

Is early life adversity a trigger towards inflammageing?

Myriam P. Merz^{1,2}, Jonathan D. Turner^{1,Δ}

¹ Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg

² Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg

Δ corresponding author:

Dr. Jonathan D. Turner

Immune Endocrine Epigenetics Research Group
Department of Infection and Immunity
Luxembourg Institute of Health
29, rue Henri Koch,
L-4354 Esch-sur-Alzette
Grand Duchy of Luxembourg
jonathan.turner@lih.lu

Abstract

There are many 'faces' of early life adversity (ELA), such as childhood trauma, institutionalization, abuse or exposure to environmental toxins. These have been implicated in the onset and severity of a wide range of chronic non-communicable diseases later in life. The later-life disease risk has a well-established immunological component. This raises the question as to whether accelerated immune-ageing mechanistically links early-life adversity to the lifelong health trajectory resulting in either 'poor' or 'healthy' ageing. Here we examine observational and mechanistic studies of ELA and inflammageing, highlighting common and distinct features in these two life stages. Many biological processes appear in common including reduction in telomere length, increased immuno-senescence, metabolic distortions and chronic (viral) infections. We propose that ELA shapes the developing immune, endocrine and nervous system in a non-reversible way, creating a distinct phenotype with accelerated immuno-senescence and systemic inflammation. We believe that ELA acts as an accelerator for inflammageing and age-related diseases. Furthermore, we now have the tools and cohorts to be able to dissect the interaction between early life adversity and later life phenotype. This should, in the near future, allow us to identify the ecological and mechanistic processes that are involved in 'healthy' or accelerated immune-ageing.

Keywords: early life adversity; stress; psychosocial stress; hypothalamus-pituitary-adrenal axis; ageing; immuno-senescence; inflammageing; Developmental origins of health and disease.

1. Introduction

The delicate balance between health and disease as we age has long been a subject of interest to a wide variety of disciplines. Traditionally, research in this field has proven difficult due to the high intra-individual variability of the ageing process that necessitates large, labour intensive, expensive and time-consuming longitudinal cohort studies. Consequently, a more mechanistic approach was developed that focusses on common biological patterns, or '*hallmarks of ageing*' (Lopez-Otin et al., 2013). Through extensive research in this area, it has become clear, that ageing and long-term health are influenced by a variety of interconnected variables, with an incredible variance in their intensity, onset and duration.

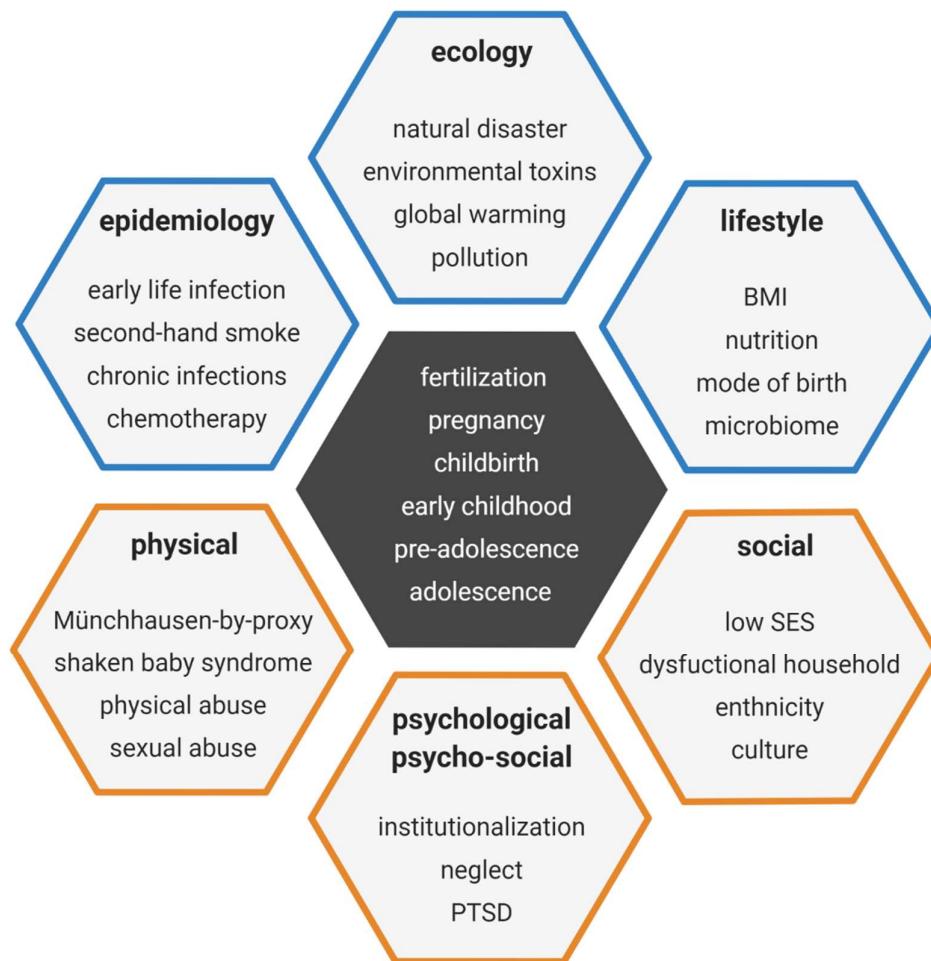
A negative or poor social environment during critical periods such as early life has been shown to have exaggerated, negative, life-long health effects. Outside these periods it has a lesser effect that accumulates along the lifespan. The work of David Barker showed that many diseases of later life may have their origins in this early life period (Barker et al., 1989). This led to the development of the 'Barker Theory' or the 'developmental origins of health and disease (DOHaD)', describing their effects over the life-span, and emphasising the importance of the overall life trajectory. Although examining the effect and transmission of the social environment is complicated, recent data gathered in an interplay between social sciences, psychology, biology, and medicine focussing on longitudinal studies coupled with advanced bioinformatical tools has started to disentangle the different (psychological and societal) environmental elements, present new insights into the origins of health and disease.

In this paper, we review the mechanistic and immunological connection between a poor early-life environment, either through early life adversity (ELA) or low socioeconomic status, and chronic diseases later in life. Furthermore, we propose a model by which ELA accelerates the normal process of immune-ageing, especially inflammageing.

2. Early life adversity (ELA)

2.1 ELA and the associated long term effects

'[...] I am not talking about failing a test or losing a basketball game. I am talking about threats that are so severe or pervasive that they literally get under our skin and change our physiology. [...]'


– Nadine Burke Harris, Surgeon General of California, on TED talks 2019

ELA is as a collective term to describe adverse social and ecological events occurring during pregnancy and early childhood (Fig.1). Prominent examples for ELA include institutionalization, calorie intake restriction, and psychosocial stress due to natural disasters, as well as forms of mental and physical abuse. While the initial work of David Barker focussed on the pre- and immediate post-natal periods rather than the entire span of childhood (Barker et al., 1993), this is slowly being expanded to 0-17 years (Merrick et al., 2018). This broader timeframe is particularly relevant for the more complex mode of operation of the social components of health (Ben-Shlomo and Kuh, 2002, Haas, 2013). The window of developmental sensitivity to the biological components of adversity (nutrition, pathogens) appears to be from the formation of organs during pregnancy to the final phases of brain development in young children (motor function, recognition, speech). While enhanced cerebral plasticity and synaptic connectivity during the first five years of life [reviewed in (Stiles and Jernigan, 2010)] clearly increases its' susceptibility to environmental influences, studies

in post-traumatic stress disorder (PTSD) or occupational burnout have shown that extreme psychological trauma and chronic stress affect brain structure and stress hormone release in adults [reviewed in (Szeszko et al., 2018, Rothe et al., 2020)].

While there is no definitive temporal or constituent definition of *early life adversity*, the widely used consensus is that it covers approximately the first 1000 days of life, from conception to about 2 years of age.

There is a long history of using natural experiments or the normal variability in either human biology or the environment to dissect the role of the early-life environment. The earliest systematic studies on the effects of ELA were carried out by psychologists in the middle of the 20th century. Initially they reported severe developmental delays in institutionalised children and connected these observation with the lack of emotional attachment, mental stimulation and social interactions that a conventional 'mother and child' setting usually provided [reviewed in (Gunnar and Reid, 2019)].

Figure 1. Components of early life adversity. Potential origins of early life adversity (ELA) are separated into categories with related examples. According to the '1000 days theory' environmental/biological sources which may be of more importance in very early stages of life are lined in blue whereas societal/social sources are lined in orange. Often several components are present simultaneously. Stages of human development (middle) do not specifically correspond to

social or biological components, but represent stages of heightened susceptibility to environmental stimuli. [SES= socioeconomic status; PTDS= post-traumatic stress disorder, BMI= body mass index]

In the 1970s, British epidemiologist and medical doctor David Barker, discovered a link between children's birthweight and the development of cardiovascular disease in adulthood. In his seminal work Barker hypothesized that an adverse environment during pregnancy was linked to the risk to develop chronic diseases later in life (Barker et al., 1989) This led to the development of "Barker's Hypothesis" or the "developmental origins of health and disease (DOHaD)". Barker later extended his theory to span the risk for diabetes, high blood pressure and other chronic diseases (Barker et al., 2009). Since the publication of Barker's theory the number of publications linking early life adversity to lifelong health trajectories has grown almost exponentially. Despite initial scepticism, the original "Barker hypothesis" is now considered the "Barker theory".

The corner stone for such investigations was laid during the 1944 German-imposed food embargo in the Netherlands, the Dutch Hunger Winter (Susser and Lin, 1992). This and other natural disasters (Ahmed, 2010, Stein et al., 1975), including the most current findings from the 1998 Quebec Ice Storm (Laplante et al., 2004, Cao-Lei et al., 2014), have shown the severe impact of prenatal maternal stress on the children's long-term cognitive and physical development. Although natural disasters present a very clear and often well-defined form of ELA, by far the most common origins of childhood stressors are dysfunctional households as well as emotional, physical and sexual abuse (Ports et al., 2019, Merrick et al., 2018). The Adverse Childhood Experiences (ACE) study was one of the largest studies addressing long term health effects of childhood abuse, neglect and household dysfunction (Felitti et al., 1998). Over 17.000 insurance subscribers completed self-reports on their adverse childhood experiences and social behaviours that was subsequently integrated with their medical records. Over 50% of respondents reported at least one form of adversity, while 12% had encountered four or more. By integrating health, social and medical data a clear correlation between high adversity-scores and long-term negative health outcomes (Merrick MT, 2019), mental disease (Brown et al., 2019) and social misfortune (Metzler et al., 2017) was identified. While ELA is, in general, a clearly delineated and quantifiable entity, low socioeconomic status (SES) has similar effects. Early-life SES, is a generic life-history measure that includes the exposure to a milieu of increased stressors (psychosocial, psychological, and financial), adverse lifestyle factors (BMI, smoking, alcohol) as well as pathogens, allergens, pollutants, irritants, and many other noxious stimuli (Turner, 2018). Low SES in early life is, in itself, a form of ELA. Although often studied separately, individual components of ELA are inextricably linked and must be considered holistically. This has also broadened our definition of ELA as a range of potentially negative ecological, social and psychological factors. Since the DOHaD model was initially presented by David Barker it has continued to evolve. Initially the early life period was considered almost exclusively, however, it is currently conceptualised as a 'three hit model', whereas the '*hits*' are defined as (1) the genetic predisposition fixed at conception, (2) early life environment/adversity and (3) environmental challenges later in life (Daskalakis et al., 2013, Grova et al., 2019).

2.2 Biological components and consequences of ELA

Observational studies (such as the ACEs study) have shown a clear association between ELA and the long term risk to develop mental or chronic diseases including cardiovascular disease, diabetes, obesity and depression (Hertzman and Boyce, 2010), but the pathophysiological and mechanistic pathways behind these observations are only partially understood. ELA, in very simple terms, acts

as a physiological or psychological stressor (or both) in the early phases of life. Stress is the body's reaction to a disruption of homeostasis provoked by an external (e.g. immediate physical danger, an approaching deadline at work, video games (Porter and Goolkasian, 2019)) or internal stimulus (e.g. viral infections, depression, sports (Selye, 1936, Selye, 1956, Kellmann and Günther, 2000)). This results in the rapid activation of the sympathetic nervous system (SNS) and the slower activation of the hypothalamic pituitary adrenal (HPA) axis and the release of adrenaline and cortisol respectively. Cortisol, the end product of the HPA axis is the result of cascading hypothalamic corticotropin-releasing factor (CRF), adrenocorticotropic hormone (ACTH) from the pituitary gland, and then cortisol release from the adrenal glands. Cortisol then acts via a negative feedback loop inhibiting CRF and ACTH release, downregulating further cortisol release [reviewed in (Herman et al., 2005)]. As cortisol levels rise blood sugar levels also rise through gluconeogenesis. The secretion of hormones and the state of hyper-mental awareness ends when the stressor is removed or the body's energy has been depleted (Chrousos and Gold, 1992).

ELA affects the long-term stress reaction: The increased incidence of many stress-related disorders after ELA (Batten et al., 2004, McCauley et al., 1997) has long suggested that the HPA axis and autonomic nervous system are not only immediately activated, but they are functionally impacted over the long-term. Long-term modification of HPA axis functioning may play a role in the pathophysiological effects of ELA (Barton et al., 2016). ELA models, such as maternal deprivation (MD) in monkeys (Sanchez, 2006), induce hyporeactivity of the HPA axis, resulting in lower cortisol levels in response to subsequent stressors, while rodent MD models induced HPA hyperactivity (Aisa et al., 2007). The human institutionalisation-adoption paradigm, similar to the maternal deprivation models, perturbs the HPA axis for many years post ELA (Gunnar et al., 2009, Hengesch et al., 2018, Meaney, 2001). The data are contradictory, both a hyper- and a hypo- responsive HPA axis have been reported (Hyperresponsive: (Heim et al., 2000, Pesonen et al., 2010); hyporesponsive: (Carpenter et al., 2007, Voellmin et al., 2015)). In our EpiPath institutionalisation-adoption cohort we observed a hyporesponsive HPA axis that was uniquely decoupled from the cardiovascular stress response that is governed by the autonomic nervous system (ANS), which remained unaffected (Hengesch et al., 2018). The mechanism by which ELA leaves a mark on, or '*programs*', the HPA axis response are currently not well understood, but neuronal inflammation play a central role in inducing epigenetic changes (Pierre et al., 2020). Epigenetic changes are most visible in the glucocorticoid receptor (GR) gene promoter and subsequent GR signalling in the central tissues of the GC feedback loop (Koss and Gunnar, 2018). Differential methylation of the GR has been associated with adverse maternal environment (Stonawski et al., 2019), diet (Ke et al., 2020), early life stress (Holmes, 2019), exposure to environmental toxins (Meakin et al., 2019), chronic stress (Rowson et al., 2019) and institutionalisation (Elwenspoek et al., 2019) among other sources. Epigenetic modification of the GR and related genes presents the best biomarker of ELA up to date, but these methylation changes might only occur in brain regions, making them inaccessible for preventive medicine (Lewis et al., 2020), since the peripheral GR does not appear to be functionally or transcriptionally altered (Elwenspoek et al., 2019).

ELA affects the normal development of the brain: Exposure to ELA not only leads to the increased risk of developing mental health problems including depression and schizophrenia, but is also associated with physical changes in the developing brain e.g. grey matter volume and white matter organization (Agorastos et al., 2019, Pagliaccio and Barch, 2016). Furthermore, it affects behaviour, emotion and attention, HPA axis activity, and autonomic nervous system functioning (Bick and Nelson, 2016). At birth, the human brain is not fully developed, and development continues for

many years (Rice and Barone, 2000). Adversity and stress during this period not only affect the development, but also the long-term functioning of the brain and neuronal circuits. This may be partly mediated by brain-resident immune cells. Exposure to ELA (or low SES) reduces the volume of the amygdala (Luby et al., 2013) and increases reactivity to emotional stimuli (McCrory et al., 2013). Furthermore the connectivity between the amygdala and regions such as the ventrolateral and dorsolateral pre-frontal cortex, which provides top-down regulation, was altered (Kim et al., 2013), persisting into adulthood (Nusslock and Miller, 2016) and increasing the risk of anxiety-related psychopathologies. In rats exposed to maternal separation, these changes were sex-specific. They were stronger and occurred more rapidly in females, resulting in a stronger anxious phenotype, and the first evidence of sex specific differences in brain anatomy and function after ELA (Honeycutt et al., 2020). ELA also has significant long-term effects on hippocampus-mediated process including memory and learning. ELA directly affects not only the connectivity of the hippocampus, but also the neuronal structure and synapse number as well as dendritic arborisation increasing local CRF levels. Blocking the CRF receptor (CRF receptor type-1, CRFR1) abrogated the long-term memory and potentiation effects of ELA, although it did not affects anxiety-related behaviour (Short et al., 2020). These data suggest that ELA plays a '*programming*' role, and potentiates the effect of later-life expose to severe stress. Furthermore, after exposure to ELA later-life stressors induced a clear inflammatory response in the prefrontal cortex and hippocampus. This suggests a clear role for the immune system in the programming of the long-term effects of ELA on the brain (Ferle et al., 2020). This link is reinforced by the association of differential methylation of neuronal development genes in PBMCs after ELA (Esposito et al., 2016), and the epidemiological link between sepsis in new-borns and long term brain development (Alshaikh et al., 2013).

Dissecting the effects of ELA are complicated by ELA increasing the subsequent negative health-risk behaviours (HRBs) including increased cigarette smoking, substance abuse (including alcohol), risky sexual behaviours, sedentary lifestyles and obesity (Felitti et al., 1998). HRBs are either modelled on caregivers (Alcalá et al., 2017), part of a coping strategy in stressful or conflictual environments (Rothman et al., 2008), or a challenge to reduced caregiver attention (Repetti et al., 2002). However, these HRBs may be a consequence of, and compensate, neurobiological differences in the brain induced by adversity in the developmental period. ELA appears to have a sustainable effect emotional reactivity/regulation, reward responsivity, and delay discounting (Duffy et al., 2018). Decreased amygdala volume and increased connectivity to e.g. the pre-frontal cortex after ELA are associated with increased emotional reactivity to e.g. negative emotional images throughout childhood (Duffy et al., 2018), adolescence and even into adulthood in a manner dependent on the severity of the adversity (McLaughlin et al., 2015, Maheu et al., 2010). This leads to increased emotional (Heleniak et al., 2016) and physiological responses (e.g. cardiovascular responses (Heleniak et al., 2016)) to environmental cues or stimuli. This in turn contributes to increased rates of depression and anxiety-related disorders (Mc Elroy and Hevey, 2014, Su et al., 2015) as well as deficits in long-term emotion-regulation strategies (Morris et al., 2007) that are compensated by negative HRBs. Reward responsivity is the degree to which "one experiences pleasure in the anticipation and presence of a potential reward". ELA exposure reduces reward responsivity in financial reward paradigms (Dennison et al., 2019), probably through reduced ventral striatum (VS) reactivity (Hanson et al., 2016) and reduced dopamine-2 receptor (D2R) levels (Blum et al., 1996). Subsequently, health-risk behaviours are adopted to palliate the reduced reward responsivity. Furthermore, ELA increases delay discounting, the psychological process by which smaller rewards are accepted sooner in preference to a larger reward later (Simmen-Janevska et al., 2015). This is

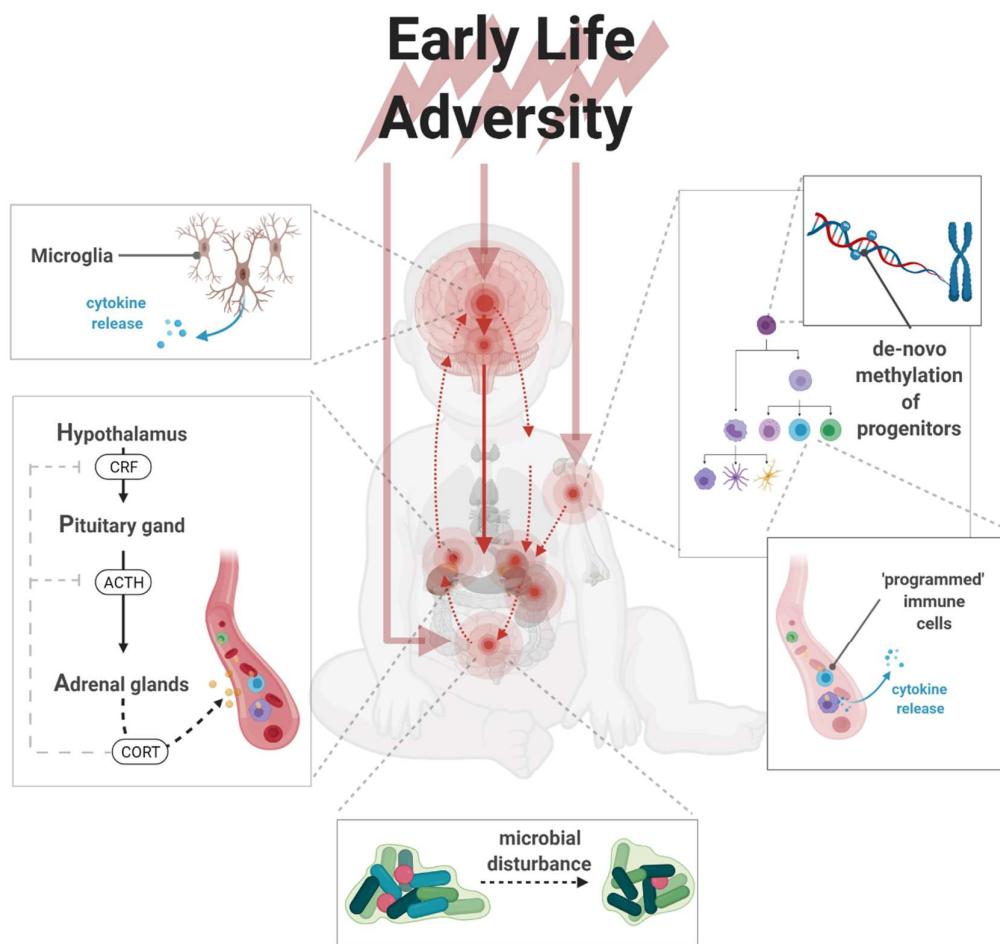
associated with a reduced activation of the dorsolateral prefrontal cortex (McClure et al., 2004), and potentially the increase in health-risk behaviours for the immediate 'reward' provided.

ELA, obesity, insulin resistance, diabetes: Although there are few recent data, there is a well-established link between ELA, microbiome disturbances (Dong and Gupta, 2019) and obesity. Adults reporting prior childhood trauma / abuse have a strong dose-dependent increase in the relative risk for developing adult obesity (risk ratio 1.3 to 1.8 for 1 to 4 elements of abuse present), and inversely, 17% of morbidly obese patients report prior adversity (Williamson et al., 2002). Using the broader definition of '*neglect*' the association with obesity was stronger than any other psychological or sociological variable including parental occupation, housing or educational attainment (Lissau and Sorensen, 1994), or low SES (Surachman et al., 2020). Once childhood obesity is established, it is associated with metabolic changes and a meta-inflammatory phenotype that persists into adulthood (Singer and Lumeng, 2017). ELA and obesity play a role in the subsequent development of insulin resistance and type 2 diabetes (T2D). Low SES in early life induces a diabetogenic metabolic profile in adulthood, while current SES does not appear to do so (Hostinar et al., 2017, Horner et al., 2018). Furthermore, exposure to ELA is a major risk factor for T2D, as well as cardiovascular disease and "a significant proportion of the cardio-metabolic and diabetic disease burden may be attributable to maltreatment" (Chandan et al., 2020). As reviewed in (Holuka et al., 2020), it would appear that low SES transcriptionally programs inflammatory pathways shared with T2D including genes such as: *F8, CCL1, CD1D, KLRG1, NLRP12*, and *TLR3* as well as *AVP, FKBP5, and OXTR* (Holuka et al., 2020). This transcriptional inflammatory link is further re-enforced by the observation that elements of the ELA immunophenotype described below such as the accumulation of senescent CD8+ CTLs with increased levels of systemic inflammatory markers (Lau et al., 2019, Yi et al., 2019).

Ecological and Epidemiological influences in the context of ELA: Low SES and increased ELA are intimately associated with many other elements in the ecological environment in mediating long term health. Early life lead exposure through drinking water contamination disrupts heme synthase (ferrochelatase) and toxicity levels are proportional to body mass, exaggerating the effects during early life (Hammond and Dietrich, 1990). Other cause/effect relationships are more difficult, however, a 2019 report from the European Environment Agency (EEA) identified air quality, noise, soil and water pollution as a significant burden, affecting the social disadvantaged especially hard (EEA, 2019). Furthermore the World Health Organization (WHO) estimated that in 2012 up to 13% of all deaths in the Europe Union could be attributed to environmental pollution (WHO, 2016). While toxic chemicals often have very specific short-term effects on the body (poisoning), the long-term effects of low-dose environmental toxins (e.g. pesticides) are not well known, although the association between exposure and the loss of gene associated methylation patterns suggests epigenetic mechanisms may be involved (Wang et al., 2020). Consequently, high-income countries are experiencing an increase in behavioural disorders, diabetes and noncommunicable diseases, while low-income countries are suffering from respiratory infections, diarrheal diseases and preterm birth. (Landrigan et al., 2016). In line with this, it has been suggested, that ELA leads to an overall higher vulnerability for infectious diseases (Avitsur et al., 2015) such as human immunodeficiency virus (HIV) (Siegel et al., 2014) or cytomegalovirus (CMV) (Elwenspoek et al., 2017c, Reid et al., 2019), which might be partly explained by a tendency to engage in HRBs in individuals with ELA (Dube et al., 2002).

Throughout the plethora of long-term effects that have been epidemiologically, functionally or pathophysiologically linked to ELA, there is common theme. In almost all cases, it would appear that there is a role for immune cells, and in particular a role for the inflammatory system. Inflammation

plays an important role in the aetiology and pathophysiology of all of the consequences that have so far been identified: cardiovascular disease (Lorenzatti and Servato, 2019), hypertension (Agita and Alsagaff, 2017), type 2 diabetes (Calle and Fernandez, 2012), depression (Beurel et al., 2020) and obesity (Cox et al., 2015). This has led over the last few years to a determined effort to determine the detailed ELA induced immunophenotype that will be described in the following section, and how it is implicated in disease development.


2.3 ELA immuno-phenotype

The ELA immunophenotype is characterized as pro-inflammatory and detrimental to overall wellbeing. Studies addressing immune cell specific effects are slowly emerging, enabling a more comprehensive picture on the effects of ELA on the innate and adaptive immune system (see Text Box – Innate and Adaptive Immunity). Independent studies in human adoptee cohorts found alterations in T cells, especially cytotoxic (CD8+) T cells. The overall number of CD8 cells was higher in individuals with ELA (Elwenspoek et al., 2017a), shifting the CD4/CD8 balance in favour of CD8 T cells (Reid et al., 2019, Esposito et al., 2016) indicative of overall immune dysfunction and often associated with chronic viral infections such as HIV. The CD8 cells were not only more frequent in the ELA group, but also showed higher major histocompatibility complex two (MHC-II) dependant activation (HLA-DR+CD8+), and reduced early activation (CD8+CD69+) (Elwenspoek et al., 2017a) suggesting elevated T cell stimulation. Furthermore, regulatory CD8 cells (CD8+CD25+) and replicatively senescent terminally differentiated CD8 cells (CD8+CD57+) had significantly higher frequencies after ELA suggesting accelerated ageing (Elwenspoek et al., 2017a, Reid et al., 2019). These findings are concordant with early separation studies in rats, where the percentage of CD8 T cells increases after liposaccharide (LPS) challenge (Obi, 2019). ELA was also positively correlated with higher numbers of senescent CD4 (CD4+CD57+) (Reid et al., 2019) and $T_{helper}17$ cells (CD4+CCR4+CXCR3-CCR6+) (Elwenspoek et al., 2017a). Although the HPA axis and the immunomodulatory GC response were altered, this was not responsible for the changes in the immune system (Elwenspoek et al., 2019). Interestingly, an overall lower percentage of B cells was associated with ELA in both human and animal studies (Esposito et al., 2016, Naumova et al., 2012, Obi, 2019), without clear causal explanation.

However, several of the observations in immune populations of ELA subjects could be explained by latent herpes virus infection (Schmeer et al., 2019). Indeed, cytomegalovirus (CMV) antibody titres largely mediated the CD57 expression in formerly institutionalized adults (Elwenspoek et al., 2017c, Reid et al., 2019). Latent herpes viruses, like CMV or Epstein-Barr virus (EBV) are often acquired during childhood and are thought to reactivate under psychological stress (Glaser et al., 1991). Although the general prevalence for herpes infections in the population is high, a recent study also showed a higher incidence of virus re-activation in adolescents with prior early-life family instability (Schmeer et al., 2019). In animal studies, where latent infections are not an issue, frequencies of CD8 T cells were increased only after immune challenge with LPS or by hypertension (Obi, 2019).

Chronic infections such as HIV or herpes lead to higher lymphocyte activation, cytokine production and can accelerate immunosenescence (De Francesco et al., 2019, Ford et al., 2019). The effect of early-life acute infections is more difficult to determine, although during the perinatal period they affect brain development (Alshaikh et al., 2013) and immune activation (Cornet et al., 2020) lifelong. Although the molecular mechanisms linking the immune and nervous system are currently unclear, they communicate bi-directionally to maintain homeostasis. In rodents, maternal separation increased the number of microglia and inflammatory cytokine expression in several brain regions,

as well as decreasing astrocyte numbers (Banqueri et al., 2019). Microglia and astrocytes are the principal immune cells found in the central nervous system (CNS). Systemic pro-inflammatory cytokines can cross the blood-brain barrier leading to neuroinflammation (Nettis et al., 2020), impacting both microglia and astrocytes and potentially brain development and function (Bilbo and Schwarz, 2009) (Fig. 2). In line with this, ELA in form of physical discipline correlated with higher circulating inflammatory markers [CRP, IL-6] and lower IQ scores in children (Holland et al., 2020); indicating a disruption of the immune – CNS homeostasis by ELA.

Figure 2. Biological consequences of early life adversity (ELA). ELA (especially stress) has been associated with an altered hypothalamic–pituitary–adrenal (HPA) axis and impaired negative feedback loop thereof. Leukocytes and their progenitor cells can be epigenetically '*programmed*' by early life systemic inflammation, leading to enhanced cytokine production. Circulation cytokines and/or HPA products stimulate cytokine release by microglia, potentially leading to cognitive impairment during development. Furthermore, stress and inflammation lead to a loss in microbiome complexity. All of these factors can kick-off and enhance systemic inflammation, feeding of each other. [CRF= corticotropin releasing factor; ACTH= adrenocorticotropic hormone; CORT= cortisol]

The HPA axis is perceived to be the bridging element between the neuroimmune response and the circulating leukocytes. Indeed, genes involved in HPA axis function are permanently altered after

ELA (Silva et al., 2021, Gerritsen et al., 2017). GCs released after HPA axis activation regulate cytokine activity (Kunz-Ebrecht et al., 2003). Although the interaction of the two systems is not well understood, GC and cytokines are thought to be involved in the decrease of cognitive function (Sudheimer et al., 2014). A disruption in the expression of pro-inflammatory cytokines [IL-1 β , IL-10] in the brain after prenatal GC has recently been shown in birds (Walker et al., 2019a) and pigs (Bruckmann et al., 2020). System wide elevated levels of cytokines might also explain the skewed T cells function associated with the ELA immunophenotype.

Then inflammatory markers most commonly measured are C-reactive protein (CRP) and interleukin-6 (IL-6) (Kuhlman et al., 2020). CRP, a diagnostic marker of inflammation is produced in the liver as a result of IL-6 stimulation. IL-6 is produced by a variety of cells as a result of early immune signalling and helps mediate the signalling among innate and adaptive immune cells (Mauer et al., 2015). Both markers are generally associated with systemic inflammation and immune activation. Pre-clinical models identified tumour necrosis factor-alpha (TNF- α), interleukin-10 (IL-10), IL-1 β and IL-8 as immune-markers of ELA (Bruckmann et al., 2020, Obi, 2019), although they performed poorly in human studies (Shalev et al., 2020). The source of inflammation and inflammatory markers remains unknown (Baumeister et al., 2016, Kuhlman et al., 2020). Nevertheless tissue resident macrophages such as microglia are thought to be directly affected by inflammatory crosstalk between the immune and the nervous system [reviewed in (Nusslock and Miller, 2016)]. Indeed, psychological stress has proven to act directly on macrophages influencing their differentiation, proliferation, migration potential and total number (Desgeorges et al., 2019). While GC generally suppress the production of inflammatory cytokines, repeated exposure, especially during early life, might change the cellular programming of macrophages. In vivo experiments in zebrafish have shown a decreased phagocytic ability of macrophages after early life treatment with synthetic GC, leading to increased severity of bacterial infection (Xie et al., 2020). Ex-vivo experiments on endometrial macrophages stimulated with cortisol changed gene expression in these cells, potentially related to repair mechanisms (Thiruchelvam et al., 2016). Furthermore, in whole peripheral blood *ex vivo*, cortisol became progressively less effective at suppressing cytokine production in children and adolescents with low-SES (Miller and Chen, 2010, Schreier et al., 2014).

While we do not currently know the exact mechanisms by which ELA acts on the immune, nervous and endocrine system (Fig. 2), the assumption has to be made that the three systems are in homeostasis (Black, 1994) and a disruption in one could disrupt them all, although it remains possible that they are independently and concurrently affected (Elwenspoek et al., 2017b)

3. The immune system in development and ageing

The immune system develops, adapts and changes throughout life from naïve and uneducated at birth, the gradual construction of the adaptive immune system, especially the polarization towards T-helper 1 (Th1) cells through to the fully differentiated, but permanently resting, immune cells in the elderly that contribute to a pro-inflammatory aged-environment.

3.1 Immunity during development and early life

Before birth, the foetus is protected by the mother's immune system; therefore, maternal wellbeing during pregnancy is vital for the overall development of the baby and its immune system. In monkeys, cytokine production and lymphocyte proliferation was reduced after prenatal stress (Coe and Lubach, 2005). Prenatal exposure to bacteria might also have an influence on the postnatal gut microbiome composition. In turn, the gut microflora and immune system function are connected

(Tourneur and Chassin, 2013, Zheng et al., 2020). After birth, the new-born immune system is vulnerable due to the low numbers of functional innate and adaptive immune cells. Additionally, naïve T cells are epigenetically biased towards T_{helper} 2 (T_h2) function (Dowling and Levy, 2014). These circumstances have often been described as an '*immaturity*' of the immune system, however, this has more recently been suggested to serve as a period of plasticity for environmental adaptation (Kollmann et al., 2017, Danese and J Lewis, 2017). As such, it would appear that the environment before and after birth shapes not only the immediate development of the immune system, but its long-term trajectory.

One example of early life plasticity and adaption of the immune system to the external environment is the hygiene hypothesis. Here, contact with the broadest possible range of microorganisms and during childhood is necessary to establish immune tolerance. In the absence of this stimulation and tolerance induction, the risk of allergies and auto-immune diseases increases (Strachan, 1989, Okada et al., 2010, Alexandre-Silva et al., 2018). Importantly, it is the contact with the non-pathogenic microorganisms that is important, as early-life exposure to pathogens may increase the risk of allergy. Similarly, children from low-SES backgrounds, exposed to higher levels of indoor allergens, dust mites and air pollution have increased sensitization for asthma and allergies (Gaffin and Phipatanakul, 2009, Burbank et al., 2017).

Text Box 1: Basic principles of innate and adaptive immunity

Innate immunity

The innate immune system presents the first line of defence against pathogens, foreign objects (e.g. open wound) and dead cells. It is highly evolutionary conserved between species and can be simplified as providing three main functions: phagocytosis, cytokine production, and antigen presentation. Innate immunity is conveyed by tissue resident immune cells and white blood cells. Tissue resident cells are static and often form anatomical barriers (e.g. skin, mucus) to prevent pathogens from entering the body in the first place. Epithelial make up most of the surface of the outer and inner of organs and blood vessels. They are joined by fibroblasts (main source of collagen and connective tissue), goblet cells (secrete mucus to protect the cell surface layer) and several specified tissue specific and resident macrophages (e.g. microglia in the brain) and dendritic cells. White blood cells, so called leucocytes, are more mobile since they 'travel' through blood vessels and can therefore act systemically. The innate fraction of leukocytes is mainly composed of mast cells, neutrophils, monocytes (which are precursors to macrophages and dendritic cells), and natural killer (NK) cells. Possibly the most important feature of tissue resident immune cells and innate leukocytes is the ability to identify molecules as foreign invaders or self-produced. Most pathogens (e.g. viruses, bacteria) carry highly conserved molecule patterns on their surface. These patterns, referred to as damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs), are recognized by the pattern recognition receptors (PRRs) on the surface of innate immune cells and activate them, resulting in the release of inflammatory mediators, such as cytokines, hormones, and reactive oxygen species (ROS). These signal molecules are essential to attract other immune cells to the site of inflammation. Subsequently innate

immune cells will engulf the foreign particle (or cell debris) and begin breaking it down (phagocytosis), in order to 'kill and clean' and for the communication with T- or B lymphocytes through antigen presentation (Janeway and Medzhitov, 2002).

Adaptive immunity

T- and B-lymphocytes (short: T cells, B cells) are the key protagonists of the adaptive immune system. Their most distinctive feature is the random V(D)J recombination, which only occurs in lymphocytes. This produces a highly diverse repertoire of T cell receptors (TCR) and surface antibodies on maturing T- and B cells, which enable these cells to mount a very effective response to pathogens (Tonegawa, 1983). After activation through antigen presentation, T- and B cells will rapidly expand and migrate to the site of inflammation. During this time, which lasts about one week, CD4 and CD8 T-cells will differentiate into effector T_{helper} sub-sets (CD4+) and cytotoxic T-lymphocytes (CD8+), to eliminate pathogens above the capacity threshold of innate immune cells. While T_{helper} 1 ($T_{h}1$) cells mainly regulate cellular responses by producing the antiviral and anti-suppressing cytokine INF- γ , $T_{h}2$ cells secrete high amounts of IL-4 and IL-5 abundantly found in allergic diseases (Romagnani, 1997). $T_{h}17$, named after their main cytokine signature [IL-17], are required for promoting inflammation during infections and autoimmune disease. They also have been found to play a vital part in the maintenance of mucosal barriers and cancer progression (Chang, 2019). Another T cell subset, regulatory T cells (T_{reg}), assists in the modulation of T_{helper} cell response, by secreting inhibitory cytokines [IL-35, IL-10, TGF- β , Granzyme B] towards the end of the immune response (Shevach, 2000). After the source of inflammation is eradicated most of the recently expanded T- and B-cells will undergo activation-induced cell death, a process for regulating cell numbers and managing immune homeostasis. The last phase of the adaptive immune response is the retention of some of those (now highly specialized) cells; a phenomenon called 'immunological memory' or memory T cells. Memory cells are long-lasting cells which remain dormant within the immune repertoire, but can rapidly be activated when the same (or a highly similar) pathogen is re-encountered (Ahmed and Gray, 1996). As such, the T cell life cycle is naïve, central memory, followed by effector memory, and ending in terminally differentiated (T)EMRA cells.

3.2 Ageing and the immune system

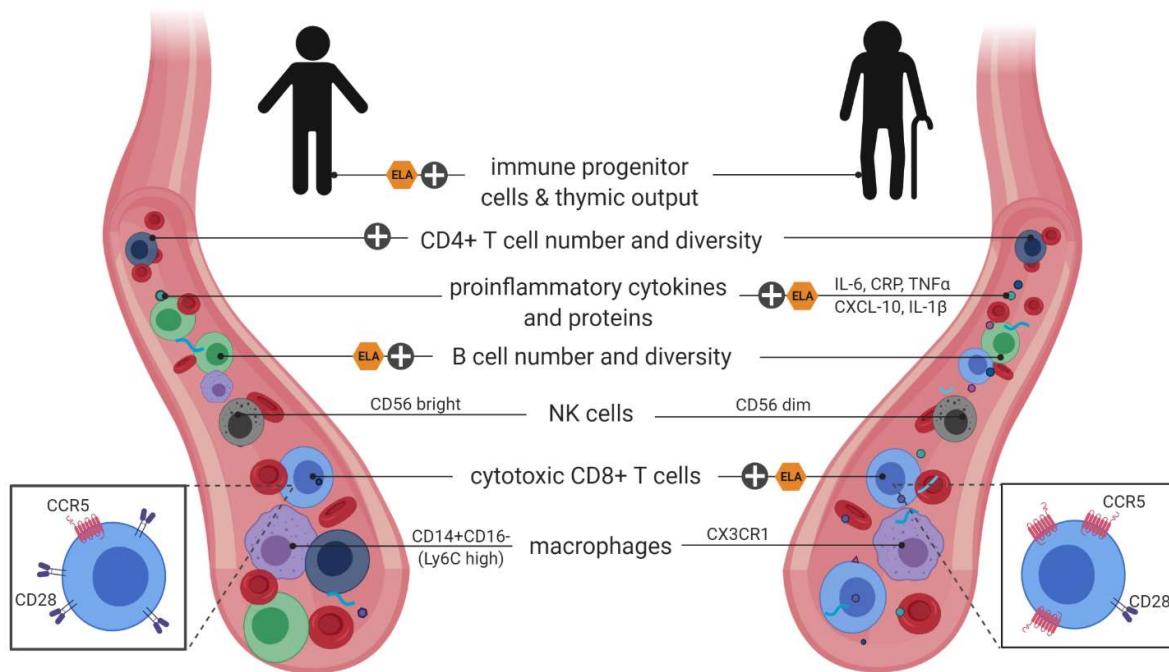
Ageing is the gradual decrease of mental and physical capability (World Health Organization, 2018, Feb 05). Contrary to the linear progression of chronological age, the biological advancement of ageing is dependent on several cell-intrinsic factors that make up the "hallmarks of ageing" including: cellular senescence, impaired intracellular communication, alterations of the genome and epigenome, telomere shortening, deregulation of protein homeostasis, nutrient availability and the microbiome composition. These have been extensively reviewed elsewhere (Lopez-Otin et al., 2013, Rebelo-Marques et al., 2018, García-Velázquez L., 2020). While the ageing process of an individual is not a straight, pre-determined path, many of the factors that drive biological ageing accumulate with chronological age.

One of the major contributing factors to ageing is the time dependent accumulation of cellular damage leading to the irreversible end of proliferative potential, or cellular senescence (Hayflick and Moorhead, 1961). The most common cause for cellular senescence in the gradual shortening of

telomeres with each cell division, also called replicative senescence (Harley et al., 1990). However, other factors like excessive mitogen signalling, oncogene expression or oxidative stress can also contribute to cellular senescence [reviewed in (Calcinotto et al., 2019, Gorgoulis et al., 2019)]. Although cellular senescence is associated with ageing, it is not the simple “ageing of the cell”. It is an intrinsic program that restricts the proliferation of exhausted or damaged cells. Normally, when a cell reaches the end of its proliferative capacity it undergoes apoptosis and is cleared by immune cells. However, persistent senescent cells escape apoptosis and remain metabolically and transcriptionally active within their normal environment. These cells secrete a specific pattern of pro-inflammatory proteins and cytokines [such as IL-6, IL-8] (Coppé et al., 2008) termed the senescence-associated secretory phenotype (SASP) (Rodier et al., 2009). The SASP attracts immune cells [macrophages, NK cells, neutrophils and CD4 T cells] but can escape clearance by them (Pereira et al., 2019). The accumulation of senescent cells and their SASP is presumed to be a major contributor to many age-related diseases and a source of chronic low grade inflammatory markers [reviewed in (Campisi et al., 2019, Kirkland and Tchkonia, 2017)].

Similar to cellular senescence, immuno-senescence simply describes the inability of immune cells to proliferate any further, but the term is also confusingly used to describe the aged and therefore less efficient immune system as a whole. Immuno-senescence characterizes the insufficient immune answer the aged immune system can mount in response to pathogens. The IMM-AGE study, a longitudinal cohort, identified several immune subsets [e.g. naïve CD4+, naïve CD8+, CD8+PD1+, CD8+CD57+, CD4+_{EM}, CD161-CD45RA+T_{reg}] with declining frequencies directly correlated with the advancement of biological age. The correlation to the immune-age, or immune-senescence, was thereby greater as with chronological age (Alpert et al., 2019).

Cytomegalovirus (CMV) and other latent viral infections accelerate immuno-senescence by repeatedly activating T cells; forcing expansion and formation of CMV-specific memory cells. Regular CMV reactivation exhausts memory T cells, and their repeated expansion depletes the diversity of the memory cell pool. (Griffiths et al., 2015, Brunner et al., 2011). CMV infection may occur at any point and seropositivity steadily increases with age, reaching over 90% of the population by the age of 80 (Staras et al., 2006). By targeting T cells and overloading the memory reservoir, CMV is thought to accelerate immunosenescence and biological ageing (Bauer and Fuente, 2016). However, CMV infection in centenarians has not been shown to negatively impact their life expectancy (Sansoni et al., 2014).


Another hypothesized accelerator for biological ageing is long-term stress. While short periods of acute stress, like physical exercise (Dhabhar, 2014), even tattooing (Lynn et al., 2020), have been associated with an immune boost and general biological fitness, chronic stress has been associated with a shift in type1/2 cytokine balance, by disrupting HPA homeostasis. Time and duration of the stress determine the long-term consequences for the immune system. While acute stress is associated with enhanced number in infiltrating leukocytes, elevated levels of IL-2, INF-γ and TNF-α; chronic stress is accompanied by suppressed antibody production, leukocytes proliferation and T cell activity (Dhabhar, 2014).

Apart from the accumulation of memory cells and a decline in cellular ability, ageing is most often accompanied by a low-grade systemic chronic inflammation, also called ‘inflammageing’ (Franceschi et al., 2000). Inflammageing is characterized by a slow but steady increase of circulatory inflammatory markers in the peripheral blood and organs and is considered the strongest driving factor in many age-related disease (Franceschi and Bonafè, 2003). It has been shown, that the levels of circulating cytokines [such as IL-6 and TNF-α] are 2- to 4-fold higher in adults older than 65 years

than in young adults (Ferrucci and Fabbri, 2018). There is a broad range of detrimental stimuli which initiate and sustain inflammageing. They can be categorized as '*non-self*', '*quasi-self*' and '*self*' (Franceschi et al., 2018). *Self*-stimuli comprise all body intrinsic stimuli such as cell debris, misplaced or altered molecules (Franceschi and Campisi, 2014), senescent cells and their SASP, microRNAs and immune cell defects but also oxidative stress. Reactive oxygen species (ROS) are chemically reactive oxygen molecules produced by intracellular metabolism and act as signalling molecules, but can cause chronic oxidative stress and damage to cells when accumulated (Franchina et al., 2018). Accumulation of ROS and oxidative damage has been reported in many age-related pathologies [reviewed in (Venkataraman et al., 2013, Zuo et al., 2019)]. Although most ROS are of endogenous origin (*self*), there are certain exogenous ROS sources (*non-self*, *quasi-self*) of ROS (e.g. drugs, UV radiation, pollutants) acquired from the environment and subsequently metabolized into free radicals (Liguori et al., 2018). Pollutants and pathogens are generally considered '*non-self*' as they are acquired in a passive manner through the individuals' environment. Metabolic products from the gut microbiome or nutrients acquired through the diet form the '*quasi-self*' category, since the individual has at least some influence on calorie intake and food choice. These different stimuli are recognized by pattern recognition receptors (PRRs) on the surface of innate immune cells leading to the release of pro-inflammatory cytokines; further supporting the pro-inflammatory environment (Franceschi et al., 2017). The pro-inflammatory environment of inflammageing is thought to be involved in the manifestation of age-related diseases like Alzheimer's disease, cardiovascular diseases, cancer and frailty (Fülop et al., 2016, Fulop et al., 2018).

There is considerable health variability and diversity in the elderly. The outcome of ageing ranges from healthy ageing to the rapid development of frailty. Frailty is characterised by "sedentariness, fatigue, weight loss and poor muscle strength, and it increases the risk of adverse outcomes, such as falls, disability, hospitalization and even death" (Pansarasa et al., 2019) together with loss of homeostasis in many physiological systems and physiological decline. It would appear that changes in the immune system underlie the trajectory towards either frailty or healthy ageing (Pansarasa et al., 2019). Frail individuals have higher levels of circulating interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-alpha), C-reactive protein (CRP) and fibrinogen [reviewed in (Singh and Newman, 2018, De Maeyer and Chambers, 2021)]. Although circulating inflammatory markers do not appear to predict frailty (Soysal et al., 2016) inflammation in midlife, calculated from Factor VIII, lymphocyte count, von Willebrand factor, and fibrinogen, or maintaining CRP levels above 3mg/L would appear to promote and predict the development of frailty (Walker et al., 2019b). Furthermore, the T cell populations appear to be biased towards a pro-inflammatory type-1 phenotype with higher numbers of CCR5 expressing naïve CD8 cells (Kohlmeier et al., 2008, De Fanis et al., 2008). Additionally, frailty is associated with increased number of circulating CD8 cytotoxic T cells, however, they are mainly CD8+CD28- (Semba et al., 2005). CD28 is necessary for T-cell activation, and is principally present on naïve, effector memory and central memory T cells, suggesting an accumulation in the later (T)EMRA subsets (Rufer et al., 2003). Although CD28 levels on both CD4 and CD8 T cells naturally decline with age (Teteloshvili et al., 2018) the loss appears to be accelerated in frailty. Moreover, senescent T lymphocytes express the surface protein CD57, indicating their inability for further proliferation (Kared et al., 2016). Both, senescent T cells and natural killer (NK) cells, increasingly express the killer cell lectin-like receptor G1 (KLRG1) in elderly (70 years and older) and frail individuals, resulting in an inhibition of cell function (Akbar, 2017). While there is an increase in CD8 cytotoxic T cells, the numbers of naïve CD4 and T_{helper} cells decrease with age, partly mediated through involution of the thymus gland. Furthermore, innate immune populations phagocytic activity, contributing to the accumulation of cell debris and SASP. Similarly the overall amount of B cells declines with age [reviewed in (Esme et al., 2019)], leading to a loss of

B cell diversity (Tabibian-Keissar et al., 2016), and reduced memory repertoires, that may explain increased susceptibility to infections and lower vaccine responses in elderly patients that is accentuated with frailty (Yao et al., 2011, Marttila et al., 2014). Contrary to most adaptive immune cells, the total amount of macrophages and NK cells increases with ageing. However, both cell types loose immunomodulatory function and change to a more auto-inflammatory state, which is characterized by the change in expressed surface markers (Gounder et al., 2018, De Maeyer and Chambers, 2021) (see Fig. 3).

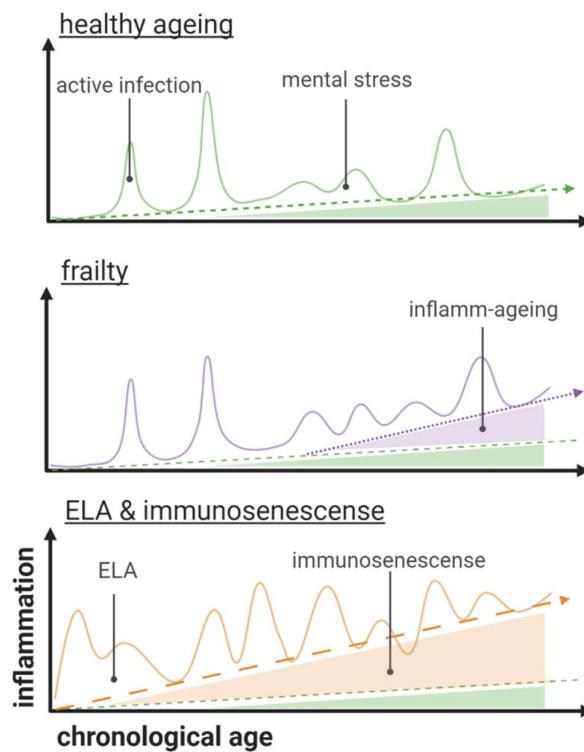


Figure 3. Immune changes associated with ageing and frailty. There are less bone marrow progenitor cells, CD4 and B lymphocytes in the elderly, while cytotoxic CD8 T cells are in abundance. NK cells and macrophages switch function and become pro-inflammatory. Changes in abundance between a 'young' and 'aged' immune system are marked with directional plus signs. Reported similarities with immune composition after ELA are marked with orange hexagons. [Mouse Ly6C^{high} macrophage marker is the equivalent to human CD14+CD16- macrophages]

4. Discussion

Immunosenescence and inflamm-ageing are not just the driving forces behind the ageing immune system, but also biological ageing as a whole (Khalatbari-Soltani et al., 2020). Despite the current perception, the immune system may be not only central to the long-term effects of ELA and the ageing process, but the driving mechanism. Many authors have connected social or biological components of ELA with the increased risk for clinical pathologies through a programmed HPA axis [reviewed in (Miller et al., 2009)]. Subsequent changes in gene expression patterns and inflammation are then thought to be dependent on neuroendocrine mediators. In this paradigm, the immune system is often characterized as either a 'means to an end' or another consequence of the early life programming.

The HPA axis, the nervous system, the immune system and the gut, act as a multi-directional and integrated, intercommunicating system. In this sense, pathogens and some pollutants are known to be recognized first by the immune system, which in turn activates the HPA axis and stimulates GCs release (Heyner et al., 2019, Bauer et al., 2012, Badry et al., 2020).

Figure 4. Early-life adversity changes the overall healthy trajectory. Healthy ageing is associated with punctual inflammation spikes during active infections or periods of high stress. In inflammageing this pattern disrupted by a persistent low-grade inflammation associated with advanced chronological age. ELA acts as an early spike in inflammation and does not enable it to recede. Additional stressors during ageing worsen this effect.

We suggest that ELA can act through the immune system, priming and accelerating for inflammageing, skewing the overall health trajectory from the earliest periods of life towards a lifelong inflammatory immunophenotype (see Fig.4). Furthermore, we hypothesise that the exposure to adversity in the first 1000 days of life sets the individual on a negative trajectory that, in the later decades of life will manifest as frailty, and in this revised paradigm, the early life period may actually determine the morbidity and mortality of age-related immune mediated diseases.

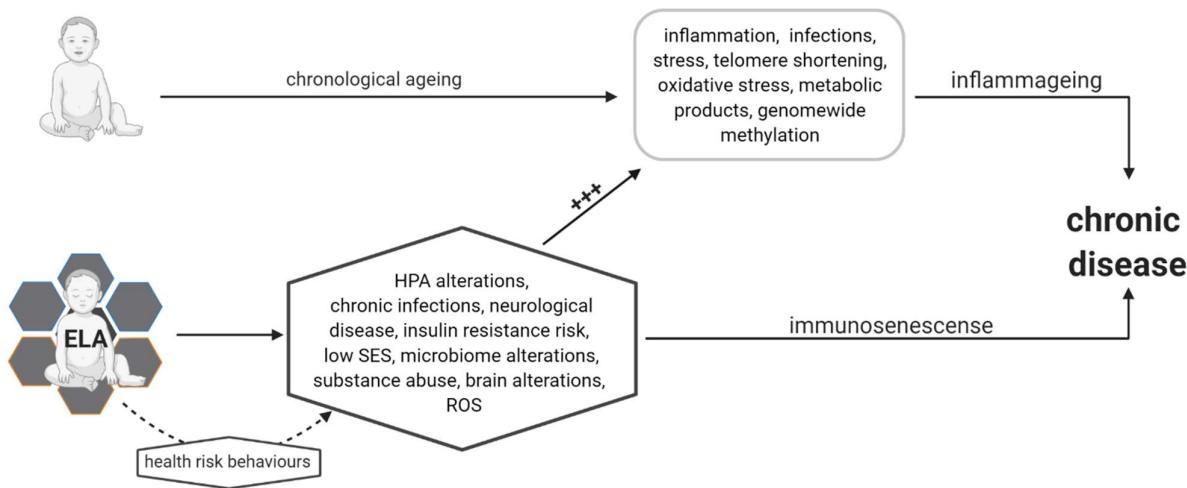
In the following section we examine the literature for common and uncertain features between ELA and inflammageing, showing some uncanny parallels between the outcomes of ELA and common diseases associated with frailty.

4.1 Common features

Acute and chronic infections: It is well known, that the overall decline in immune function makes the elderly population more susceptible to acute infections [reviewed in (Gardner, 1980, Sadighi Akha, 2018)], but can infections also accelerate the ageing process? Persistent viral infections, especially cytomegalovirus (CMV) and HIV, have repeatedly been associated with immunosenescence and accelerated ageing (Griffiths et al., 2015, Brunner et al., 2011). CMV contributes to a steady expansion of CMV-specific memory T cells, essentially filling up the 'space' for other memory T cells (Brunner et al., 2011). Although the prevalence of CMV infection gradually increases with age, over 50% of children are likely to contract the virus under the age of six (Staras et al., 2006); leading to an overall longer time period of exposure. Interestingly, ethnicity, household income and early life stress have been linked to CMV prevalence in children (Ford et al., 2019, Staras et al., 2006), and the virus re-activation is higher in an unstable home environment (Schmeer et al., 2019). Latent infections can lead to a drastic acceleration in immune ageing (Bauer and Fuente, 2016). The detrimental effects are not limited to chronic infections: acute infections, such as neonatal sepsis (a bacterial bloodstream infection in new-borns) can result in long-term neurodevelopmental problems (Alshaikh et al., 2013) and early life respiratory infections, pollutants and microbes have been correlated with the risk of developing asthma and respiratory allergies (Burbank et al., 2017, Malinczak et al., 2020, Tregoning and Schwarze, 2010). A study in zebrafish found that an early life bacterial infection significantly altered the expression profiles in several inflammation-related genes [*mpx*, *tfa*, *ptgs2a*] and that the age at time of infection was a crucial factor for modulating the adult immune response (Bilbo and Schwarz, 2009). One suggested mode of environmental '*programming*' works through DNA methylation. It has recently been shown, that LPS treatment (mimicking an acute infection) can induce long term methylation changes in several genes associated with immune regulation [*HDAC4*, *AKT1*, and *IRAK1*] in endothelial cells (Jhamat et al., 2020). Furthermore, Fonseca and colleagues demonstrated that early life pathogen exposure could lead to epigenetic modifications in bone marrow progenitor cells, irreversibly shaping the immune system (Fonseca et al., 2020). Given the higher prevalence for infections in combination with ELA, and the increased hazard for stress mediated re-activation, we see CMV (and other infections) as accelerators for immune-ageing; heavily driven by the early-life environment (see Fig. 5).

Telomere length: The effects of ELA and ageing on telomere length are both somewhat inconsistent. While ELA (Ridout et al., 2018) and ageing (Campisi, 2014, Muñoz-Lorente et al., 2019) have been associated with telomere shortening and a positive rearing environment correlated with increased telomere length in rhesus monkeys (Schneper et al., 2016), we and others found no significant correlation between telomere length and ELA in human cohorts (Elwenspoek et al., 2017c, Verhoeven et al., 2015). This might be due to the very heterogeneous background in humans, as a very recent study in adult monozygotic twins found causal relation between leukocyte telomere length and stressful life events (which were not restricted to early life) (Gerritsen et al., 2020). Shorter telomere length is associated with active depression (Whisman and Richardson, 2017) and psychiatric disorders (Darrow et al., 2016, 2020). While several authors have connected telomere length to adverse pregnancy (Entringer et al., 2018) and childhood events (Epel and Prather, 2018), the argument could also be made that telomere length is connected to repeat stress rather than early life stress itself (Shalev et al., 2013, Rentscher et al., 2020), and that ELA enhances the risk to suffer from low SES and chronic stress in adulthood (Gur et al., 2019). Other studies have associated differing telomere length with overall health status in the elderly (Arai et al., 2015, Tedone et al.,

2019). It does not seem far-fetched to assume, individuals encountering less stress might also lead happier and healthier lives. Telomerase, the enzyme generating telomere ends on chromosomes, is known to be most active in gametes and stem cells. In somatic tissue resident cells telomerase activity is rather low (apart from cancer cells), but genetic mutations in telomerase dependent genes are known to be associated with premature-aging symptoms (Armanios and Blackburn, 2012). Regular dividing cells and their progenitors, like lymphocytes, are strongly affected by telomerase activity and telomere shortening, affecting their potential for differentiation potential (Hodes et al., 2002). Recent publications showed that cellular ageing and immune proliferation have distinct effects on telomere length (Fali et al., 2019), with CD4 T cells stronger affected by ageing (Patrick et al., 2019) [reviewed in (Razgonova et al., 2020)]. We suggest that telomere length in leucocytes is likely determined by repeated immune activation, with overall '*healthy*' lifestyles preserving telomere length. Immune activation can be triggered by acute and chronic infections (e.g. CMV), psycho-social stress and other environmental factors (e.g. chemotherapy, pesticide exposure). The duration and intensity of the adversity is likely to play a critical role in telomere shortening.


Immuno-senescence: We and others have found several immune populations [CD8+CD57+, CD8+CD25+, CD8+ CM, CD8+ EM, Th17] to be significantly affected by ELA (Elwenspoek et al., 2017a, Reid et al., 2019). Similar subsets [Th17, CD8+CD57+, CD8 EM] have been found to be (immune-) age dependant in the IMM-AGE cohort after CMV sero-positive correction (Alpert et al., 2019). Diverting from the original conclusion, these finding were not only mediated by CMV infection (Elwenspoek et al., 2017c), but appear to be genuine markers of immunosenescence. Furthermore, T cell differentiation towards a pro-inflammatory Th17 phenotype has been shown to prevail in the elderly, and is likely the result of defective mitophagy (autophagy of the mitochondrion) within lymphocytes (Bharath et al., 2020). While a lower frequency of B cells was associated with ELA (Esposito et al., 2016, Naumova et al., 2012, Obi, 2019) an accelerated B cell immune ageing (see Fig. 3) has been linked to obesity. In-vitro leptin stimulated B cells switched to a pro-inflammatory phenotype, expressing TNF- α , IL-6 and IL-8 along with TLR4 and cyclin-dependent kinase inhibitor 2A (CDKN2A), a cell division suppressor. Leptin is mainly secreted by adipocytes and therefore high in obese individuals, but also in the lean elderly (Frasca et al., 2020). Changes in immune subsets, activation and response are among the 'hallmarks of ageing'. Apart from accelerated telomere shortening in immune cells by repeated activation, age associated hyper- or hypomethylation of CpG islands can lead to impaired immune cell function (Tserel et al., 2015, Gowers et al., 2011) [reviewed in (Nardini et al., 2018)]. Early exposure to radiation, for example, was associated with significantly altered Th1 cell methylation and increase in inflammatory cytokines several years later (Daniel et al., 2018) and exposure to stress changed the methylation in several genes associated with immune pathways in an ELA model of salmon (Uren Webster et al., 2018). Both, ELA and frail, negative ageing trajectories are characterized by a pro-inflammatory environment and several circulating cytokines (Kuhlman et al., 2020, Campisi et al., 2019, Baumeister et al., 2016) (see Fig.5). Whether elderly individuals (60 years+) that experienced ELA many decades earlier have overall higher levels of cytokines than those without is, to our knowledge, currently not known, as most studies addressing the mechanisms of biological ageing are not designed to assess ELA as well.

ROS and mitochondria: Reactive oxygen species (ROS) are unstable oxygen molecules, which often occur as intracellular by-products of oxygen metabolism. The mitochondrion at the centre of oxygen metabolism is not just the biggest source of intracellular ROS, but also a potential target for DNA damage caused by oxidative stress. Damaged mtDNA and reduced metabolic efficiency during ageing are thought to be major contributors to immunosenescence, inflammageing and frailty

(Mikhed et al., 2015, Ventura et al., 2017). Furthermore, exogenous sources, such as pollutants, tobacco smoke or a high fat diet which are encountered during life, often increase intracellular ROS by redirecting antioxidant capacity, which is also thought to diminish with ageing (Inal et al., 2001). Furthermore, immune cells, such as neutrophils and macrophages, are known to use ROS to effectively kill pathogens in a process called respiratory burst [reviewed in (Dahlgren and Karlsson, 1999)]. As ROS can damage proteins, enzymes and cell membranes by lipid oxidation, they are linked to the development of many chronic diseases [reviewed in (Alfadda and Sallam, 2012, Liguori et al., 2018)]. The role of ROS in immunomodulation and immunosenescence is a relatively young field of interest [reviewed in (Muri and Kopf, 2020)] and research concentrating on the connection between ELA and ROS are only slowly emerging, however, mitochondrial function and oxygen metabolism are negatively affected by ELA (Zitkovsky et al., 2021, Horn et al., 2019, Boeck et al., 2016). Using ELA animal models it also became clear, that ROS can cause axonal damage of neurons and thereby increase the risk for neuroinflammation and -degeneration (di Penta et al., 2013, Soares et al., 2020, Nouri et al., 2020), an important factor for the onset and progression of diseases like Parkinson's and Alzheimer's, perennially associated with ageing [reviewed in (Kandlur et al., 2020)].

Thymic involution: The involution of the thymus is directly connected to a decreased output of naïve T cells, impeding T cell receptor diversity and leading to immunosenscense. Furthermore there is an increase in autoreactive immune cells coming from the aged thymus, which can cause tissue damage and chronic inflammation (Thomas et al., 2020). Interestingly thymic involution, a well-known feature of ageing, is also linked to ELA. Adverse effects of ageing were more prominent in male rat thymi than female (Nacka-Aleksić et al., 2019). Similarly, severe ELA significantly accelerated thymic involution in young children in a dose-dependent manner. At the highest levels of ELA this was accompanied by both splenic and lymph node atrophy (Fukunaga et al., 1992).

Lifestyle and HRBs: Obesity, smoking, long-term stress, chronic infections, the lack of physical activity and alcohol consumption have been implicated to contribute to accelerated biological ageing (Furman et al., 2019). These HRBs closely mirror those adopted after ELA. As outlined above, there are clear neuropsychological reasons why those exposed to ELA undertake HRBs, particularly smoking and alcohol consumption. The data is growing that these lead to allostatic load, and accelerate the epigenetic clock, and that even in twins, differences in HRBs will strongly determine the risk of many non-communicable diseases (Turner et al., 2020). There are other lifestyle factors such as nutrition and physical activity that are, potentially modifiable lifestyle choices, that are epigenetic modifiers that when corrected may contribute to 'ageing well' and 'tailoring lifestyle to fit biology' (Wallace et al., 2018) (see Fig.5).

Figure 5. Early life adversity acts as an accelerator for inflammageing and immuno-senescence. Chronological ageing is inherently connected to biological components which accumulate over the lifetime of the individual. While several factors can accelerate the biological ageing progress, ELA heavily promotes this process on several levels. The ELA associated health-risk behaviour might support this further.

Diet and microbiome: Microbiome dysbiosis has recently been proposed as an additional hall mark of ageing (Bana and Cabreiro, 2019) as microbial changes have been reported in many age associated diseases (García-Peña et al., 2017). At the same time, specific diets (e.g. mediterranean (Critselis and Panagiotakos, 2020)) have been associated with 'healthy' ageing and increased quality of life (Foscolou et al., 2020). This effect is likely to be mediated through the gut microbiome. Indeed, a dietary intervention of just a few months has been shown to change microbiome composition in the elderly (Ghosh et al., 2020). Specific dietary metabolites, as well as calorie restriction, have also been shown to counteract ROS accumulation (Kurniawan et al., 2020, Vatner et al., 2020) and therefore beneficial for 'healthy' ageing. The gut microbiome and its metabolites are known to modulate immune function and contribute to metabolic diseases and inflammation (Shanahan and Sheehan, 2016, Sittipo et al., 2018). Long lasting alterations of the gut microbiome after ELA are a subject of rising interest as they clearly correlate with later health outcomes (Tamburini et al., 2016). In this way, the influence of an early life western style diet (McNamara et al., 2021), the mode of birth (Akagawa et al., 2019) and neonatal antibiotic treatment (Eck et al., 2020) have been shown to reduce microbial diversity and have adverse health effects. Reid and colleagues have recently correlated microbial diversity with immune subsets in a human cohort of early life institutionalization (Reid et al., 2020), emphasizing on the role of microbiota in ELA associated pathologies. Recent research suggests that bacterial diversity is at least partly inherited through genetics: mtDNA variants are highly correlated with microbial composition, even if animals were reared in a different environment (Yardeni et al., 2019), resulting in altered ROS production. This is of high interest as ELA has repeatedly been associated with altered mitochondrial function and mtDNA copy number (Tyrka et al., 2016, Debray et al., 2018, Zitkovsky et al., 2021).

Psychosocial stress and mental health: The ELA induced risk of developing anxiety-related and depressive psychopathologies will clearly interact with the ageing process. It is clear that serious

mental disorders decrease life expectancy and concurrently increase the relative risk of age-related pathologies such as dementia, and cardio-metabolic diseases, as well as accelerated immune ageing (Liu et al., 2017). This has resulted in the shift from considering many severe psychiatric disorders as only diseases of the to a more holistic multi-system, or even 'whole body' entity, of which 'accelerated biological aging' is an essential element (Wolkowitz et al., 2011). Here, accelerated biological ageing has been reported an significant shortening of leukocyte telomere length as well as an acceleration of epigenetic age measure by DNA methylation (Wolkowitz, 2018). In line with this, ELA has also repeatedly been associated with methylation changes in genes related to HPA axis function (Alexander et al., 2018), the immune system and in certain brain structures (Catale et al., 2020). Recent animal models of ELA have shown significant changes in gene expression associated with stress and inflammatory signalling long after exposure (Lopizzo et al., 2021, Lutz et al., 2020). Obesity, often seen after ELA as well as in the elderly, has been shown to drive cellular senescence and induce anxiety in a mouse model (Ogrodnik et al., 2019), showing another possible link between health behaviours and mental health. Psychological distress has also been implicated in accelerated ageing and lower life quality (Moore et al., 2020), while chronological ageing itself increases the perception of stress (Osmanovic-Thunström et al., 2015) and the risk for depression (Lee et al., 2020). While this seems like a self-perpetuating cycle, the extend of the immune component in mental health is not well defined. Given the literature about the emotional response to chronic diseases [reviewed in (D'Acquisto, 2017)], it raises the question if dysfunction of the immune system is a consequence or a driving factor to mental health, or both.

4.2 Uncertain features

Sex specificity: The pro-inflammatory environment of inflammageing is higher overall in men, contributing to their general lower life expectancy (Clutton-Brock and Isvaran, 2007). Early life adversity on the other hand has been reported inconsistently to have a stronger effect on women (Honeycutt et al., 2020, Power et al., 2012) or men (Appelmann et al., 2021). Self-reporting and retrospective reporting biases make these conclusions unreliable (Reuben et al., 2016), although, no significant bias was reported for self-reported vs reimbursed medication (Brown et al., 2007) or test-retest reliability (Dube et al., 2004) in the ACE study. Furthermore, ELA studies of institutionalisation (Gunnar et al., 2007, Rutter et al., 2004, van IJzendoorn et al., 2011, O'Connor and Rutter, 2000) have shown that the psychological and physiological impact on children tends to correlate with the duration of institutionalisation and can therefore be considered an unbiased measurement. Information bias for observational (e.g. questionnaires) as well as experimentation parameters (e.g. only limited material collected) (Althubaiti, 2016) is inherent in all human research. However, certain biological components (e.g. hormones) are markedly different between the sexes. Estradiol and progesterone have been implicated to confer protection from oxidative stress and neuronal injury (Ishihara et al., 2015), which is also of interest in the scope of ELA, as steroid levels in the immature brain are higher than those in the adult brain (Konkle and McCarthy, 2011). In animal studies, without economic and social cofounders, males often fare less well. In a multiple-hit rat study, males displayed increased anxiety-like and anti-social behaviour (Bonapersona et al., 2019). Furthermore, the negative impact of ELA on the microbiome has been demonstrated to be higher in males (Rincel et al., 2019). Female sex hormones have also been found to have "immunoenhancing effects after infection or circulatory stress" (Angele et al., 1999). An enhanced immune response, evolutionary conserved in females, may partially explain this sexual dimorphism (Jaillon et al., 2019).

HPA-axis: Literature on the effects of ageing on the HPA axis, and consequently stress response, are highly inconsistent. Several studies reported rising, stagnant or decreasing levels of cortisol associated with chronological ageing [reviewed in (Gaffey et al., 2016)]. In an animal model of aged rats, Glucocorticoid (GC) secretion was enhanced due to degenerative changes in brain connectivity (Sapolsky et al., 1986, Gardner et al., 2019), while GCs and cortisol have repeatedly been shown to have a 'blunted' response to acute stress after ELA (Lovallo et al., 2018, Hengesch et al., 2018). A recent study in mice has shown lower GC levels to be correlated with higher levels of inflammatory cytokines, ROS and macrophage activation, in accordance with inflammageing (Valbuena Perez et al., 2020). It remains to conclude that, while HPA dysregulation is often reported in combination with ageing (Gupta and Morley, 2014), the molecular mechanisms responsible remain largely unknown.

5. Future directions

We have shown many biological features shared between ELA, frailty, and inflammageing. Often we do not know, through which mechanistic pathways ELA acts on the body and mind, but the clear inflammatory driven phenotype is without question. Both, ELA and ageing, have repeatedly been associated with a decline in mental health and an increase in systemic inflammation. While telomere shortening is associated with both ageing and ELA, it might be more impacted by chronic stress, and the concrete influence of sex hormones in ageing or ELA remains elusive. Immunosenescence, which has often been reported after ELA, seems a valid connection for most features mentioned, and after all it is a so-called 'hallmark of ageing'. However, this perspective might change with emerging new foci in the research surrounding ELA and ageing: two underexplored areas, ROS and the microbiome will most likely emerge as essential in maintaining immune homeostasis and mental health.

As we and others have recently highlighted (Holuka et al., 2020), we need to start considering both socioeconomic and early life environment data as genuinely important medical information that should be routinely collected. It is important that the retrospective life-trajectory data is collected, even under the risk of recall bias. Studies done to assess the effect of ageing, in health or disease, usually do not retrospectively assess the early life environment of their participants. The ELA literature is clear: adversity is associated with accelerated immunological and biological ageing (Sun et al., 2020, Nettle et al., 2017, Hamlat et al., 2021). Well-established ELA cohorts such as the Dutch Hunger Winter, or survivors of the holocaust that are now in their 7th or 8th decade of life. Taking lessons from the ELA literature, natural experiments such as these may provide a perfect window into the role of ELA on ageing. In these cohorts the adversity suffered was clearly defined, and we know much about their susceptibility to non-communicable diseases and their overall trajectories. It remains now to be seen what effect this has had on the overall ageing process, and the ageing phenotype in such cohorts.

Nevertheless, early life exposure and lifetime accumulated allostatic load will remain hard to differentiate. Monodisciplinary approaches, of which we are also guilty, will ultimately have to make way for multi-system-studies, integrating observational parameters with experimental measurements in a holistic manner. As such data becomes available, it will necessitate the integration of the metadata with patients' medical records and many multi-omics and high-dimension datasets together with cooperation between disciplines (medicine, biology, psychology, social sciences, and computational sciences). Animal models and in-vitro immune assays will have to identify the mechanisms in a controlled environment.

Lastly, the ongoing SARS-CoV-2 virus and COVID-19 pandemic will have an enormous impact on the life of many people, including new-born children and pregnant women, as a source of ELA. It is also a unique opportunity to study the immune response to a completely novel pathogen in either an aged immune system, or an immune system that has been exposed to ELA many years ago. If our position outlined here that ELA accelerates immune-ageing is correct, prior ELA exposure will have significant consequences on the subsequent response to a novel pathogen to which the immune system is completely uneducated. There are many cohorts available worldwide from children and adolescents only recently exposed to ELA, or octogenarians that were exposed nearly 8 decades ago. Here the prior ELA has been characterised, and a wide variety of cross-sectional studies can be conceived that would investigate the effect of this exposure to ELA many decades ago on the relative morbidity and mortality of COVID-19 in these population. It has already been highlighted (Holuka et al., 2020) that the ELA immunophenotype may play a significant role in determining the outcome of COVID-19 disease. In summary, exposure to early life adversity would appear to not only produce a specific immunophenotype, but to accelerate the overall immune-ageing and inflammageing processes. We now have the tools to be able to dissect this interaction, and to potentially identify the ecological and mechanistic processes that are involved in 'healthy' or accelerated immune-ageing.

Conflicts of Interest: The authors declare no conflict of interest.

Contributions: Conceptualization: MPM and JDT; literature review: MPM and JDT; writing and editing: MPM and JDT. All figures were created using BioRender.com by M.P.M

Acknowledgements: The authors would like to thank Sophie Mériaux, Pauline Guebels, Stephanie Schmitz and Fanny Bonnemberger for their technical support in our work investigating the long term effects of early life adversity over the years.

Funding: M.P.M and J.D.T. were funded by Fonds National de Recherche Luxembourg: FNR-PRIDE (PRIDE/11012546/NEXTIMMUNE). The work of J.D.T. on the immunological consequences of ELA was further funded by FNR-CORE (C16/BM/11342695 'MetCOEPs'), (C12/BM/3985792 'EpiPath') and FNR-INTER (INTER/ANR/16/11568350 'MADAM').

Abbreviations

- ACE: adverse childhood experiences
- ACTH: adrenocorticotrophic hormone
- BMI: body mass index
- ELA: early life adversity
- ELS: early life stress
- CMV: Cytomegalovirus
- EBV: Epstein-Barr virus
- CRF: corticotrophin releasing factor
- CT: childhood trauma
- CTL: cytotoxic T lymphocyte
- CTQ: Childhood Trauma Questionnaire
- GCs: Glucocorticoids
- HPA: Hypothalamus-pituitary Adrenal axis
- HRBs: Health-risk behaviours
- SASP: Senescence-associated secretory profile
- DAMPSSs: damage-associated molecular patterns

PAMPs: pathogen-associated molecular patterns

PRRs: pattern recognition receptors

ROS: reactive oxygen species

DOHaD: developmental origins of health and disease

LPS: Lipopolysaccharide

References

2020. The Association Between Psychiatric Disorders and Telomere Length: A Meta-Analysis Involving 14,827 Persons: Erratum. *Psychosom Med*, 82, 631.

AGITA, A. & ALSAGAFF, M. T. 2017. Inflammation, Immunity, and Hypertension. *Acta Med Indones*, 49, 158-165.

AGORASTOS, A., PERVANIDOU, P., CHROUSOS, G. P. & BAKER, D. G. 2019. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. *Frontiers in psychiatry*, 10, 118-118.

AHMED, F. 2010. Epigenetics: Tales of adversity. *Nature*, 468, S20-S20.

AHMED, R. & GRAY, D. 1996. Immunological Memory and Protective Immunity: Understanding Their Relation. *Science*, 272, 54.

AISA, B., TORDERA, R., LASHERAS, B., DEL RÍO, J. & RAMÍREZ, M. J. 2007. Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. *Psychoneuroendocrinology*, 32, 256-266.

AKAGAWA, S., TSUJI, S., ONUMA, C., AKAGAWA, Y., YAMAGUCHI, T., YAMAGISHI, M., YAMANOUCHI, S., KIMATA, T., SEKIYA, S. I., OHASHI, A., HASHIYADA, M., AKANE, A. & KANEKO, K. 2019. Effect of Delivery Mode and Nutrition on Gut Microbiota in Neonates. *Ann Nutr Metab*, 74, 132-139.

AKBAR, A. N. 2017. The convergence of senescence and nutrient sensing during lymphocyte ageing. *Clinical and experimental immunology*, 187, 4-5.

ALCALA, H. E., MITCHELL, E. & KEIM-MALPASS, J. 2017. Adverse Childhood Experiences and Cervical Cancer Screening. *J Womens Health (Larchmt)*, 26, 58-63.

ALEXANDER, N., KIRSCHBAUM, C., WANKERL, M., STAUCH, B. J., STALDER, T., STEUDTE-SCHMIEDGEN, S., MUEHLHAN, M. & MILLER, R. 2018. Glucocorticoid receptor gene methylation moderates the association of childhood trauma and cortisol stress reactivity. *Psychoneuroendocrinology*, 90, 68-75.

ALEXANDRE-SILVA, G. M., BRITO-SOUZA, P. A., OLIVEIRA, A. C. S., CERNI, F. A., ZOTTICH, U. & PUCCA, M. B. 2018. The hygiene hypothesis at a glance: Early exposures, immune mechanism and novel therapies. *Acta Tropica*, 188, 16-26.

ALFADDA, A. A. & SALLAM, R. M. 2012. Reactive Oxygen Species in Health and Disease. *Journal of Biomedicine and Biotechnology*, 2012, 936486.

ALPERT, A., PICKMAN, Y., LEIPOLD, M., ROSENBERG-HASSON, Y., JI, X., GAUJOUX, R., RABANI, H., STAROSVETSKY, E., KVELER, K., SCHAFFERT, S., FURMAN, D., CASPI, O., ROSENSCHEIN, U., KHATRI, P., DEKKER, C. L., MAECKER, H. T., DAVIS, M. M. & SHEN-ORR, S. S. 2019. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. *Nat Med*, 25, 487-495.

ALSHAIKH, B., YUSUF, K. & SAUVE, R. 2013. Neurodevelopmental outcomes of very low birth weight infants with neonatal sepsis: systematic review and meta-analysis. *J Perinatol*, 33, 558-64.

ALTHUBAIDI, A. 2016. Information bias in health research: definition, pitfalls, and adjustment methods. *Journal of multidisciplinary healthcare*, 9, 211-217.

ANGELE, M. K., KNÖFERL, M. W., SCHWACHA, M. G., AYALA, A., CIOFFI, W. G., BLAND, K. I. & CHAUDRY, I. H. 1999. Sex steroids regulate pro- and anti-inflammatory cytokine release by macrophages after trauma-hemorrhage. *American Journal of Physiology-Cell Physiology*, 277, C35-C42.

APPELMANN, H. M., MANIGAULT, A. W., SHOREY, R. C. & ZOCCOLA, P. M. 2021. Childhood adversity and cortisol habituation to repeated stress in adulthood. *Psychoneuroendocrinology*, 125, 105118.

ARAI, Y., MARTIN-RUIZ, C. M., TAKAYAMA, M., ABE, Y., TAKEBAYASHI, T., KOYASU, S., SUEMATSU, M., HIROSE, N. & VON ZGLINICKI, T. 2015. Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. *EBioMedicine*, 2, 1549-1558.

ARMANIOS, M. & BLACKBURN, E. H. 2012. The telomere syndromes. *Nature Reviews Genetics*, 13, 693-704.

AVITSUR, R., LEVY, S., GOREN, N. & GRINSHPAHET, R. 2015. Early adversity, immunity and infectious disease. *Stress*, 18, 289-296.

BADRY, A., JASPERS, V. L. B. & WAUGH, C. A. 2020. Environmental pollutants modulate RNA and DNA virus-activated miRNA-155 expression and innate immune system responses: Insights into new immunomodulative mechanisms*. *Journal of Immunotoxicology*, 17, 86-93.

BANA, B. & CABREIRO, F. 2019. The Microbiome and Aging. *Annu Rev Genet*, 53, 239-261.

BANQUERI, M., MÉNDEZ, M., GÓMEZ-LÁZARO, E. & ARIAS, J. L. 2019. Early life stress by repeated maternal separation induces long-term neuroinflammatory response in glial cells of male rats. *Stress*, 22, 563-570.

BARKER, D. J., GLUCKMAN, P. D., GODFREY, K. M., HARDING, J. E., OWENS, J. A. & ROBINSON, J. S. 1993. Fetal nutrition and cardiovascular disease in adult life. *Lancet*, 341, 938-41.

BARKER, D. J., OSMOND, C., KAJANTIE, E. & ERIKSSON, J. G. 2009. Growth and chronic disease: findings in the Helsinki Birth Cohort. *Ann Hum Biol*, 36, 445-58.

BARKER, D. J., WINTER, P. D., OSMOND, C., MARGETTS, B. & SIMMONDS, S. J. 1989. Weight in infancy and death from ischaemic heart disease. *Lancet*, 2, 577-80.

BARTON, A. S., ZAKRESKI, E. & PRUESSNER, J. 2016. The effects of early life adversity on responses to the Montreal Imaging Stress Task. *Psychoneuroendocrinology*, 71, 67.

BATTEN, S. V., ASLAN, M., MACIEJEWSKI, P. K. & MAZURE, C. M. 2004. Childhood maltreatment as a risk factor for adult cardiovascular disease and depression. *J Clin Psychiatry*, 65, 249-54.

BAUER, M. E. & FUENTE, M. D. L. 2016. The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. *Mechanisms of Ageing and Development*, 158, 27-37.

BAUER, R. N., DIAZ-SANCHEZ, D. & JASPERS, I. 2012. Effects of air pollutants on innate immunity: the role of Toll-like receptors and nucleotide-binding oligomerization domain-like receptors. *The Journal of allergy and clinical immunology*, 129, 14-26.

BAUMEISTER, D., AKHTAR, R., CIUFOLINI, S., PARIANTE, C. M. & MONDELLI, V. 2016. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor- α . *Molecular Psychiatry*, 21, 642-649.

BEN-SHLOMO, Y. & KUH, D. 2002. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. *Int J Epidemiol*, 31, 285-93.

BEUREL, E., TOUPS, M. & NEMEROFF, C. B. 2020. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. *Neuron*, 107, 234-256.

BHARATH, L. P., AGRAWAL, M., MCCAMBRIDGE, G., NICHOLAS, D. A., HASTURK, H., LIU, J., JIANG, K., LIU, R., GUO, Z., DEENY, J., APOVIAN, C. M., SNYDER-CAPPIONE, J., HAWK, G. S., FLEEMAN, R. M., PIHL, R. M. F., THOMPSON, K., BELKINA, A. C., CUI, L., PROCTOR, E. A., KERN, P. A. & NIKOLAJCZYK, B. S. 2020.

Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation. *Cell Metab*, 32, 44-55.e6.

BICK, J. & NELSON, C. A. 2016. Early Adverse Experiences and the Developing Brain. *Neuropsychopharmacology*, 41, 177-96.

BILBO, S. D. & SCHWARZ, J. M. 2009. Early-life programming of later-life brain and behavior: a critical role for the immune system. *Front Behav Neurosci*, 3, 14.

BLACK, P. H. 1994. Immune system-central nervous system interactions: effect and immunomodulatory consequences of immune system mediators on the brain. *Antimicrobial Agents and Chemotherapy*, 38, 7.

BLUM, K., SHERIDAN, P. J., WOOD, R. C., BRAVERMAN, E. R., CHEN, T. J., CULL, J. G. & COMINGS, D. E. 1996. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome. *J R Soc Med*, 89, 396-400.

BOECK, C., KOENIG, A. M., SCHURY, K., GEIGER, M. L., KARABATSIAKIS, A., WILKER, S., WALLER, C., GÜNDL, H., FEGERT, J. M., CALZIA, E. & KOLASSA, I.-T. 2016. Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress. *Mitochondrion*, 30, 197-207.

BONAPERSONA, V., KENTROP, J., VAN LISSA, C. J., VAN DER VEEN, R., JOËLS, M. & SARABDJITSINGH, R. A. 2019. The behavioral phenotype of early life adversity: A 3-level meta-analysis of rodent studies. *Neuroscience & Biobehavioral Reviews*, 102, 299-307.

BROWN, A., FIORI, L. M. & TURECKI, G. 2019. Bridging Basic and Clinical Research in Early Life Adversity, DNA Methylation, and Major Depressive Disorder. *Frontiers in Genetics*, 10.

BROWN, D. W., ANDA, R. F. & FELITTI, V. J. 2007. Self-reported information and pharmacy claims were comparable for lipid-lowering medication exposure. *J Clin Epidemiol*, 60, 525-9.

BRUCKMANN, R., TUCHSCHERER, M., TUCHSCHERER, A., GIMSA, U. & KANITZ, E. 2020. Early-Life Maternal Deprivation Predicts Stronger Sickness Behaviour and Reduced Immune Responses to Acute Endotoxaemia in a Pig Model. *Int J Mol Sci*, 21.

BRUNNER, S., HERNDLER-BRANDSTETTER, D., WEINBERGER, B. & GRUBECK-LOEBENSTEIN, B. 2011. Persistent viral infections and immune aging. *Ageing Res Rev*, 10, 362-9.

BURBANK, A. J., SOOD, A. K., KESIC, M. J., PEDEN, D. B. & HERNANDEZ, M. L. 2017. Environmental determinants of allergy and asthma in early life. *The Journal of allergy and clinical immunology*, 140, 1-12.

CALCINOTTO, A., KOHLI, J., ZAGATO, E., PELLEGRINI, L., DEMARIA, M. & ALIMONTI, A. 2019. Cellular Senescence: Aging, Cancer, and Injury. *Physiol Rev*, 99, 1047-1078.

CALLE, M. C. & FERNANDEZ, M. L. 2012. Inflammation and type 2 diabetes. *Diabetes Metab*, 38, 183-91.

CAMPISI, J. 2014. Cell biology: The beginning of the end. *Nature*, 505, 35-36.

CAMPISI, J., KAPAHI, P., LITHGOW, G. J., MELOV, S., NEWMAN, J. C. & VERDIN, E. 2019. From discoveries in ageing research to therapeutics for healthy ageing. *Nature*, 571, 183-192.

CAO-LEI, L., MASSART, R., SUDERMAN, M. J., MACHNES, Z., ELGBEILI, G., LAPLANTE, D. P., SZYF, M. & KING, S. 2014. DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm. *PLoS One*, 9, e107653.

CARPENTER, L. L., CARVALHO, J. P., TYRKA, A. R., WIER, L. M., MELLO, A. F., MELLO, M. F., ANDERSON, G. M., WILKINSON, C. W. & PRICE, L. H. 2007. Decreased adrenocorticotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment. *Biol Psychiatry*, 62, 1080-7.

CATALE, C., BUSSONE, S., LO IACONO, L., VISCOMI, M. T., PALACIOS, D., TROISI, A. & CAROLA, V. 2020. Exposure to different early-life stress experiences results in differentially altered DNA methylation in the brain and immune system. *Neurobiology of Stress*, 13, 100249.

CHANDAN, J. S., OKOTH, K., GOKHALE, K. M., BANDYOPADHYAY, S., TAYLOR, J. & NIRANTHARAKUMAR, K. 2020. Increased Cardiometabolic and Mortality Risk Following Childhood Maltreatment in the United Kingdom. *J Am Heart Assoc*, 9, e015855.

CHANG, S. H. 2019. T helper 17 (Th17) cells and interleukin-17 (IL-17) in cancer. *Archives of Pharmacal Research*, 42, 549-559.

CHROUSOS, G. P. & GOLD, P. W. 1992. The Concepts of Stress and Stress System Disorders: Overview of Physical and Behavioral Homeostasis. *JAMA*, 267, 1244-1252.

CLUTTON-BROCK, T. H. & ISVARAN, K. 2007. Sex differences in ageing in natural populations of vertebrates. *Proceedings of the Royal Society B: Biological Sciences*, 274, 3097-3104.

COE, C. L. & LUBACH, G. R. 2005. Prenatal origins of individual variation in behavior and immunity. *Neurosci Biobehav Rev*, 29, 39-49.

COPPÉ, J.-P., PATIL, C. K., RODIER, F., SUN, Y., MUÑOZ, D. P., GOLDSTEIN, J., NELSON, P. S., DESPREZ, P.-Y. & CAMPISI, J. 2008. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. *PLOS Biology*, 6, e301.

CORNET, V., DOUXFILS, J., MANDIKI, S. N. M. & KESTEMONT, P. 2020. Early-life infection with a bacterial pathogen increases expression levels of innate immunity related genes during adulthood in zebrafish. *Dev Comp Immunol*, 108, 103672.

COX, A. J., WEST, N. P. & CRIPPS, A. W. 2015. Obesity, inflammation, and the gut microbiota. *Lancet Diabetes Endocrinol*, 3, 207-15.

CRITSELIS, E. & PANAGIOTAKOS, D. 2020. Adherence to the Mediterranean diet and healthy ageing: Current evidence, biological pathways, and future directions. *Crit Rev Food Sci Nutr*, 60, 2148-2157.

D'ACQUISTO, F. 2017. Affective immunology: where emotions and the immune response converge. *Dialogues in clinical neuroscience*, 19, 9-19.

DAHLGREN, C. & KARLSSON, A. 1999. Respiratory burst in human neutrophils. *J Immunol Methods*, 232, 3-14.

DANESE, A. & J LEWIS, S. 2017. Psychoneuroimmunology of Early-Life Stress: The Hidden Wounds of Childhood Trauma? *Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology*, 42, 99-114.

DANIEL, S., NYLANDER, V., INGERSLEV, L. R., ZHONG, L., FABRE, O., CLIFFORD, B., JOHNSTON, K., COHN, R. J., BARRES, R. & SIMAR, D. 2018. T cell epigenetic remodeling and accelerated epigenetic aging are linked to long-term immune alterations in childhood cancer survivors. *Clinical Epigenetics*, 10, 138.

DARROW, S. M., VERHOEVEN, J. E., RÉVÉSZ, D., LINDQVIST, D., PENNINX, B. W., DELUCCHI, K. L., WOLKOWITZ, O. M. & MATHEWS, C. A. 2016. The Association Between Psychiatric Disorders and Telomere Length: A Meta-Analysis Involving 14,827 Persons. *Psychosom Med*, 78, 776-87.

DASKALAKIS, N. P., BAGOT, R. C., PARKER, K. J., VINKERS, C. H. & DE KLOET, E. R. 2013. The three-hit concept of vulnerability and resilience: toward understanding adaptation to early-life adversity outcome. *Psychoneuroendocrinology*, 38, 1858-1873.

DE FANIS, U., WANG, G. C., FEDARKO, N. S., WALSTON, J. D., CASOLARO, V. & LENG, S. X. 2008. T-lymphocytes expressing CC chemokine receptor-5 are increased in frail older adults. *J Am Geriatr Soc*, 56, 904-8.

DE FRANCESCO, D., WIT, F. W., BURKLE, A., OEHlke, S., KOOTSTRA, N. A., WINSTON, A., FRANCESCHI, C., GARAGNANI, P., PIRAZZINI, C., LIBERT, C., GRUNE, T., WEBER, D., JANSEN, E., SABIN, C. A., REISS, P.

& THE CO-MORBIDITY IN RELATION TO, A. C. 2019. Do people living with HIV experience greater age advancement than their HIV-negative counterparts? *AIDS*, 33, 259-268.

DE MAEYER, R. P. H. & CHAMBERS, E. S. 2021. The impact of ageing on monocytes and macrophages. *Immunology Letters*, 230, 1-10.

DEBRAY, R., SNYDER-MACKLER, N., KOHN, J., WILSON, M., BARREIRO, L. & TUNG, J. 2018. Social integration predicts mitochondrial DNA copy number in rhesus macaques. *bioRxiv*, 408849.

DENNISON, M. J., ROSEN, M. L., SAMBROOK, K. A., JENNESS, J. L., SHERIDAN, M. A. & MCLAUGHLIN, K. A. 2019. Differential Associations of Distinct Forms of Childhood Adversity With Neurobehavioral Measures of Reward Processing: A Developmental Pathway to Depression. *Child Dev*, 90, e96-e113.

DESGEORGES, T., CARATTI, G., MOUNIER, R., TUCKERMANN, J. & CHAZAUD, B. 2019. Glucocorticoids Shape Macrophage Phenotype for Tissue Repair. *Frontiers in Immunology*, 10.

DHABHAR, F. S. 2014. Effects of stress on immune function: the good, the bad, and the beautiful. *Immunologic Research*, 58, 193-210.

DI PENTA, A., MORENO, B., REIX, S., FERNANDEZ-DIEZ, B., VILLANUEVA, M., ERREA, O., ESCALA, N., VANDENBROECK, K., COMELLA, J. X. & VILLOSLADA, P. 2013. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. *PLoS One*, 8, e54722.

DONG, T. S. & GUPTA, A. 2019. Influence of Early Life, Diet, and the Environment on the Microbiome. *Clinical Gastroenterology and Hepatology*, 17, 231-242.

DOWLING, D. J. & LEVY, O. 2014. Ontogeny of early life immunity. *Trends in Immunology*, 35, 299-310.

DUBE, S. R., ANDA, R. F., FELITTI, V. J., EDWARDS, V. J. & CROFT, J. B. 2002. Adverse childhood experiences and personal alcohol abuse as an adult. *Addict Behav*, 27, 713-25.

DUBE, S. R., WILLIAMSON, D. F., THOMPSON, T., FELITTI, V. J. & ANDA, R. F. 2004. Assessing the reliability of retrospective reports of adverse childhood experiences among adult HMO members attending a primary care clinic. *Child Abuse Negl*, 28, 729-37.

DUFFY, K. A., MCLAUGHLIN, K. A. & GREEN, P. A. 2018. Early life adversity and health-risk behaviors: proposed psychological and neural mechanisms. *Ann N Y Acad Sci*, 1428, 151-169.

ECK, A., RUTTEN, N. B. M. M., SINGENDONK, M. M. J., RIJKERS, G. T., SAVELKOUL, P. H. M., MEIJSEN, C. B., CRIJNS, C. E., OUDSHOORN, J. H., BUDDING, A. E. & VLIEGER, A. M. 2020. Neonatal microbiota development and the effect of early life antibiotics are determined by two distinct settler types. *PLOS ONE*, 15, e0228133.

EEA 2019. Healthy environment, healthy lives: how the environment influences health and well-being in Europe. *EEA Report No 21/2019*. European Environment Agency.

ELWENSPOEK, M. M. C., HENGESCH, X., LEENEN, F. A. D., SCHRITZ, A., SIAS, K., SCHAAN, V. K., MERIAUX, S. B., SCHMITZ, S., BONNEMBERGER, F., SCHACHINGER, H., VOGELE, C., TURNER, J. D. & MULLER, C. P. 2017a. Proinflammatory T Cell Status Associated with Early Life Adversity. *J Immunol*, 199, 4046-4055.

ELWENSPOEK, M. M. C., HENGESCH, X., LEENEN, F. A. D., SIAS, K., FERNANDES, S. B., SCHAAN, V. K., MERIAUX, S. B., SCHMITZ, S., BONNEMBERGER, F., SCHACHINGER, H., VOGELE, C., MULLER, C. P. & TURNER, J. D. 2019. Glucocorticoid receptor signaling in leukocytes after early life adversity. *Dev Psychopathol*, 1-11.

ELWENSPOEK, M. M. C., KUEHN, A., MULLER, C. P. & TURNER, J. D. 2017b. The effects of early life adversity on the immune system. *Psychoneuroendocrinology*, 82, 140-154.

ELWENSPOEK, M. M. C., SIAS, K., HENGESCH, X., SCHAAN, V. K., LEENEN, F. A. D., ADAMS, P., MERIAUX, S. B., SCHMITZ, S., BONNEMBERGER, F., EWEN, A., SCHACHINGER, H., VOGELE, C., MULLER, C. P. & TURNER, J. D. 2017c. T Cell Immunosenescence after Early Life Adversity: Association with Cytomegalovirus Infection. *Front Immunol*, 8, 1263.

ENTRINGER, S., PUNDER, K. D., BUSS, C. & WADHWA, P. D. 2018. The fetal programming of telomere biology hypothesis: an update. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 373, 20170151.

EPEL, E. S. & PRATHER, A. A. 2018. Stress, Telomeres, and Psychopathology: Toward a Deeper Understanding of a Triad of Early Aging. *Annual Review of Clinical Psychology*, 14, 371-397.

ESME, M., TOPELI, A., YAVUZ, B. B. & AKOVA, M. 2019. Infections in the Elderly Critically-III Patients. *Frontiers in medicine*, 6, 118-118.

ESPOSITO, E. A., JONES, M. J., DOOM, J. R., MACISAAC, J. L., GUNNAR, M. R. & KOBOR, M. S. 2016. Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. *Development and psychopathology*, 28, 1385-1399.

FALI, T., PAPAGNO, L., BAYARD, C., MOULLOUD, Y., BODDAERT, J., SAUCE, D. & APPAY, V. 2019. New Insights into Lymphocyte Differentiation and Aging from Telomere Length and Telomerase Activity Measurements. *The Journal of Immunology*, 202, 1962.

FELITTI, V. J. M. D., FACP, ANDA, R. F. M. D., MS, NORDENBERG, D. M. D., WILLIAMSON, D. F. M. S., PHD, SPITZ, A. M. M. S., MPH, EDWARDS, V. B. A., KOSS, M. P. P., MARKS, J. S. M. D. & MPH 1998. Relationship of Childhood Abuse and Household Dysfunction to Many of the Leading Causes of Death in Adults: The Adverse Childhood Experiences (ACE) Study. *American Journal of Preventive Medicine*, 14, 245-258.

FERLE, V., REPOUSKOU, A., ASPIOTIS, G., RAFTOGIANNI, A., CHROUSOS, G., STYLIANOPOULOU, F. & STAMATAKIS, A. 2020. Synergistic effects of early life mild adversity and chronic social defeat on rat brain microglia and cytokines. *Physiology & Behavior*, 215, 112791.

FERRUCCI, L. & FABBRI, E. 2018. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. *Nat Rev Cardiol*, 15, 505-522.

FONSECA, W., MALINCAZAK, C. A., SCHULER, C. F., BEST, S. K. K., RASKY, A. J., MORRIS, S. B., CUI, T. X., POPOVA, A. P. & LUKACS, N. W. 2020. Uric acid pathway activation during respiratory virus infection promotes Th2 immune response via innate cytokine production and ILC2 accumulation. *Mucosal Immunol*, 13, 691-701.

FORD, B. N., YOLKEN, R. H., AUPPERLE, R. L., TEAGUE, T. K., IRWIN, M. R., PAULUS, M. P. & SAVITZ, J. 2019. Association of Early-Life Stress With Cytomegalovirus Infection in Adults With Major Depressive Disorder. *JAMA Psychiatry*, 76, 545-547.

FOSCOLOU, A., D'CUNHA, N. M., NAUMOVSKI, N., TYROVOLAS, S., CHRYSOHOU, C., RALLIDIS, L., POLYCHRONOPOULOS, E., MATALAS, A. L., SIDOSSIS, L. S. & PANAGIOTAKOS, D. 2020. The association between the level of adherence to the Mediterranean diet and successful aging: An analysis of the ATTICA and MEDIS (Mediterranean Islands Study) epidemiological studies. *Arch Gerontol Geriatr*, 89, 104044.

FRANCESCHI, C. & BONAFÈ, M. 2003. Centenarians as a model for healthy aging. *Biochem Soc Trans*, 31, 457-61.

FRANCESCHI, C., BONAFE, M., VALENSIN, S., OLIVIERI, F., DE LUCA, M., OTTAVIANI, E. & DE BENEDICTIS, G. 2000. Inflamm-aging. An evolutionary perspective on immunosenescence. *Ann N Y Acad Sci*, 908, 244-54.

FRANCESCHI, C. & CAMPISI, J. 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. *J Gerontol A Biol Sci Med Sci*, 69 Suppl 1, S4-9.

FRANCESCHI, C., GARAGNANI, P., PARINI, P., GIULIANI, C. & SANTORO, A. 2018. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. *Nature Reviews Endocrinology*, 14, 576-590.

FRANCESCHI, C., GARAGNANI, P., VITALE, G., CAPRI, M. & SALVIOLI, S. 2017. Inflammaging and 'Garb-aging'. *Trends Endocrinol Metab*, 28, 199-212.

FRANCHINA, D. G., DOSTERT, C. & BRENNER, D. 2018. Reactive Oxygen Species: Involvement in T Cell Signaling and Metabolism. *Trends Immunol*, 39, 489-502.

FRASCA, D., DIAZ, A., ROMERO, M. & BLOMBERG, B. B. 2020. Leptin induces immunosenescence in human B cells. *Cellular Immunology*, 348, 103994.

FUKUNAGA, T., MIZOI, Y., YAMASHITA, A., YAMADA, M., YAMAMOTO, Y., TATSUNO, Y. & NISHI, K. 1992. Thymus of abused/neglected children. *Forensic Sci Int*, 53, 69-79.

FÜLÖP, T., DUPUIS, G., WITKOWSKI, J. M. & LARBI, A. 2016. The Role of Immunosenescence in the Development of Age-Related Diseases. *Rev Invest Clin*, 68, 84-91.

FULOP, T., LARBI, A., DUPUIS, G., LE PAGE, A., FROST, E. H., COHEN, A. A., WITKOWSKI, J. M. & FRANCESCHI, C. 2018. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? *Frontiers in Immunology*, 8.

FURMAN, D., CAMPISI, J., VERDIN, E., CARRERA-BASTOS, P., TARG, S., FRANCESCHI, C., FERRUCCI, L., GILROY, D. W., FASANO, A., MILLER, G. W., MILLER, A. H., MANTOVANI, A., WEYAND, C. M., BARZILAI, N., GORONZY, J. J., RANDO, T. A., EFFROS, R. B., LUCIA, A., KLEINSTREUER, N. & SLAVICH, G. M. 2019. Chronic inflammation in the etiology of disease across the life span. *Nature medicine*, 25, 1822-1832.

GAFFEY, A. E., BERGEMAN, C. S., CLARK, L. A. & WIRTH, M. M. 2016. Aging and the HPA axis: Stress and resilience in older adults. *Neuroscience and biobehavioral reviews*, 68, 928-945.

GAFFIN, J. M. & PHIPATANAKUL, W. 2009. The role of indoor allergens in the development of asthma. *Curr Opin Allergy Clin Immunol*, 9, 128-35.

GARCÍA-Peña, C., ÁLVAREZ-CISNEROS, T., QUIROZ-BAEZ, R. & FRIEDLAND, R. P. 2017. Microbiota and Aging. A Review and Commentary. *Arch Med Res*, 48, 681-689.

GARCÍA-VELÁZQUEZ L., A. C. 2020. An Update on the Molecular Pillars of Aging. In: GOMEZ-VERJAN J., R.-S. N. (ed.) *Clinical Genetics and Genomics of Aging*.: Springer, Cham.

GARDNER, I. D. 1980. The effect of aging on susceptibility to infection. *Rev Infect Dis*, 2, 801-10.

GARDNER, M., LIGHTMAN, S., KUH, D., COMIJS, H., DEEG, D., GALLACHER, J., GEOFFROY, M.-C., KIVIMAKI, M., KUMARI, M., POWER, C., HARDY, R., RICHARDS, M. & BEN-SHLOMO, Y. 2019. Dysregulation of the hypothalamic pituitary adrenal (HPA) axis and cognitive capability at older ages: individual participant meta-analysis of five cohorts. *Scientific Reports*, 9, 4555.

GERRITSEN, L., HÄGG, S., REYNOLDS, C. A. & PEDERSEN, N. L. 2020. The Association of Individual Changes in Stressful Life Events and Telomere Length Over Time in Twins 50 Years and Older. *Psychosom Med*, 82, 614-622.

GERRITSEN, L., MILANESCHI, Y., VINKERS, C. H., VAN HEMERT, A. M., VAN VELZEN, L., SCHMAAL, L. & PENNINX, B. W. J. H. 2017. HPA Axis Genes, and Their Interaction with Childhood Maltreatment, are Related to Cortisol Levels and Stress-Related Phenotypes. *Neuropsychopharmacology*, 42, 2446-2455.

GHOSH, T. S., RAMPELLI, S., JEFFERY, I. B., SANTORO, A., NETO, M., CAPRI, M., GIAMPIERI, E., JENNINGS, A., CANDELA, M., TURRONI, S., ZOETENDAL, E. G., HERMES, G. D. A., ELODIE, C., MEUNIER, N., BRUGERE, C. M., PUJOS-GUILLOT, E., BERENDSEN, A. M., DE GROOT, L. C. P. G. M., FESKINS, E. J. M., KALUZA, J.,

PIETRUSZKA, B., BIELAK, M. J., COMTE, B., MAIJO-FERRE, M., NICOLETTI, C., DE VOS, W. M., FAIRWEATHER-TAIT, S., CASSIDY, A., BRIGIDI, P., FRANCESCHI, C. & O'TOOLE, P. W. 2020. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. *Gut*, 69, 1218-1228.

GLASER, R., PEARSON, G. R., JONES, J. F., HILLHOUSE, J., KENNEDY, S., MAO, H. & KIECOLT-GLASER, J. K. 1991. Stress-related activation of Epstein-Barr virus. *Brain, Behavior, and Immunity*, 5, 219-232.

GORGULIS, V., ADAMS, P. D., ALIMONTI, A., BENNETT, D. C., BISCHOF, O., BISHOP, C., CAMPISI, J., COLLADO, M., EVANGELOU, K., FERBEYRE, G., GIL, J., HARA, E., KRIZHANOVSKY, V., JURK, D., MAIER, A. B., NARITA, M., NIEDERNHOFER, L., PASSOS, J. F., ROBBINS, P. D., SCHMITT, C. A., SEDIVY, J., VOUGAS, K., VON ZGLINICKI, T., ZHOU, D., SERRANO, M. & DEMARIA, M. 2019. Cellular Senescence: Defining a Path Forward. *Cell*, 179, 813-827.

GOUNDER, S. S., ABDULLAH, B. J. J., RADZUANB, N. E. I. B. M., ZAIN, F. D. B. M., SAIT, N. B. M., CHUA, C. & SUBRAMANI, B. 2018. Effect of Aging on NK Cell Population and Their Proliferation at Ex Vivo Culture Condition. *Analytical cellular pathology (Amsterdam)*, 2018, 7871814-7871814.

GOWERS, I. R., WALTERS, K., KISS-TOTH, E., READ, R. C., DUFF, G. W. & WILSON, A. G. 2011. Age-related loss of CpG methylation in the tumour necrosis factor promoter. *Cytokine*, 56, 792-797.

GRIFFITHS, P., BARANIAK, I. & REEVES, M. 2015. The pathogenesis of human cytomegalovirus. *The Journal of Pathology*, 235, 288-297.

GROVA, N., SCHROEDER, H., OLIVIER, J. L. & TURNER, J. D. 2019. Epigenetic and Neurological Impairments Associated with Early Life Exposure to Persistent Organic Pollutants. *Int J Genomics*, 2019, 2085496.

GUNNAR, M. R., FRENN, K., WEWERKA, S. S. & VAN RYZIN, M. J. 2009. Moderate versus severe early life stress: associations with stress reactivity and regulation in 10-12-year-old children. *Psychoneuroendocrinology*, 34, 62-75.

GUNNAR, M. R. & REID, B. M. 2019. Early Deprivation Revisited: Contemporary Studies of the Impact on Young Children of Institutional Care. *Annual Review of Developmental Psychology*, 1, 93-118.

GUNNAR, M. R., VAN DULMEN, M. H. & INTERNATIONAL ADOPTION PROJECT, T. 2007. Behavior problems in postinstitutionalized internationally adopted children. *Dev Psychopathol*, 19, 129-48.

GUPTA, D. & MORLEY, J. E. 2014. Hypothalamic-pituitary-adrenal (HPA) axis and aging. *Compr Physiol*, 4, 1495-510.

GUR, R. E., MOORE, T. M., ROSEN, A. F. G., BARZILAY, R., ROALF, D. R., CALKINS, M. E., RUPAREL, K., SCOTT, J. C., ALMASY, L., SATTERTHWAITE, T. D., SHINOHARA, R. T. & GUR, R. C. 2019. Burden of Environmental Adversity Associated With Psychopathology, Maturation, and Brain Behavior Parameters in Youths. *JAMA Psychiatry*, 76, 966-975.

HAAS, S. A. 2013. Developmental Origins of Disease and Health Disparities: Limitations and Future Directions. *Families and child health*, 1, 23-32.

HAMLAT, E. J., PRATHER, A. A., HORVATH, S., BELSKY, J. & EPEL, E. S. 2021. Early life adversity, pubertal timing, and epigenetic age acceleration in adulthood. *Dev Psychobiol*.

HAMMOND, P. B. & DIETRICH, K. N. 1990. Lead exposure in early life: health consequences. *Rev Environ Contam Toxicol*, 115, 91-124.

HANSON, J. L., ALBERT, D., ISELIN, A. M., CARRE, J. M., DODGE, K. A. & HARIRI, A. R. 2016. Cumulative stress in childhood is associated with blunted reward-related brain activity in adulthood. *Soc Cogn Affect Neurosci*, 11, 405-12.

HARLEY, C. B., FUTCHER, A. B. & GREIDER, C. W. 1990. Telomeres shorten during ageing of human fibroblasts. *Nature*, 345, 458-460.

HAYFLICK, L. & MOORHEAD, P. S. 1961. The serial cultivation of human diploid cell strains. *Exp Cell Res*, 25, 585-621.

HEIM, C., NEWPORT, D. J., HEIT, S., GRAHAM, Y. P., WILCOX, M., BONSALL, R., MILLER, A. H. & NEMEROFF, C. B. 2000. Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. *JAMA*, 284, 592-7.

HELENIAK, C., JENNESS, J. L., STOEP, A. V., MCCUALEY, E. & MCLAUGHLIN, K. A. 2016. Childhood Maltreatment Exposure and Disruptions in Emotion Regulation: A Transdiagnostic Pathway to Adolescent Internalizing and Externalizing Psychopathology. *Cognit Ther Res*, 40, 394-415.

HENGESCH, X., ELWENSPOEK, M. M. C., SCHAAN, V. K., LARRA, M. F., FINKE, J. B., ZHANG, X., BACHMANN, P., TURNER, J. D., VOGELE, C., MULLER, C. P. & SCHACHINGER, H. 2018. Blunted endocrine response to a combined physical-cognitive stressor in adults with early life adversity. *Child Abuse Negl*, 85, 137-144.

HERMAN, J. P., OSTRANDER, M. M., MUELLER, N. K. & FIGUEIREDO, H. 2005. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. *Progress in Neuropsychopharmacology and Biological Psychiatry*, 29, 1201-1213.

HERTZMAN, C. & BOYCE, T. 2010. How experience gets under the skin to create gradients in developmental health. *Annu Rev Public Health*, 31, 329-47 3p following 347.

HEYNER, M., SCHREIER, S. & KRÖGER, A. 2019. The brain-immune cells axis controls tissue specific immunopathology. *Cellular & Molecular Immunology*, 16, 101-103.

HODES, R. J., HATHCOCK, K. S. & WENG, N.-P. 2002. Telomeres in T and B cells. *Nature Reviews Immunology*, 2, 699-706.

HOLLAND, J. F., KHANDAKER, G. M., DAUVERMANN, M. R., MORRIS, D., ZAMMIT, S. & DONOHOE, G. 2020. Effects of early life adversity on immune function and cognitive performance: results from the ALSPAC cohort. *Social Psychiatry and Psychiatric Epidemiology*, 55, 723-733.

HOLMES, L., JR.; SHUTMAN, EMILY; CHINAKA, CHINACHEREM; DEEPIKA, KERTI; PELAEZ, LAVISHA; DABNEY, KIRK W. 2019. Aberrant Epigenomic Modulation of Glucocorticoid Receptor Gene (NR3C1) in Early Life Stress and Major Depressive Disorder Correlation: Systematic Review and Quantitative Evidence Synthesis. *Int. J. Environ. Res. Public Health*, 16.

HOLUKA, C., MERZ, M. P., FERNANDES, S. B., CHARALAMBOUS, E. G., SEAL, S. V., GROVA, N. & TURNER, J. D. 2020. The COVID-19 Pandemic: Does Our Early Life Environment, Life Trajectory and Socioeconomic Status Determine Disease Susceptibility and Severity? *International Journal of Molecular Sciences*, 21, 5094.

HONEYCUTT, J. A., DEMAESTRI, C., PETERZELL, S., SILVERI, M. M., CAI, X., KULKARNI, P., CUNNINGHAM, M. G., FERRIS, C. F. & BRENHOUSE, H. C. 2020. Altered corticolimbic connectivity reveals sex-specific adolescent outcomes in a rat model of early life adversity. *eLife*, 9, e52651.

HORN, S. R., LEVE, L. D., LEVITT, P. & FISHER, P. A. 2019. Childhood adversity, mental health, and oxidative stress: A pilot study. *PLOS ONE*, 14, e0215085.

HORNER, E. M., STROMBOTNE, K., HUANG, A. & LAPHAM, S. 2018. Investigating the Early Life Determinants of Type-II Diabetes Using a Project Talent-Medicare Linked Data-set. *SSM Popul Health*, 4, 189-196.

HOSTINAR, C. E., ROSS, K. M., CHEN, E. & MILLER, G. E. 2017. Early-Life Socioeconomic Disadvantage and Metabolic Health Disparities. *Psychosom Med*, 79, 514-523.

INAL, M. E., KANBAK, G. & SUNAL, E. 2001. Antioxidant enzyme activities and malondialdehyde levels related to aging. *Clin Chim Acta*, 305, 75-80.

ISHIHARA, Y., TAKEMOTO, T., ISHIDA, A. & YAMAZAKI, T. 2015. Protective Actions of 17 β -Estradiol and Progesterone on Oxidative Neuronal Injury Induced by Organometallic Compounds. *Oxidative Medicine and Cellular Longevity*, 2015, 343706.

JAILLON, S., BERTHENET, K. & GARLANDA, C. 2019. Sexual Dimorphism in Innate Immunity. *Clinical Reviews in Allergy & Immunology*, 56, 308-321.

JANEWAY, C. A. & MEDZHITOV, R. 2002. Innate Immune Recognition. *Annual Review of Immunology*, 20, 197-216.

JHAMAT, N., NIAZI, A., GUO, Y., CHANROT, M., IVANOVA, E., KELSEY, G., BONGCAM-RUDLOFF, E., ANDERSSON, G. & HUMBLOT, P. 2020. LPS-treatment of bovine endometrial epithelial cells causes differential DNA methylation of genes associated with inflammation and endometrial function. *BMC genomics* [Online], 21.

KANDLUR, A., SATYAMOORTHY, K. & GANGADHARAN, G. 2020. Oxidative Stress in Cognitive and Epigenetic Aging: A Retrospective Glance. *Frontiers in Molecular Neuroscience*, 13.

KARED, H., MARTELLI, S., NG, T. P., PENDER, S. L. & LARBI, A. 2016. CD57 in human natural killer cells and T-lymphocytes. *Cancer Immunol Immunother*, 65, 441-52.

KE, X., FU, Q., STERRETT, J., HILLARD, C. J., LANE, R. H. & MAJNIK, A. 2020. Adverse maternal environment and western diet impairs cognitive function and alters hippocampal glucocorticoid receptor promoter methylation in male mice. *Physiological Reports*, 8, e14407.

KELLMANN, M. & GÜNTHER, K. D. 2000. Changes in stress and recovery in elite rowers during preparation for the Olympic Games. *Med Sci Sports Exerc*, 32, 676-83.

KHALATBARI-SOLTANI, S., CUMMING, R. G., DELPIERRE, C. & KELLY-IRVING, M. 2020. Importance of collecting data on socioeconomic determinants from the early stage of the COVID-19 outbreak onwards. *J Epidemiol Community Health*.

KIM, P., EVANS, G. W., ANGSTADT, M., HO, S. S., SRIPADA, C. S., SWAIN, J. E., LIBERZON, I. & PHAN, K. L. 2013. Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. *Proc Natl Acad Sci U S A*, 110, 18442-7.

KIRKLAND, J. L. & TCHKONIA, T. 2017. Cellular Senescence: A Translational Perspective. *EBioMedicine*, 21, 21-28.

KOHLMEIER, J. E., MILLER, S. C., SMITH, J., LU, B., GERARD, C., COOKENHAM, T., ROBERTS, A. D. & WOODLAND, D. L. 2008. The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. *Immunity*, 29, 101-13.

KOLLMANN, T. R., KAMPMANN, B., MAZMANIAN, S. K., MARCHANT, A. & LEVY, O. 2017. Protecting the Newborn and Young Infant from Infectious Diseases: Lessons from Immune Ontogeny. *Immunity*, 46, 350-363.

KONKLE, A. T. M. & MCCARTHY, M. M. 2011. Developmental Time Course of Estradiol, Testosterone, and Dihydrotestosterone Levels in Discrete Regions of Male and Female Rat Brain. *Endocrinology*, 152, 223-235.

KOSS, K. J. & GUNNAR, M. R. 2018. Annual Research Review: Early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. *J Child Psychol Psychiatry*, 59, 327-346.

KUHLMAN, K. R., HORN, S. R., CHIANG, J. J. & BOWER, J. E. 2020. Early life adversity exposure and circulating markers of inflammation in children and adolescents: A systematic review and meta-analysis. *Brain, Behavior, and Immunity*, 86, 30-42.

KUNZ-EBRECHT, S. R., MOHAMED-ALI, V., FELDMAN, P. J., KIRSCHBAUM, C. & STEPTOE, A. 2003. Cortisol responses to mild psychological stress are inversely associated with proinflammatory cytokines. *Brain, Behavior, and Immunity*, 17, 373-383.

KURNIAWAN, H., FRANCHINA, D. G., GUERRA, L., BONETTI, L., BAGUET, L. S., GRUSDAT, M., SCHLICKER, L., HUNEWALD, O., DOSTERT, C., MERZ, M. P., BINSFELD, C., DUNCAN, G. S., FARINELLE, S., NONNENMACHER, Y., HAIGHT, J., DAS GUPTA, D., EWEN, A., TASKESSEN, R., HALDER, R., CHEN, Y., JÄGER, C., OLLERT, M., WILMES, P., VASILIOU, V., HARRIS, I. S., KNOBBE-TOMSEN, C. B., TURNER, J. D., MAK, T. W., LOHOFF, M., MEISER, J., HILLER, K. & BRENNER, D. 2020. Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function. *Cell Metab*, 31, 920-936.e7.

LANDRIGAN, P. J., SLY, J. L., RUCHIRAWAT, M., SILVA, E. R., HUO, X., DIAZ-BARRIGA, F., ZAR, H. J., KING, M., HA, E.-H., ASANTE, K. A., AHANCHIAN, H. & SLY, P. D. 2016. Health Consequences of Environmental Exposures: Changing Global Patterns of Exposure and Disease. *Annals of Global Health*, 82, 10-19.

LAPLANTE, D. P., BARR, R. G., BRUNET, A., GALBAUD DU FORT, G., MEANEY, M. L., SAUCIER, J. F., ZELAZO, P. R. & KING, S. 2004. Stress during pregnancy affects general intellectual and language functioning in human toddlers. *Pediatr Res*, 56, 400-10.

LAU, E. Y. M., CARROLL, E. C., CALLENDER, L. A., HOOD, G. A., BERRYMAN, V., PATTRICK, M., FINER, S., HITMAN, G. A., ACKLAND, G. L. & HENSON, S. M. 2019. Type 2 diabetes is associated with the accumulation of senescent T cells. *Clin Exp Immunol*, 197, 205-213.

LEE, J.-E., KWON, H.-J., CHOI, J., SEO, J.-S. & HAN, P.-L. 2020. Aging increases vulnerability to stress-induced depression via upregulation of NADPH oxidase in mice. *Communications Biology*, 3, 292.

LEWIS, C. R., BREITENSTEIN, R. S., HENDERSON, A., SOWARDS, H. A., PIRAS, I. S., HUENTELMAN, M. J., DOANE, L. D. & LEMERY-CHALFANT, K. 2020. Harsh Parenting Predicts Novel HPA Receptor Gene Methylation and NR3C1 Methylation Predicts Cortisol Daily Slope in Middle Childhood. *Cellular and Molecular Neurobiology*.

LIGUORI, I., RUSSO, G., CURCIO, F., BULLI, G., ARAN, L., DELLA-MORTE, D., GARGIULO, G., TESTA, G., CACCIATORE, F., BONADUCE, D. & ABETE, P. 2018. Oxidative stress, aging, and diseases. *Clinical interventions in aging*, 13, 757-772.

LISSAU, I. & SORENSEN, T. I. 1994. Parental neglect during childhood and increased risk of obesity in young adulthood. *Lancet*, 343, 324-7.

LIU, N. H., DAUMIT, G. L., DUA, T., AQUILA, R., CHARLSON, F., CUIJPERS, P., DRUSS, B., DUDEK, K., FREEMAN, M., FUJII, C., GAEBEL, W., HEGERL, U., LEVAV, I., MUNK LAURSEN, T., MA, H., MAJ, M., ELENA MEDINA-MORA, M., NORDENTOFT, M., PRABHAKARAN, D., PRATT, K., PRINCE, M., RANGASWAMY, T., SHIERS, D., SUSSER, E., THORNICROFT, G., WAHLBECK, K., FEKADU WASSIE, A., WHITEFORD, H. & SAXENA, S. 2017. Excess mortality in persons with severe mental disorders: a multilevel intervention framework and priorities for clinical practice, policy and research agendas. *World Psychiatry*, 16, 30-40.

LOPEZ-OTIN, C., BLASCO, M. A., PARTRIDGE, L., SERRANO, M. & KROEMER, G. 2013. The hallmarks of aging. *Cell*, 153, 1194-217.

LOPIZZO, N., MAZZELLI, M., ZONCA, V., BEGNI, V., D'APRILE, I., CATTANE, N., PARIANTE, C. M., RIVA, M. A. & CATTANEO, A. 2021. Alterations in 'inflammatory' pathways in the rat prefrontal cortex as early biological predictors of the long-term negative consequences of exposure to stress early in life. *Psychoneuroendocrinology*, 124, 104794.

LORENZATTI, A. J. & SERVATO, M. L. 2019. New evidence on the role of inflammation in CVD risk. *Curr Opin Cardiol*, 34, 418-423.

LOVALLO, W. R., ACHESON, A., VINCENT, A. S., SOROCO, K. H. & COHOON, A. J. 2018. Early life adversity diminishes the cortisol response to opioid blockade in women: Studies from the Family Health Patterns project. *PLoS one*, 13, e0205723-e0205723.

LUBY, J., BELDEN, A., BOTTERON, K., MARRUS, N., HARMS, M. P., BABB, C., NISHINO, T. & BARCH, D. 2013. The effects of poverty on childhood brain development: the mediating effect of caregiving and stressful life events. *JAMA Pediatr*, 167, 1135-42.

LUTZ, P.-E., CHAY, M.-A., PACIS, A., CHEN, G. G., AOUABED, Z., MAFFIOLETTI, E., THÉROUX, J.-F., GRENIER, J.-C., YANG, J., AGUIRRE, M., ERNST, C., REDENSEK, A., VAN KEMPEN, L. C., YALCIN, I., KWAN, T., MECHAWAR, N., PASTINEN, T. & TURECKI, G. 2020. Non-CG methylation and multiple epigenetic layers associate child abuse with immune and small GTPase dysregulation. *bioRxiv*, 501239.

LYNN, C. D., HOWELLS, M., HERDRICH, D., IOANE, J., HUDSON, D. & FITIAO, S. A. T. U. 2020. The evolutionary adaptation of body art: Tattooing as costly honest signaling of enhanced immune response in American Samoa. *American Journal of Human Biology*, 32, e23347.

MAHEU, F. S., DOZIER, M., GUYER, A. E., MANDELL, D., PELOSO, E., POETH, K., JENNESS, J., LAU, J. Y., ACKERMAN, J. P., PINE, D. S. & ERNST, M. 2010. A preliminary study of medial temporal lobe function in youths with a history of caregiver deprivation and emotional neglect. *Cogn Affect Behav Neurosci*, 10, 34-49.

MALINCZAK, C.-A., LUKACS, N. W. & FONSECA, W. 2020. Early-Life Respiratory Syncytial Virus Infection, Trained Immunity and Subsequent Pulmonary Diseases. *Viruses*, 12, 505.

MARTTILA, S., JYLHÄVÄ, J., KANANEN, L., HERVONEN, A., JYLHÄ, M. & HURME, M. 2014. Molecular mechanisms associated with the strength of the anti-CMV response in nonagenarians. *Immun Ageing*, 11, 2.

MAUER, J., DENSON, J. L. & BRÜNING, J. C. 2015. Versatile functions for IL-6 in metabolism and cancer. *Trends in Immunology*, 36, 92-101.

MC ELROY, S. & HEVEY, D. 2014. Relationship between adverse early experiences, stressors, psychosocial resources and wellbeing. *Child Abuse Negl*, 38, 65-75.

MCCAULEY, J., KERN, D. E., KOLODNER, K., DILL, L., SCHROEDER, A. F., DECHANT, H. K., RYDEN, J., DEROGATIS, L. R. & BASS, E. B. 1997. Clinical characteristics of women with a history of childhood abuse: unhealed wounds. *JAMA*, 277, 1362-8.

MCCLURE, S. M., LAIBSON, D. I., LOEWENSTEIN, G. & COHEN, J. D. 2004. Separate neural systems value immediate and delayed monetary rewards. *Science*, 306, 503-7.

MCCRORY, E. J., DE BRITO, S. A., KELLY, P. A., BIRD, G., SEBASTIAN, C. L., MECHELLI, A., SAMUEL, S. & VIDING, E. 2013. Amygdala activation in maltreated children during pre-attentive emotional processing. *Br J Psychiatry*, 202, 269-76.

MCLAUGHLIN, K. A., PEVERILL, M., GOLD, A. L., ALVES, S. & SHERIDAN, M. A. 2015. Child Maltreatment and Neural Systems Underlying Emotion Regulation. *J Am Acad Child Adolesc Psychiatry*, 54, 753-62.

MCNAMARA, M. P., SINGLETON, J. M., CADNEY, M. D., RUEGGER, P. M., BORNEMAN, J. & GARLAND, T. 2021. Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. *The Journal of Experimental Biology*, jeb.239699.

MEAKIN, C. J., MARTIN, E. M., SZILAGYI, J. T., NYLANDER-FRENCH, L. A. & FRY, R. C. 2019. Inorganic Arsenic as an Endocrine Disruptor: Modulation of the Glucocorticoid Receptor Pathway in Placental Cells via CpG Methylation. *Chemical Research in Toxicology*, 32, 493-499.

MEANEY, M. J. 2001. Maternal Care, Gene Expression, and the Transmission of Individual Differences in Stress Reactivity Across Generations. *Annual Review of Neuroscience*, 24, 1161-1192.

MERRICK MT, F. D., PORTS KA, ET AL. 2019. Vital Signs: Estimated Proportion of Adult Health Problems Attributable to Adverse Childhood Experiences and Implications for Prevention — 25 States, 2015–2017. *MMWR Morb Mortal Wkly Rep*.

MERRICK, M. T., FORD, D. C., PORTS, K. A. & GUINN, A. S. 2018. Prevalence of Adverse Childhood Experiences From the 2011-2014 Behavioral Risk Factor Surveillance System in 23 States. *JAMA Pediatrics*, 172, 1038-1044.

METZLER, M., MERRICK, M. T., KLEVENS, J., PORTS, K. A. & FORD, D. C. 2017. Adverse childhood experiences and life opportunities: Shifting the narrative. *Children and Youth Services Review*, 72, 141-149.

MIKHED, Y., DAIKER, A. & STEVEN, S. 2015. Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. *Int J Mol Sci*, 16, 15918-53.

MILLER, G., CHEN, E. & COLE, S. W. 2009. Health Psychology: Developing Biologically Plausible Models Linking the Social World and Physical Health. *Annual Review of Psychology*, 60, 501-524.

MILLER, G. E. & CHEN, E. 2010. Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. *Psychol Sci*, 21, 848-56.

MOORE, R. C., STRAUS, E. & CAMPBELL, L. M. 2020. Chapter 4 - Stress, mental health, and aging. In: HANTKE, N., ETKIN, A. & O'HARA, R. (eds.) *Handbook of Mental Health and Aging (Third Edition)*. San Diego: Academic Press.

MORRIS, A. S., SILK, J. S., STEINBERG, L., MYERS, S. S. & ROBINSON, L. R. 2007. The Role of the Family Context in the Development of Emotion Regulation. *Soc Dev*, 16, 361-388.

MUÑOZ-LORENTE, M. A., CANO-MARTIN, A. C. & BLASCO, M. A. 2019. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. *Nature Communications*, 10, 4723.

MURI, J. & KOPF, M. 2020. Redox regulation of immunometabolism. *Nat Rev Immunol*.

NACKA-ALEKSIĆ, M., PILIPOVIĆ, I., KOTUR-STEVULJEVIĆ, J., PETROVIĆ, R., SOPTA, J. & LEPOSAVIĆ, G. 2019. Sexual dimorphism in rat thymic involution: a correlation with thymic oxidative status and inflammation. *Biogerontology*, 20, 545-569.

NARDINI, C., MOREAU, J.-F., GENSOUS, N., RAVAIOLI, F., GARAGNANI, P. & BACALINI, M. G. 2018. The epigenetics of inflammaging: The contribution of age-related heterochromatin loss and locus-specific remodelling and the modulation by environmental stimuli. *Seminars in Immunology*, 40, 49-60.

NAUMOVA, O. Y., LEE, M., KOPOSOV, R., SZYF, M., DOZIER, M. & GRIGORENKO, E. L. 2012. Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. *Development and psychopathology*, 24, 143-155.

NETTIS, M. A., PARIANTE, C. M. & MONDELLI, V. 2020. Early-Life Adversity, Systemic Inflammation and Comorbid Physical and Psychiatric Illnesses of Adult Life. *Curr Top Behav Neurosci*, 44, 207-225.

NETTLE, D., ANDREWS, C., REICHERT, S., BEDFORD, T., KOLENDA, C., PARKER, C., MARTIN-RUIZ, C., MONAGHAN, P. & BATESON, M. 2017. Early-life adversity accelerates cellular ageing and affects adult inflammation: Experimental evidence from the European starling. *Scientific Reports*, 7, 40794.

NOURI, A., HASHEMZADEH, F., SOLTANI, A., SAGHAEI, E. & AMINI-KHOEI, H. 2020. Progesterone exerts antidepressant-like effect in a mouse model of maternal separation stress through mitigation of neuroinflammatory response and oxidative stress. *Pharm Biol*, 58, 64-71.

NUSSLOCK, R. & MILLER, G. E. 2016. Early-Life Adversity and Physical and Emotional Health Across the Lifespan: A Neuroimmune Network Hypothesis. *Biological Psychiatry*, 80, 23-32.

O'CONNOR, T. G. & RUTTER, M. 2000. Attachment disorder behavior following early severe deprivation: extension and longitudinal follow-up. English and Romanian Adoptees Study Team. *J Am Acad Child Adolesc Psychiatry*, 39, 703-12.

OBI, I. E. 2019. *Early Life Stress and Immune Responses in Adult Rat Kidneys*. The University of Alabama at Birmingham.

OGRODNIK, M., ZHU, Y., LANGHI, L. G. P., TCHKONIA, T., KRÜGER, P., FIELDER, E., VICTORELLI, S., RUSWHANDI, R. A., GIORGADZE, N., PIRTSKHALAVA, T., PODGORNI, O., ENIKOLOPOV, G., JOHNSON, K. O., XU, M., INMAN, C., PALMER, A. K., SCHAFER, M., WEIGL, M., IKENO, Y., BURNS, T. C., PASSOS, J. F., VON ZGLINICKI, T., KIRKLAND, J. L. & JURK, D. 2019. Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. *Cell Metabolism*, 29, 1061-1077.e8.

OKADA, H., KUHN, C., FEILLET, H. & BACH, J. F. 2010. The 'hygiene hypothesis' for autoimmune and allergic diseases: an update. *Clinical & Experimental Immunology*, 160, 1-9.

OSMANOVIC-THUNSTRÖM, A., MOSSELLO, E., ÅKERSTEDT, T., FRATIGLIONI, L. & WANG, H.-X. 2015. Do levels of perceived stress increase with increasing age after age 65? A population-based study. *Age and Ageing*, 44, 828-834.

PAGLIACCIO, D. & BARCH, D. M. 2016. Chapter 2 - Early Life Adversity and Risk for Depression: Alterations in Cortisol and Brain Structure and Function as Mediating Mechanisms. In: FRODL, T. (ed.) *Systems Neuroscience in Depression*. San Diego: Academic Press.

PANSARASA, O., PISTONO, C., DAVIN, A., BORDONI, M., MIMMI, M. C., GUAITA, A. & CEREDA, C. 2019. Altered immune system in frailty: Genetics and diet may influence inflammation. *Ageing Res Rev*, 54, 100935.

PATRICK, M. S., CHENG, N.-L., KIM, J., AN, J., DONG, F., YANG, Q., ZOU, I. & WENG, N.-P. 2019. Human T Cell Differentiation Negatively Regulates Telomerase Expression Resulting in Reduced Activation-Induced Proliferation and Survival. *Frontiers in Immunology*, 10.

PEREIRA, B. I., DEVINE, O. P., VUKMANOVIC-STEJIC, M., CHAMBERS, E. S., SUBRAMANIAN, P., PATEL, N., VIRASAMI, A., SEBIRE, N. J., KINSLER, V., VALDOVINOS, A., LESAUX, C. J., PASSOS, J. F., ANTONIOU, A., RUSTIN, M. H. A., CAMPISI, J. & AKBAR, A. N. 2019. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. *Nature Communications*, 10, 2387.

PESONEN, A. K., RAIKKONEN, K., FELDT, K., HEINONEN, K., OSMOND, C., PHILLIPS, D. I., BARKER, D. J., ERIKSSON, J. G. & KAJANTIE, E. 2010. Childhood separation experience predicts HPA axis hormonal responses in late adulthood: a natural experiment of World War II. *Psychoneuroendocrinology*, 35, 758-67.

PIERRE, W. C., LEGAULT, L.-M., LONDONO, I., MCGRAW, S. & LODYGENSKY, G. A. 2020. Alteration of the brain methylation landscape following postnatal inflammatory injury in rat pups. *The FASEB Journal*, 34, 432-445.

PORTER, A. M. & GOOLKASIAN, P. 2019. Video Games and Stress: How Stress Appraisals and Game Content Affect Cardiovascular and Emotion Outcomes. *Frontiers in psychology*, 10, 967-967.

PORTS, K. A., HOLMAN, D. M., GUINN, A. S., PAMPATI, S., DYER, K. E., MERRICK, M. T., LUNSFORD, N. B. & METZLER, M. 2019. Adverse Childhood Experiences and the Presence of Cancer Risk Factors in Adulthood: A Scoping Review of the Literature From 2005 to 2015. *Journal of Pediatric Nursing*, 44, 81-96.

POWER, C., THOMAS, C., LI, L. & HERTZMAN, C. 2012. Childhood psychosocial adversity and adult cortisol patterns. *British Journal of Psychiatry*, 201, 199-206.

RAZGONOVA, M. P., ZAKHARENKO, A. M., GOLOKHOVAST, K. S., THANASOULA, M., SARANDI, E., NIKOLOUZAKIS, K., FRAGKIADAKI, P., TSOUKALAS, D., SPANDIDOS, D. A. & TSATSAKIS, A. 2020. Telomerase and telomeres in aging theory and chronographic aging theory (Review). *Mol Med Rep*, 22, 1679-1694.

REBELO-MARQUES, A., DE SOUSA LAGES, A., ANDRADE, R., RIBEIRO, C. F., MOTA-PINTO, A., CARRILHO, F. & ESPREGUEIRA-MENDES, J. 2018. Aging Hallmarks: The Benefits of Physical Exercise. *Frontiers in Endocrinology*, 9.

REID, B. M., COE, C. L., DOYLE, C. M., SHEERAR, D., SLUKVINA, A., DONZELLA, B. & GUNNAR, M. R. 2019. Persistent skewing of the T-cell profile in adolescents adopted internationally from institutional care. *Brain Behav Immun*, 77, 168-177.

REID, B. M., HORNE, R., DONZELLA, B., SZAMOSI, J. C., COE, C. L., FOSTER, J. A. & GUNNAR, M. R. 2020. Microbiota-immune alterations in adolescents following early life adversity: A proof of concept study. *Dev Psychobiol*.

RENTSCHER, K. E., CARROLL, J. E. & MITCHELL, C. 2020. Psychosocial Stressors and Telomere Length: A Current Review of the Science. *Annual Review of Public Health*, 41, 223-245.

REPETTI, R. L., TAYLOR, S. E. & SEEMAN, T. E. 2002. Risky families: family social environments and the mental and physical health of offspring. *Psychol Bull*, 128, 330-66.

REUBEN, A., MOFFITT, T. E., CASPI, A., BELSKY, D. W., HARRINGTON, H., SCHROEDER, F., HOGAN, S., RAMRAKHA, S., POULTON, R. & DANESE, A. 2016. Lest we forget: comparing retrospective and prospective assessments of adverse childhood experiences in the prediction of adult health. *J Child Psychol Psychiatry*, 57, 1103-12.

RICE, D. & BARONE, S., JR. 2000. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. *Environ Health Perspect*, 108 Suppl 3, 511-33.

RIDOUT, K. K., LEVANDOWSKI, M., RIDOUT, S. J., GANTZ, L., GOONAN, K., PALERMO, D., PRICE, L. H. & TYRKA, A. R. 2018. Early life adversity and telomere length: a meta-analysis. *Molecular Psychiatry*, 23, 858-871.

RINCEL, M., AUBERT, P., CHEVALIER, J., GROHARD, P.-A., BASSO, L., MONCHAUX DE OLIVEIRA, C., HELBLING, J. C., LÉVY, É., CHEVALIER, G., LEBOYER, M., EBERL, G., LAYÉ, S., CAPURON, L., VERGNOLLE, N., NEUNLIST, M., BOUDIN, H., LEPAGE, P. & DARNAUDÉRY, M. 2019. Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. *Brain, Behavior, and Immunity*, 80, 179-192.

RODIER, F., COPPÉ, J.-P., PATIL, C. K., HOEIJMAKERS, W. A. M., MUÑOZ, D. P., RAZA, S. R., FREUND, A., CAMPEAU, E., DAVALOS, A. R. & CAMPISI, J. 2009. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. *Nature Cell Biology*, 11, 973-979.

ROMAGNANI, S. 1997. The Th1/Th2 paradigm. *Immunology Today*, 18, 263-266.

ROTHE, N., STEFFEN, J., PENZ, M., KIRSCHBAUM, C. & WALTHER, A. 2020. Examination of peripheral basal and reactive cortisol levels in major depressive disorder and the burnout syndrome: A systematic review. *Neuroscience & Biobehavioral Reviews*, 114, 232-270.

ROTHMAN, E. F., EDWARDS, E. M., HEEREN, T. & HINGSON, R. W. 2008. Adverse childhood experiences predict earlier age of drinking onset: results from a representative US sample of current or former drinkers. *Pediatrics*, 122, e298-304.

ROWSON, S. A., BEKHBAT, M., KELLY, S. D., BINDER, E. B., HYER, M. M., SHAW, G., BENT, M. A., HODES, G., THARP, G., WEINSHENKER, D., QIN, Z. & NEIGH, G. N. 2019. Chronic adolescent stress sex-specifically alters the hippocampal transcriptome in adulthood. *Neuropsychopharmacology*, 44, 1207-1215.

RUFER, N., ZIPPELIUS, A., BATARD, P., PITTEL, M. J., KURTH, I., CORTHEY, P., CEROTTINI, J. C., LEYVRAZ, S., ROOSNEK, E., NABHOLZ, M. & ROMERO, P. 2003. Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. *Blood*, 102, 1779-87.

RUTTER, M., O'CONNOR, T. G., ENGLISH & ROMANIAN ADOPTES STUDY, T. 2004. Are there biological programming effects for psychological development? Findings from a study of Romanian adoptees. *Dev Psychol*, 40, 81-94.

SADIGHI AKHA, A. A. 2018. Aging and the immune system: An overview. *J Immunol Methods*, 463, 21-26.

SANCHEZ, M. M. 2006. The impact of early adverse care on HPA axis development: Nonhuman primate models. *Hormones and Behavior*, 50, 623-631.

SANSONI, P., VESCOVINI, R., FAGNONI, F. F., AKBAR, A., ARENS, R., CHIU, Y. L., CIČIN-ŠAIN, L., DECHANET-MERVILLE, J., DERHOVANESSIAN, E., FERRANDO-MARTINEZ, S., FRANCESCHI, C., FRASCA, D., FULÖP, T., FURMAN, D., GKRAJNA-KLOTAS, E., GOODRUM, F., GRUBECK-LOEBENSTEIN, B., HURME, M., KERN, F., LILLERI, D., LÓPEZ-BOTET, M., MAIER, A. B., MARANDU, T., MARCHANT, A., MATHEÏ, C., MOSS, P., MUNTASELL, A., REMMERSWAAL, E. B., RIDDELL, N. E., ROTHE, K., SAUCE, D., SHIN, E. C., SIMANEK, A. M., SMITHEY, M. J., SÖDERBERG-NAUCLÉR, C., SOLANA, R., THOMAS, P. G., VAN LIER, R., PAWELEC, G. & NIKOLICH-ZUGICH, J. 2014. New advances in CMV and immunosenescence. *Exp Gerontol*, 55, 54-62.

SAPOLSKY, R. M., KREY, L. C. & MCEWEN, B. S. 1986. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. *Endocr Rev*, 7, 284-301.

SCHMEER, K. K., FORD, J. L. & BROWNING, C. R. 2019. Early childhood family instability and immune system dysregulation in adolescence. *Psychoneuroendocrinology*, 102, 189-195.

SCHNEPER, L. M., BROOKS-GUNN, J., NOTTERMAN, D. A. & SUOMI, S. J. 2016. Early-Life Experiences and Telomere Length in Adult Rhesus Monkeys: An Exploratory Study. *Psychosom Med*, 78, 1066-1071.

SCHREIER, H. M., ROY, L. B., FRIMER, L. T. & CHEN, E. 2014. Family chaos and adolescent inflammatory profiles: the moderating role of socioeconomic status. *Psychosom Med*, 76, 460-7.

SELYE, H. 1936. A Syndrome produced by Diverse Nocuous Agents. *Nature*, 138, 32-32.

SELYE, H. 1956. *The stress of life*, New York, NY: McGraw-Hill.

SEMBA, R. D., MARGOLICK, J. B., LENG, S., WALSTON, J., RICKS, M. O. & FRIED, L. P. 2005. T cell subsets and mortality in older community-dwelling women. *Exp Gerontol*, 40, 81-7.

SHALEV, I., ENTRINGER, S., WADHWA, P. D., WOLKOWITZ, O. M., PUTERMAN, E., LIN, J. & EPEL, E. S. 2013. Stress and telomere biology: A lifespan perspective. *Psychoneuroendocrinology*, 38, 1835-1842.

SHALEV, I., HASTINGS, W. J., ETZEL, L., ISRAEL, S., RUSSELL, M. A., HENDRICK, K. A., ZINOBILE, M. & SIEGEL, S. R. 2020. Investigating the impact of early-life adversity on physiological, immune, and gene expression responses to acute stress: A pilot feasibility study. *PLOS ONE*, 15, e0221310.

SHANAHAN, F. & SHEEHAN, D. 2016. Microbial contributions to chronic inflammation and metabolic disease. *Curr Opin Clin Nutr Metab Care*, 19, 257-62.

SHEVACH, E. M. 2000. Regulatory T Cells in Autoimmunity. *Annual Review of Immunology*, 18, 423-449.

SHORT, A. K., MARAS, P. M., PHAM, A. L., IVY, A. S. & BARAM, T. Z. 2020. Blocking CRH receptors in adults mitigates age-related memory impairments provoked by early-life adversity. *Neuropsychopharmacology*, 45, 515-523.

SIEGEL, K., LEKAS, H.-M., RAMJOHN, D., SCHRIMSHAW, E. & VANDEVANTER, N. 2014. Early Life Circumstances as Contributors to HIV Infection. *Social Work in Health Care*, 53, 969-993.

SILVA, R. C., MAFFIOLETTI, E., GENNARELLI, M., BAUNE, B. T. & MINELLI, A. 2021. Biological correlates of early life stressful events in major depressive disorder. *Psychoneuroendocrinology*, 125, 105103.

SIMMEN-JANEVSKA, K., FORSTMEIER, S., KRAMMER, S. & MAERCKER, A. 2015. Does Trauma Impair Self-Control? Differences in Delaying Gratification Between Former Indentured Child Laborers and Nontraumatized Controls. *Violence Vict*, 30, 1068-81.

SINGER, K. & LUMENG, C. N. 2017. The initiation of metabolic inflammation in childhood obesity. *The Journal of Clinical Investigation*, 127, 65-73.

SINGH, P. B. & NEWMAN, A. G. 2018. Age reprogramming and epigenetic rejuvenation. *Epigenetics Chromatin*, 11, 73.

SITTIPO, P., LOBIONDA, S., LEE, Y. K. & MAYNARD, C. L. 2018. Intestinal microbiota and the immune system in metabolic diseases. *J Microbiol*, 56, 154-162.

SOARES, A. R., GILDOWIE, K. R., HONEYCUTT, J. A. & BRENHOUSE, H. C. 2020. Region-specific effects of maternal separation on oxidative stress accumulation in parvalbumin neurons of male and female rats. *Behav Brain Res*, 388, 112658.

SOYSAL, P., STUBBS, B., LUCATO, P., LUCHINI, C., SOLMI, M., PELUSO, R., SERGI, G., ISIK, A. T., MANZATO, E., MAGGI, S., MAGGIO, M., PRINA, A. M., COSCO, T. D., WU, Y. T. & VERONESE, N. 2016. Inflammation and frailty in the elderly: A systematic review and meta-analysis. *Ageing Res Rev*, 31, 1-8.

STARAS, S. A., DOLLARD, S. C., RADFORD, K. W., FLANDERS, W. D., PASS, R. F. & CANNON, M. J. 2006. Seroprevalence of cytomegalovirus infection in the United States, 1988-1994. *Clin Infect Dis*, 43, 1143-51.

STEIN, Z., SUSSER, M., SAENGER, G. & MAROLLA, F. 1975. *Famine and human development: The Dutch hunger winter of 1944-1945*, New York, NY, US, Oxford University Press.

STILES, J. & JERNIGAN, T. L. 2010. The basics of brain development. *Neuropsychology Review*, 20, 327-348.

STONAWSKI, V., FREY, S., GOLUB, Y., ROHLEDER, N., KRIEBEL, J., GOECKE, T. W., FASCHING, P. A., BECKMANN, M. W., KORNHUBER, J., KRATZ, O., MOLL, G. H., HEINRICH, H. & EICHLER, A. 2019. Associations of prenatal depressive symptoms with DNA methylation of HPA axis-related genes and diurnal cortisol profiles in primary school-aged children. *Development and Psychopathology*, 31, 419-431.

STRACHAN, D. P. 1989. Hay fever, hygiene, and household size. *BMJ (Clinical research ed.)*, 299, 1259-1260.

SU, S., JIMENEZ, M. P., ROBERTS, C. T. & LOUCKS, E. B. 2015. The role of adverse childhood experiences in cardiovascular disease risk: a review with emphasis on plausible mechanisms. *Curr Cardiol Rep*, 17, 88.

SUDHEIMER, K. D., O'HARA, R., SPIEGEL, D., POWERS, B., KRAEMER, H. C., NERI, E., WEINER, M., HARDAN, A., HALLMAYER, J. & DHABHAR, F. S. 2014. Cortisol, cytokines, and hippocampal volume interactions in the elderly. *Front Aging Neurosci*, 6, 153.

SUN, Y., FANG, J., WAN, Y., SU, P. & TAO, F. 2020. Association of Early-Life Adversity With Measures of Accelerated Biological Aging Among Children in China. *JAMA Network Open*, 3, e2013588-e2013588.

SURACHMAN, A., DAW, J., BRAY, B. C., ALEXANDER, L. M., COE, C. L. & ALMEIDA, D. M. 2020. Childhood socioeconomic status, comorbidity of chronic kidney disease risk factors, and kidney function among adults in the midlife in the United States (MIDUS) study. *BMC Nephrol*, 21, 188.

SUSSER, E. S. & LIN, S. P. 1992. Schizophrenia After Prenatal Exposure to the Dutch Hunger Winter of 1944-1945. *Archives of General Psychiatry*, 49, 983-988.

SZESZKO, P. R., LEHRNER, A. & YEHUDA, R. 2018. Glucocorticoids and Hippocampal Structure and Function in PTSD. *Harv Rev Psychiatry*, 26, 142-157.

TABIBIAN-KEISSAR, H., HAZANOV, L., SCHIBY, G., ROSENTHAL, N., RAKOVSKY, A., MICHAELI, M., SHAHAF, G. L., PICKMAN, Y., ROSENBLATT, K., MELAMED, D., DUNN-WALTERS, D., MEHR, R. & BARSHACK, I. 2016.

Aging affects B-cell antigen receptor repertoire diversity in primary and secondary lymphoid tissues. *Eur J Immunol*, 46, 480-92.

TAMBURINI, S., SHEN, N., WU, H. C. & CLEMENTE, J. C. 2016. The microbiome in early life: implications for health outcomes. *Nature Medicine*, 22, 713-722.

TEDONE, E., HUANG, E., O'HARA, R., BATTEN, K., LUDLOW, A. T., LAI, T.-P., AROSIO, B., MARI, D., WRIGHT, W. E. & SHAY, J. W. 2019. Telomere length and telomerase activity in T cells are biomarkers of high-performing centenarians. *Aging Cell*, 18, e12859.

TETELOSHVILI, N., DEKKEMA, G., BOOTS, A. M., HEERINGA, P., JELLEMA, P., DE JONG, D., TERPSTRA, M., BROUWER, E., PAWELEC, G., KOK, K., VAN DEN BERG, A., KLUIVER, J. & KROESEN, B. J. 2018. Involvement of MicroRNAs in the Aging-Related Decline of CD28 Expression by Human T Cells. *Front Immunol*, 9, 1400.

THIRUCHELVAM, U., MAYBIN, J. A., ARMSTRONG, G. M., GREAVES, E., SAUNDERS, P. T. K. & CRITCHLEY, H. O. D. 2016. Cortisol regulates the paracrine action of macrophages by inducing vasoactive gene expression in endometrial cells. *Journal of Leukocyte Biology*, 99, 1165-1171.

THOMAS, R., WANG, W. & SU, D.-M. 2020. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. *Immunity & Ageing*, 17, 2.

TONEGAWA, S. 1983. Somatic generation of antibody diversity. *Nature*, 302, 575-581.

TOURNEUR, E. & CHASSIN, C. 2013. Neonatal Immune Adaptation of the Gut and Its Role during Infections. *Clinical and Developmental Immunology*, 2013, 270301.

TREGONING, J. S. & SCHWARZE, J. 2010. Respiratory Viral Infections in Infants: Causes, Clinical Symptoms, Virology, and Immunology. *Clinical Microbiology Reviews*, 23, 74.

TSEREL, L., KOLDE, R., LIMBACH, M., TRETYAKOV, K., KASELA, S., KISAND, K., SAARE, M., VILO, J., METSPALU, A., MILANI, L. & PETERSON, P. 2015. Age-related profiling of DNA methylation in CD8+ T cells reveals changes in immune response and transcriptional regulator genes. *Scientific Reports*, 5, 13107.

TURNER, J. D. 2018. Holistic, personalized, immunology? The effects of socioeconomic status on the transcriptional milieu of immune cells. *Pediatr Pulmonol*.

TURNER, J. D., D'AMBROSIO, C., VÖGELE, C. & DIEWALD, M. 2020. Twin Research in the Post-Genomic Era: Dissecting the Pathophysiological Effects of Adversity and the Social Environment. *International Journal of Molecular Sciences*, 21, 3142.

TYRKA, A. R., PARADE, S. H., PRICE, L. H., KAO, H. T., PORTON, B., PHILIP, N. S., WELCH, E. S. & CARPENTER, L. L. 2016. Alterations of Mitochondrial DNA Copy Number and Telomere Length With Early Adversity and Psychopathology. *Biol Psychiatry*, 79, 78-86.

UREN WEBSTER, T. M., RODRIGUEZ-BARRETO, D., MARTIN, S. A. M., VAN OOSTERHOUT, C., OROZCO-TERWENGEL, P., CABLE, J., HAMILTON, A., GARCIA DE LEANIZ, C. & CONSUEGRA, S. 2018. Contrasting effects of acute and chronic stress on the transcriptome, epigenome, and immune response of Atlantic salmon. *Epigenetics*, 13, 1191-1207.

VALBUENA PEREZ, J. V., LINNENBERGER, R., DEMBEK, A., BRUSCOLI, S., RICCARDI, C., SCHULZ, M. H., MEYER, M. R., KIEMER, A. K. & HOPPSTÄDTER, J. 2020. Altered glucocorticoid metabolism represents a feature of macroph-aging. *Aging Cell*, 19, e13156.

VAN IJZENDOORN, M. H., PALACIOS, J., SONUGA-BARKE, E. J., GUNNAR, M. R., VORRIA, P., MCCALL, R. B., LEMARE, L., BAKERMAN-KRANENBURG, M. J., DOBROVA-KROL, N. A. & JUFFER, F. 2011. Children in Institutional Care: Delayed Development and Resilience. *Monogr Soc Res Child Dev*, 76, 8-30.

VATNER, S. F., ZHANG, J., OYDANICH, M., BERKMAN, T., NAFTALOVICH, R. & VATNER, D. E. 2020. Healthful aging mediated by inhibition of oxidative stress. *Ageing Res Rev*, 64, 101194.

VENKATARAMAN, K., KHURANA, S. & TAI, T. C. 2013. Oxidative stress in aging--matters of the heart and mind. *Int J Mol Sci*, 14, 17897-925.

VENTURA, M. T., CASCiaro, M., GANGEMI, S. & BUQUICCHIO, R. 2017. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. *Clinical and molecular allergy : CMA*, 15, 21-21.

VERHOEVEN, J. E., VAN OPPEN, P., PUTERMAN, E., ELZINGA, B. & PENNINX, B. W. 2015. The Association of Early and Recent Psychosocial Life Stress With Leukocyte Telomere Length. *Psychosom Med*, 77, 882-91.

VOELLMIN, A., WINZELER, K., HUG, E., WILHELM, F. H., SCHAEFER, V., GAAB, J., LA MARCA, R., PRUESSNER, J. C. & BADER, K. 2015. Blunted endocrine and cardiovascular reactivity in young healthy women reporting a history of childhood adversity. *Psychoneuroendocrinology*, 51, 58-67.

WALKER, D. J., ZIMMER, C., LARRIVA, M., HEALY, S. D. & SPENCER, K. A. 2019a. Early-life adversity programs long-term cytokine and microglia expression within the HPA axis in female Japanese quail. *The Journal of Experimental Biology*, 222, jeb187039.

WALKER, K. A., WALSTON, J., GOTTESMAN, R. F., KUCHARSKA-NEWTON, A., PALTA, P. & WINDHAM, B. G. 2019b. Midlife Systemic Inflammation Is Associated With Frailty in Later Life: The ARIC Study. *J Gerontol A Biol Sci Med Sci*, 74, 343-349.

WALLACE, R. G., TWOMEY, L. C., CUSTAUD, M. A., TURNER, J. D., MOYNA, N., CUMMINS, P. M. & MURPHY, R. P. 2018. The role of epigenetics in cardiovascular health and ageing: A focus on physical activity and nutrition. *Mech Ageing Dev*, 174, 76-85.

WANG, C., O'BRIEN, K. M., XU, Z., SANDLER, D. P., TAYLOR, J. A. & WEINBERG, C. R. 2020. Long-term ambient fine particulate matter and DNA methylation in inflammation pathways: results from the Sister Study. *Epigenetics*, 15, 524-535.

WHISMAN, M. A. & RICHARDSON, E. D. 2017. Depressive Symptoms and Salivary Telomere Length in a Probability Sample of Middle-Aged and Older Adults. *Psychosom Med*, 79, 234-242.

WHO. 2016. *Global Health Observatory data repository — deaths attributable to the environment — data by country* [Online]. <http://apps.who.int/gho/data/node.main.162?lang=en>: World Health Organization Available: <http://apps.who.int/gho/data/node.main.162?lang=en> [Accessed 20.11.2019].

WILLIAMSON, D. F., THOMPSON, T. J., ANDA, R. F., DIETZ, W. H. & FELITTI, V. 2002. Body weight and obesity in adults and self-reported abuse in childhood. *Int J Obes Relat Metab Disord*, 26, 1075-82.

WOLKOWITZ, O. M. 2018. Accelerated biological aging in serious mental disorders. *World Psychiatry*, 17, 144-145.

WOLKOWITZ, O. M., REUS, V. I. & MELLON, S. H. 2011. Of sound mind and body: depression, disease, and accelerated aging. *Dialogues Clin Neurosci*, 13, 25-39.

WORLD HEALTH ORGANIZATION. 2018, Feb 05. *Ageing and health* [Online]. www.who.int. Available: <https://www.who.int/news-room/fact-sheets/detail/ageing-and-health> [Accessed 2020].

XIE, Y., MEIJER, A. H. & SCHAAF, M. J. M. 2020. Glucocorticoid treatment exacerbates mycobacterial infection by reducing the phagocytic capacity of macrophages Glucocorticoids and zebrafish TB. *bioRxiv*, 2020.06.19.161653.

YAO, X., HAMILTON, R. G., WENG, N. P., XUE, Q. L., BREAM, J. H., LI, H., TIAN, J., YEH, S. H., RESNICK, B., XU, X., WALSTON, J., FRIED, L. P. & LENG, S. X. 2011. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. *Vaccine*, 29, 5015-21.

YARDENI, T., TANES, C. E., BITTINGER, K., MATTEI, L. M., SCHAEFER, P. M., SINGH, L. N., WU, G. D., MURDOCK, D. G. & WALLACE, D. C. 2019. Host mitochondria influence gut microbiome diversity: A role for ROS. *Science Signaling*, 12, eaaw3159.

YI, H. S., KIM, S. Y., KIM, J. T., LEE, Y. S., MOON, J. S., KIM, M., KANG, Y. E., JOUNG, K. H., LEE, J. H., KIM, H. J., CHUN, K., SHONG, M. & KU, B. J. 2019. T-cell senescence contributes to abnormal glucose homeostasis in humans and mice. *Cell Death Dis*, 10, 249.

ZHENG, D., LIWINSKI, T. & ELINAV, E. 2020. Interaction between microbiota and immunity in health and disease. *Cell Research*, 30, 492-506.

ZITKOVSKY, E. K., DANIELS, T. E. & TYRKA, A. R. 2021. Mitochondria and Early-Life Adversity. *Mitochondrion*.

ZUO, L., PRATHER, E. R., STETSKIV, M., GARRISON, D. E., MEADE, J. R., PEACE, T. I. & ZHOU, T. 2019. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. *International journal of molecular sciences*, 20, 4472.