150 m to 2000 m. The fixed
time and horizontal coordinate seem to be convenient since the one-dimensional theory
is considered. Data set was provided to authors by the sources, related to the paper [19].
The model, used in this paper [29], is a numeric solution of the full two-dimensional non-
linear system of hydrothermodynamic balance equations. The program that processes
the dataset allows solving the diagnostic equations (21,23) with reasonable accuracy of
about a few percents, as estimated by the Runge rule.

According to the equations rhs (21,23) and the diagnostic equations (14,13), such a
study requires pressure and entropy data for constructing function fy(z), fa(z), where
the link of the variables P, ® with original, pressure and density wave perturbations p’
and p’ directly measured or calculated ones, are described by the relations (4) and (5).


https://doi.org/10.20944/preprints202103.0274.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2021 d0i:10.20944/preprints202103.0274.v2

6 of 16

Z, m

450000 - .
400000 500
450
350000 400
350
300
300000 3 250 250
200
250000 150
100
200000 — — s0
0
-50
150000 100
-150
100000 -200
-250
50000

50000 100000 150000 200000 250000 300000 350000 400000 450000
X, m

Figure 1. Wave perturbation of temperature from a local source of pressure fluctuations for the
considered moment of time. Result of numeric modeling [19]. Courtesy of. Yu. Kurdjaeva.

3.1. Standard atmosphere H(z) profile

In this section we prepare the atmosphere characteristics for numerical calculations,
starting from the atmospheric scale height calculated as

H(Zi) = Hi = %(Zi), (25)

where z; - i-row element of the discrete data array for vertical coordinate, H; - the value
of the atmosphere scale height at the height z;, T(z;) - the value of the temperature at the
reference height z;, Ry = R/M = 287.1 J/(kg-K) - the specific gas constant for dry air
[24]. The height scale profile is built directly by the table for background temperature
35000
30000
25000
20000

15000

10000+

100 200 300 400

Figure 2. The height scale H(z;) profile obtained according to the formula (25) [24].
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T(z;) , taken from [24]. The function (10) we approximate as follows
dH(z) Hij1 — Hiq
vi(zj)) =v—1+ ~Ny—14+y—. 26
i(zi) = T . Y (i (26)

The expression shows how we estimate the derivatives (excluding the first and last
points, where the left and right derivatives approximations are used).

3.2. Linear approximation of H(z)

According to the graph for the atmosphere’s scale height in Fig.2, we will focus on
the approximately linear part in the interval z € [120; 180] km.

24000-
22000-
20000-
18000 1
H(m)
16000 1

14000+

12000+

130 140 150 160 170 180

Figure 3. Standard atmosphere H(z;) for z; within 120 km to 180 km range (in blue) and its linear
approximation represented by formula (27) (in green)

Note, that the difference between the dependence of H(z) taken from the dataset
and the linear approximations, given in Fig. 3 within 120 km to 180 km range, is almost
invisible at such scale. This gives an argument to use such linear approximation in
further modelling. To provide the model test, we put H(z) depending linearly on the
coordinate z like:

H(z) =az—H (27)

where the curves at the Figure 3 adjustment is provided by the following choice
H = 12000 m, (28)

a = 0.192. (29)
The function H(z) = 0.192z — 12000 graph is shown in red in Fig.3.
For the linear H(z) case the function (10) is:

H(z)

d
v(z) =7y —-1+7 e R (30)


https://doi.org/10.20944/preprints202103.0274.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2021 d0i:10.20944/preprints202103.0274.v2

8 of 16

4. Solution of a disgnostic equation for linear dependence of H(z) by factorization
method

4.1. Operator factorization
Let us choose the equation (21), where

(H(z))? 9? H(z) 0 9%+ 2a?
’ v(z) 022 _2067'71/(2) oz (z) 7

1-D,Dy=1—1 (31)

for the entropy mode (1 — D;Dy) Py = fo, or, on base of linear approximation of H(z), it,
by the factorization, writes by the following

(D* +ED —A)P = (D=¢)(D— )R = ~(y+ar—Dfo = —v@)fo, ()

where, for the factorization convenience, the following expressions are introduced

_ d _ _ 72—|—20¢72
D = ')/H(z)&, E=uay, A= —
¢p=E—71, (34)

Y= %\/E2+4A—%E. (35)

The operator of the second diagnostic equation (23) for the acoustic mode is oppo-
site to one of the first diagnostic equation, hence its solution differs only by the RHS
(inhomogeneity).

(33)

4.2. On boundary conditions
4.2.1. General remarks. Diagnosis.

A statement of the problem for the second order equations as (21,23) implies two
boundary conditions either at the ends of the interval of consideration or both at one
end of the heights range.

Generally, the inhomogeneous equation with the linear operator A

Au = fo (36)
is solved up to general solution of the homogeneous one:
u= A71f0 + uy, (37)

Auh =0. (38)

The function u, is fixed by a set of boundary condition. In the case of the second order
differential equation, we should choose two such conditions that determine the constants
GG

In the problem of diagnostics, its formulation is more complicated. We have two
ODE for the variables Py and P, of the same form of the operator, but with different RHS,
The statement of the problem should also keep the condition

Py+ P, =P, (39)
within the whole range of the problem including the boundary.

4.2.2. Boundary problem.

The condition (39) being read literally, impose the condition

Py(z2) = P(z2) — Py(z2). (40)
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It, together with
Py(z1) =0, Pj(z1) =0, (41)
and
Pa(z1) = P(z1). (42)
closes the diagnostics problem formulation we investigate within this work.
4.3. Solution of the first and second diagnostic equations
The general solution of the equation (32) formally reads as
Py = (1 — D4Do) "' (P + Do®). (43)

It is found by the conventional factorization of the first order operators at (32). We write
the solution as

_ 'Y"’“'Y_l / /fO g n Q B
Py=— S7 dz'dz" + Y SZdZ + S, (44)

71

where S = Z wr (—2E+3VERF44) _ =74T=7" a7 (2E+2VERHA) _ =7V, 7 = az+ H.

Thinking about the entropy mode presence as a result of the heating by a wave
propagating from the bottom end of the interval z € [z1,z3], we choose the pair of
conditions for the entropy mode variable Py and its derivative

Po(Z]) =0, P(/)(Z]) =0, (45)

that mimics an (approximate) absence of the entropy mode at a vicinity of the lower point
z1. The second condition of (45) responds to the diagnostic relation (14), i.e. &y = 0.
In such a case the conditions for the acoustic component looks

Pa (Zl) = P(Zl). (46)

The boundary values in the (46) are taken either from an experiment or from a
dataset obtained from numerical modeling.

The constants of integration C, C; are defined from the boundary conditions (45).
C; is determined by the condition

P(Zl) = C1Z(0¢Zl — H)u =0, (47)

therefore C; =0, i.e.

"

z

_ ('Y+‘X'7_1 / fO g Cs/l /

Py=— 2 37 d dz" + SZdZ. (48)
V4

21

The second condition at z;, the relation (45), gives for the derivative the following,

z

r_ 'Y+“'Y / fO 1" / 0 4 11 CS’/l ,, CT

Py=— SZ dzd +SZ T7 =odz'dz +—7 Szdz +')/Z'
21

(49)
Plugging z = z; gives

CT  Cl(az— H)fﬁ(%E+% E2+4A)
Y

T =0, (50)

hence, the constant C is also zero.
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Very similar, the second diagnostic equation (23) is solved as
Py = —(1— DyDy) "' (DaDoP + Dy ®) = (1 — DaDo) ™' (—fa)- (51)
Subtracting the equations (21) and (23) yields

Py+ Py = (1 —DyDg) " (fo — fa) = (1 — DaDg) "} (P 4 Dy@® — D;DoP — D, ®) = P,
(52)
this identity is convenient for the solutions test.
The expression for P, differs from (44) by the source (f;) and by the constants of
integration, that gives

'Y+‘X'Y_1) / / 1301 75
P, = 57 zdz" + o SZd + C1S. (53)

21
From the boundary conditions (46) it follows
Pa(Zl) = CiS(Zﬂ = P(Zl). (54)

The coefficients C’ and C] are expressed from the last two formulas. Finally:

z Z//
y+ay—1 /T / fu 1 / )
Pp=— — .
a 2 SZ1 SZ21 T7 z'dz —l— )S (55)

4.3.1. The second boundary problem. Acoustic mode

We left the first boundary condition for the acoustic mode

Pa(z21) = CiS(z1) = P(0), Cf = (56)

The condition at the upper boundary is more complicated

z o
—n_FT
Pa(ZQ):(“’*iZ )s/ﬁ/ dz'dz ”+—/§d’ Fo )s( ) (57)
Z1 Z1

and at the same time

PH(Zz) = P(Zz) - Po(ZZ), (58)
that yields
Z 2
P(z2)—Py(22) +ay-1F T 1 fa P(0)
25(225) 2) Y ig Zf572f ﬁdz’dz” — 5ad
C = - 1 1 ) (59)
1 (T,
L[
21
but guarantees the natural condition
Py(z2) + Po(z2) = P. (60)

Note, that the entropy components of a disturbance are evaluated from the diag-
nostic relations: ®( from (14) and the variable ®, from (13).
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5. Applications to data of a numeric experiment
5.1. Discrete representation of functions and operators for the standard atmosphere H(z) case

From (21) we derive:

fo(zi) = Pi + Dy, ®;, (61)
where according to the (15):
¥=2 H, 9 (H(z) >’
D = — _ - _ 62
YT T2y Tu)oz \um)) s €2)

In the same way the function (23)

fa(zi) = Dy,iDo,iPi + Dy,i®; (63)
where according to the (16):
=2 g9
DO,z - 7 ')’Hz Jz . (64)

The functions P; and ®; are defined through a dataset using formulas (4),(5) that
for the real H(z;) case are:

Zj

P = P(z;) = p(z;) - ex ) '(z;) - ex Z Az (65)
= PE) = v el [ angy | 2VE o\ Dang; )
zi d ! i A
— = o/(z) - z ~ o (z)) - j
CDI_CD(ZI)_(P(ZI) eXp ) 2H(Zl> (P(Zl) eXp(]; 2H(Z])> (66)
0.00024 n
0.003
0.0001 - i
A 0.002
f,(Pa) 0 1R 150 160 170 180 f,(Pa)
(km) 0.001
~0.0001 \
0 30 140 150 160 \AMX,. 180
z(km)
a) ~00001 b) -o001

Figure 4. The plot a) is the graph of the function fy(z;) obtained by the formula (61) and the plot
b) is the graph of f,(z;) obtained by the formula (63) for the case of standard atmosphere H(z;)
case represented by the formula (25).

The oscillations of the RHSs of the diagnostic equations for Py, (Figs 4), apart from
a small variation of the functional parameter H(z), appear due to the application of
differentiation operation to the dataset components as in (62), which scale of coordinate
differences and errors are noticeable.

It is seen at the Figs 5, that the result of the diagnosis as vertical structure of the
contributions Py, in the pressure perturbation P looks much more smooth because its
definition contains integration.
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Figure 5. The plot a) is the graph of the solution Py(z) obtained by the formula (44) and b) is the
graph of of the solution P;(z) obtained by the formula (53) for the case of standard atmosphere
H(z;) case represented by the formula (25).

5.2. Representation of functions and operators for the linear H(z) case

For linear approximation of H(z) of the form (27), the operators (15) and (16) have

the form: ) 5 .
o —
D, = — Z 7
g <2(fyl+'ytx) +’yaz'yl+'yzx>' (67)

- 9
D0:—<—722 —l—’y(vcz—H)aZ). (68)

For linear dependence of H(z) function fy(z) from (21) can be calculated as:

v —2+4 20y & y(az — H) 0P

fo(z>:P+D“q>:P_2(fy—1+7vc) v —1+7a 0z (69)
and function f,(z) from (23):
1 1
oP o’P 1 0P
2000 9L 20 ot Lo _ _m?®
+ 20" (az — H) 5 T (az — H) 52 2(')/ 24 20y)® — y(az — H) az) (71)

where pressure and entropy perturbation functions (4),(5) are:

, o , 1
P=p -exp Z/ZH?ZI) =p -exp(za(ln(azH)ln(wzlH))), (72)

®=¢ -exp (Z/ 2;?;/)) = (p'~exp(21[x(ln(¢xz—H) —In (az; —H))). (73)

Here z; - initial coordinate or in the case of a discrete dataset for the vertical coordinate,
that yields:

P(a) = ' exp i () ~ In (a1~ 1)), 74

@) = ¢ exp 5 in (H(z)) ~In (021~ 1)) ). @

We see, that the plots look as smooth as ones at Fig. 5. It is the result of the
integration that acts as a "smoothing" operation, as opposite to differentiation. Such
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Figure 6. The plot a) is the graph of the function fy(z) obtained by the formula (69) and the
plot b) is the graph of f;(z) obtained by the formula (71) for the case of linear dependence H(z)
represented by the formula (27)

phenomena are well-known in the theory of inverse problems. The plots of the Fig 8
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Figure 7. The plot a) is the graph of the solution Py(z) obtained by the formula (44) and b) is the
graph of of the solution P,(z) obtained by the formula (53) for the case of linear dependence H(z)
represented by the formula (27)

represent one of the principal results of this work: it shows that there is a discrepancy
between the profile obtained by the direct dataset processing and handling by means
of the apparatus built by the analytical approximation of the theory elements. The
difference, however, is not so big, the linear model allows to estimate the entropy mode
profile. The transition to energy distribution leads to the results for which the difference
almost disappear, see Fig. 9.

6. Comparison of the models and discussion of the results

The plots of the Fig 8 represent one of the principle result of this work: it shows that
there is a discrepancy between the profile obtained by the direct dataset processing and
handling by means of the apparatus built by the analytical approximation of the theory
elements. The difference, however, is not so big, the linear model allows to estimate the
entropy mode profile. The addition of independent results of calculations of Py and P,
gives the curve closely matching with the graph of a function P represented by formula
(4), which is consistent with the main idea of the expansion into modes P = Py + P,.
The transition to energy distribution leads to the results for which the difference almost
disappear, see Fig. 9.
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Figure 8. Comparison of the entropy mode Py(z) (a) and the acoustic one P,(z) (b) obtained using
the formulas (44) and (53), respectively, for the cases of standard atmosphere H(z) (25) (in blue)
and linear height scale dependence H(z) model (27) (in green).

The authors believe that the analytical models are more desirable than numerical
methods, which are usually time-consuming, require a high-performance computer, and
special attention to underlying algorithms, their convergence, and stability investigation.
On the other hand, reasonably simple analytical models also, when complemented by a
numerical approach, are much more efficient.

Speaking about the modes extraction at the level of the pressure-entropy vector
disturbances field we observe the difference of the results, visible at the plots of the
Figure 8. The difference (by module about 5 percents) originated from the significant
non-coincidence of the functional parameter v(z). Namely, it is constant, in the case of
the model (approximately equal to 0.79 ), but vary, oscillating from 0.73 to 0.92, being
calculated directly from standard atmosphere data H(z), differentiating in (10) via the
conventional derivative approximation. Estimation of the energy E(z), the total energy
of all modes at the coordinate range [0, z], is given by the following expression

Z ” 2
E(z) = ;/dz(pvz IS ) (76)
0

1P (z)p

see the profiles at the Figure 9.

Note, that the energy profiles for the cases of the direct standard atmosphere use
and the model, based on explicit linear dependence application gives the curves which
difference is scarcely visible (the difference about the percent), hence we propose to use
the total energy values and the profiles (76) for the model mode weights estimation.

7. Conclusions

The main result of the presented work constitutes in the diagnostic equation, which
solution gives the vertical profile of the acoustic mode contribution in the entropy
perturbation. This result is illustrated by application to realistic numerical modeling of
the atmosphere perturbation by a source positioned near Earth surface. The next result of
the study presents the model of the diagnostic algorithm that uses the restricted heights
interval, at which the H(z) dependence is very close to linear. Its restriction guarantees
the stability condition and the energy density positively defined. The dependence of
explicit approximation on z allows proceeding with the diagnostic equation solution in
explicit form. The resulting diagnostic operations are compared with ones of numerical
calculations at the whole available heights range under consideration. The extracted
acoustical and entropy modes contributions in perturbation of the gas entropy profiles
are plotted and compared with the models’.
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Figure 9. Energy calculated by the equation (76) for the cases of standard atmosphere (in blue)

and linear dependence (in green) of the height scal H(z) for z € [120;180] km., see the relation
Q7).

One of the important ingredients of diagnostics is the possibility to estimate the
relative weight of a mode contribution. It is also important to evaluate an error of
this estimation, cumulative measurements errors and the theoretical and numerical
discrepancies. Such possibility is directly based on the energy density definition with
the positive functional parameter nu at a height range under consideration. It, as known,
leads to the norm definition in a functional space of the state vector.
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