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INVARIANT PSEUDOPARALLEL SUBMANIFOLDS OF
AN ALMOST a-COSYMPLECTIC (&, u,v)-SPACE

MEHMET ATCEKEN

ABSTRACT. In this article, the geometry of pseudoparallel, Ricci-
generalized pseudoparallel and 2-Ricci-generalized pseudoparallel in-
variant submanifolds of an almost a-cosymplectic (k, i, v) space has
been searched under the some conditions. We also give some charac-
terizations for such submanifolds. I think that obtained new results
contribute to differential geometry.

1. INTRODUCTION

An almost contact manifold is odd-dimensional manifold M2+ which
carries a field ¢ of endomorphism of the tangent space, a vector field &,
called characteristic, and a 1-form n-satistying

where I denote the identity mapping of tangent space of each point at
M. From (1), it follows

(2) ¢ =0, nop =0 rank(¢) = 2n.

An almost contact manifold M?"+1(¢,&,n) is said to be normal if the
tensor field N = [¢, ¢] + 2dn @ £ = 0, where [¢, ¢] denote the Nijenhuis
tensor field of ¢. It is well known that any almost contact manifold

M 2ntl(p ¢ n) has a Riemannian metric such that

(3) 9(0X,9Y) = g(X,Y) = n(X)n(Y),

for any vector fields X,Y on M [5].  Such metric ¢ is called compati-
ble metric and manifold A72+1 together with the structure (¢,7,¢,g) is
called an almost contact metric manifold and denoted by M ntl(g.n, € g).
The 2-form ® of M2"+1(¢, 1, &, g) is defined (X, Y) = g(¢X,Y) is called
the fundamental form of M2+1(¢,n,€,g). If an almost contact metric
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manifold such that n and ® are closed, that is, dn = d® = 0, then it
called cosymplectic manifold[6].

An almost a-cosymplectic manifold for any real number o which is
defined as

(4) dn =0, d®=2anA .

A normal almost a-cosymplectic manifold is said to be a-cosymplectic
manifold[4].

It is well known that on a contact metric manifold M ntl(p € m,g),
the tensor h, defined by 2h = L¢¢, the following equalities satisfies;

(5) Vx& = —pX — ¢hX, hé+ ¢h =0, trh=tréh =0,hE =0,

where V is the Levi-Civita connection on M2"+1[3].

In [4], the authors studied the almost a-cosymplectic (k, i, v)-spaces
under different conditions and gave an example in dimension 3.

Going beyond generalized (k, p1)-spaces, in [2], the notation of (k, u, v/)-
contact metric manifold was introduced as follows;

(6) R(X,Y ), =n(Y)[kI + ph + voh| X — n(X)[kI + ph + vohlY,

for some smooth functions «, y and v on M 2ntl - where R denotes the

Riemannian curvature tensor of M?"*! and X,Y are vector fields on
M2n+1

They proved that this type of manifold is intrinsically related to the
harmonicity of the Reeb vector on contact metric 3-manifolds. Some au-
thors have studied manifolds satisfying condition (6) but a non-contact
metric structure. In this connection, P. Dacko and Z. Olszak defined an
almost cosymplectic (k, i, v)-spaces as an almost cosymplectic manifold
that satisfies (6), but with &, and v functions varying exclusively in
the direction of £ in[6]. Later examples have been given for this type

manifold|7].

Pseudoparallel submanifolds have been studied in different structures
and working on[8, 9, 10]. In the present paper, we generalize the ambi-
ent space and research cases of existence or non-existence pseudoparallel
submanifold in a-cosymplectic (k, u, v)-space.
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Proposition 1.1. Given M%“(qﬁ, £,1n,9) an almost a-cosymplectic (K, p, v)-

space, then

(7) W= (k+a®)¢%

(8) (k) = 2(k+a®)(v—2a)

(9) REX)Y = w[g(X,Y)—n(Y)X]+ plg(hX,Y)E — n(Y)hX]
(10) + v[g(dhX,Y)E —n(Y)phX]

(1) (Vx9)Y = g(agX +hX,Y)E—n(Y)(apX +hX)

(12) Vx{ = —a¢’X — ¢hX,

for all vector fields X,Y on M2"+1[5).

Now, let M be an immersed submanifold of an almost a-cosymplectic
(k, u, v)-space M**1. By T'(TM) and I'(T+M), we denote the tangent

and normal subspaces of M in M. Then the Gauss and Weingarten
formulae are, respectively, given by

(13) VxY = VxY +0(X,Y),
and
(14) ViV = —AyX + VLV,

for all XY € I'(TM) and V € I'(T+M), where V and V* are the
induced connections on M and T'(T+M) and o and A are called the
second fundamental form and shape operator of M, respectively, I'(T'M)
denote the set differentiable vector fields on M. They are related by

The covariant derivative of o is defined by
(16) (Vxo)(Y,Z) =Vio(Y,Z) —a(VxY, Z) — o(Y,VxZ),

for all X,Y, Z € I'(TM). If Vo = 0, then submanifold is said to be its
second fundamental form is parallel.

By R, we denote the Riemannian curvature tensor of the submanifold
M, we have the following Gauss equation
R(X,Y)Z = R(X,Y)Z+ Asx.0)Y — Asiyn X + (Vx0)(Y, Z)
(17) — (Vyo)(X,2),

forall X,Y, Z e I'(TM).
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For a (0, k)-type tensor field 7', k£ > 1 and a (0, 2)-type tensor field A
on a Riemannian manifold (M, g), Q(A,T')-tensor field is defined by

QA T) (X1, Xo, s Xi: X, Y) = —T((X AsY)X1, Xoy oo, X)oo
(18) (X0, Xy X1, (X A4 Y)XR),
for all X1, X5, ..., X, X, Y € T(TM)[8], where
(19) (X A4 Y)Z = A(Y, Z2)X — A(X, Z)Y.

Definition 1.2. A submanifold of a Riemannian manifold (M,g) is
said to be pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudopar-
allel and 2-Ricci-generalized pseudoparallel if

R-o and Q(g,0)
R-Vo and Q(g,Vo)
R-o and Q(S,0)
R-Vo and Q(S,Vo)
are linearly dependent, respectively[10].

Equivalently, this cases can be explained by the following way;

(20) R-o = LiQ(g,0),
(21) R-Vo = L,Q(g,Vo),
(22) R0 = L3Q(5,0),
(23) R-Vo = L,Q(S,Vo),

where the functions Ly, Ly, L3 and Ly, are, respectively, defined on

My ={z € M : o) # gx)}, Mo = {z € M : Vo(z) # g(z)},
Ms={x e M:Sx)#o(x)} and My ={x € M : S(x) # Vo(z)} and
S denote the Ricci tensor of M.

Particularly, if L; = O(resp. Ls = 0), the submanifold is said to be
semiparallel(resp. 2-semiparallel)[9].

2. INVARIANT SUBMANIFOLDS OF AN ALMOST a-COSYMPLECTIC
(K, 4, V) SPACE

Now, let M2"+1(¢,§, n,g) be an almost « cosymplectic (k, i, v)-space

and M an immersed submanifold of M2"*1. If ¢(T,M) C T,M, for
each point at x € M, then M is said to be an invariant submanifold of

M2+1(¢, € n, g) with respect to ¢. After we will easily to see that an
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invariant submanifold with respect to ¢ is also invariant with respect to

h.

Proposition 2.1. Let M be an invariant submanifold of an almost a-
cosymplectic (K, i, v)-space M*" 1 (p, €, n,g) such that & tangent to M.

Then the following equalities hold on M ;

RX,Y)E = sln(YV)X =n(X)Y]+ puln(Y)hX —n(X)hY]
) + v[n(Y)phX —n(X)phY]

25)  (Vx9)Y = g(apX +hX,Y){—n(Y)(apX + hX)

) Vxé = —ap*X — phX

27) ¢o(X)Y) = o(¢X,Y) =0(X,9Y), o(X,£) =0,

where V, 0 and R denote the induced Levi-Civita connection on M, the
shape operator and Riemannian curvature tensor of M, respectively.

Proof. We will not give the proof as it is a result of direct calculations. [

In the rest of this paper, we will assume that M is an invariant sub-

manifold of an a-cosymplectic (k, y1, v)-space M?*"*1(p,€,n,g). In this
case, from (5), we have

(28) whX = —hpX,
forall X € I'(T'M), that is, M is also invariant with respect to the tensor
field h.

We need the following theorem to quarante for the second fundamental
form o is not always identically zero.

Theorem 2.2. Let M be an invariant submanifold of an almost «-
cosymplectic (k, p, v)-space M*" T (¢,€,m, g). Then the second fundamen-
tal form o of M s parallel M is totally geodesic provided k # 0.

Proof. Let us suppose that o is parallel. From (16), we have
(29) (Vxo)(Y, Z) = Vxo(Y,Z) — o(VxY,Z) —o(Y,VxZ) =0,

for all vector fields X,Y and Z on M?"*!. Setting Z = ¢ in (29) and
taking into account (26) and (27), we have

o(Vx&,Y) =o(ap*X +¢hX,Y) =0,
that is,
(30) —ao(X,Y) 4+ ¢o(hX,Y) =0.
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Writing hX of X in (30) and by using (7) and (27), we obtain
—ao(hX,Y) + ¢o(h*X,Y) =0,

(31) ac(hX,Y) — (a®+kK)po(X,Y) =0.
From (30) and (31), we conclude that xo(X,Y) = 0, which proves our
assertion. 0

Theorem 2.3. Let M be an invariant pseudoparallel submanifold of
an almost o cosymplectic (k, u,v)-space M* (¢, & n,g). Then M is
either totally geodesic submanifold or the function Ly satisfies L; =

kF A/ (V2 — p2)(k+a?), pv(k +a?) = 0.

Proof. We suppose that M is an invariant pseudoparallel submanifold
of an almost a-cosymplectic M*" (¢, £, n, g)-space. Then there exists a
function L; on M such that

(R(X,Y)-0)(U,V) = LiQ(g,0)(U,V; X,Y),
for all vector fields X, Y, U,V on M. By means of (18) and (20), we have
RJ—<X7 Y>U(U7 V) - O-(R(Xa Y)U7 V) - U<U7 R(Xv Y)V)

(32) = —Li{o(X N Y)UV)+ U (XN Y)V)}
Here taking Y = U = £ in (32) and taking account Proposition 2.1, we
obtain
RHX,§a(&V) — o(R(X, €& V) —a(& R(X, V)

= —Li{o((X Ay §)&, V) +0(& (X AV}

= —Li{o(X =n(X)& V) +a(§,n(V)X = g(X,V))},
that is,
(33) o(R(X,§)E, V) = Lio(X, V).
By means of Proposition 2.1 and (6), we conclude that
(34) (L — r)o(X,V) = po(hX,V)+vo(¢hX,V).
If hX is substituted for X at (34) and making use of (7) and (27), we
obtain

(35) (L —k)o(hX,V) = —(k+ ®)[uc(X,V) +voa(X,V)].
From (34) and (35), we reach at
(L= 1% + (5 + %) (2 — )]0 (X, V) = —2uw(k + 0?)or (X, V).
This yields to
(Li — k) + (k+®)(? =) =0, uv(k +a*) =0 or o =0.
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This completes of the proof. O
From Theorem 2.3, we have following Corollary.

Corollary 2.4. Let M be an invariant submanifold of an almost «-
cosymplectic (K, u,v)-space M*" (¢, &,m,g). Then M is semiparallel if
and only if M is totally geodesic.

Theorem 2.5. Let M be an invariant submanifold of an almost «-
cosymplectic (k, u,v)-space M*" (¢, € n,g). If M is a 2-pseudoparallel
submanifold, then M s either totally geodesic or the functions o, Kk, i, v
and Ly satisfy Ly = k F /(k + a2)(v? — v2) and pv(k + a?) = 0.

Proof. Let us suppose that M is an 2-pseudoparallel submanifold of
(k, p, v)-space M*"T1(p, & n,g). Then by means of (21), there exists a
function Ly such that

(R(X,Y)-Vo)(U,V,Z) = LyQ(g,Vo)(U,V, Z; X,Y),
for all vector fields X,Y, Z, U,V on M. This implies that
R X, V) (Vuo)(V,Z2) = (Vexywo)(V,Z) — (Vuo)(R(X,Y)V, Z)
— (Vo) (V. R(X,Y)Z) = —Lo{(Vixryvywo)(V. 2)
(36) + (Vuo) (X Ag YV, Z) + (Vo) (V, (X A Y)Z)}
Taking X = Z = ¢ in (36), we can infer
REEY)(Vuo)(Vi€) = (Vaerwo)(V.€) = (Vo) (RE Y)V;€)
— (Vuo)(V, R, Y)E) = ~Lo{(Vien,vyw0) (V. )
(37) + (Vo) (6 Ay VIV.€) + (Vuo) (V. (€ Ay YO}
Next, we will calculation each of this statements, respectively. Taking
account of (16), (26) and (27), we obtain
RYEY)(Vuo)(V.€) = RHEY{Vio(V.€) — a(VuV.€) —a(Vut, V)}
= —R(£Y)o(Vut,V)
= —RH(&Y)o(—ag?U — ¢ohU, V)

(38) = —aR*(§Y)o(U,V) + R*(£,Y)¢o(hU, V.
On the other hand, from (6), (17) and (27), by a direct calculation, we
can infer

R(EX)Y = &l[g(Y, X)§ —n(Y)X] + plg(hY, X)§ —n(Y)hX]
(39) + v[g(X, ¢hY ) —n(Y)phX].
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Thus

(Vreywo)(V.€) = Vierwo(V,€) = o(VaeywVi€) — o(Vaeyiwé, V)
= —0(Vreyvé, V)

o(ad® R(E,Y)U + $hR(E,Y)U, V)
—ao(R(E YU, V) 4+ a(ohR(E,Y)U, V)
—ao(=kn(U)Y — un(U)hY —vn(U)phY, V)
o(=kn(U)phY — un(U)ph*Y — vn(U)phehY, V')
arn(U)o(V,Y) + apn(U)o(RY, V)
avn(U)o(¢hY, V) — kn(U)o(4hY,V)

(ke + (U)o (¢Y, V) + v(k + a®)o(V,Y).

+ + I+

(40)
Furthermore, by using (26) and ()39, we have

(Vuo)(R(EY)V,€) = Vio(REY)V,E) — a(VuR(EY)V,E)

— o(Vu& R(EY)V)

= —o(Vu&, R(EY)V) = o(ag?U + ¢hU, R(E,Y)V)
ao(¢*U, R(&,Y)V) + a(ohU, R(£,Y)V)
—ao(U,—kn(V)Y — un(V)RY — vn(V)phY)

+ o(ohU, —kn(V)Y — un(V)RY —vn(V)¢hY)
= rkan(V)o(U,Y) + pan(V)o(hY,U)
+ avn(V)o (U, phY) — kn(V)o(ohU,Y)
— un(V)o(ohU,hY ) + vn(V)o(hU, hY)
= /fom( Vo (U,Y) + pan(V)o(hY,U)
+ avn(V)o (U, ¢hY) — kn(V)o(¢hU,Y)
(41) + uls +a®)n(V)o(eU,Y) — v(k +a®)n(V)o(U,Y).

The fourth term gives us
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On the other hand, by view of (19), (26) and (27), we obtain

(Vienyyoo) (V. €)

Vé/\gY)UO—(Vv §) — O—(V(ﬁ/\gY)UV) £)

- oV, V(gAgY)Uf)

o (V,a¢?(§ Ay Y)U + ¢h(E Ay Y)U)
—ao(V.(§ Ny Y)U) + (V. (A Y)U)
an(U)o(Y,V) —n(U)o (oY, V),

(43)
and

(Vuo)(EAYIV,E) = VEa((EAgYIV.6) = a(Vi(§ Ay YV, E)
— (N Y)V. V)
= o(aad®U + ¢hU, g(Y,V)E —n(V)Y)

(44) = an(V)o(Y,U) =n(V)o(Y, phU).
Finally,
(Voo)(Vin(Y)E=Y) = =(Vuo)(V,Y) + (Vuo)(V,n(Y)E)

= —(Vuo)(V.Y) + Vo (V,n(Y)E)
— a(VuVin(Y)§) —a(V,Vyn(Y)§E)
= —(Vuo)(V.Y) = a(V,Uln(Y)J¢ + n(Y)ViE)
= —(Vuo)(V,Y) 4+ n(V)o(ad?U + ¢hU, V)
= —(Vyo)(V.Y) —an(Y)o(U,V)
(45) + p(Y)o(shU, V).

Substituting (38), (40), (41),(42), (43), (44) and (45) into (37), we react
at

— aRY(&Y)o(U,V) + RH(E,Y)po (U, V) — kan(U)o(V,Y)

— pan(U)o(V,hY) —van(U)o(V,phY') + kn(U)o(V, phY)

— pu(k+a®)n0)a(pY, V) = vk + a®)n(U)o(V,Y) — kan(V)a(U,Y)
— aun(V)o(hY,U) — avn(V)o(U, ohY) + kn(V)o(ohU,Y)

— p(k+ (Vo (eU,Y) + v(k + o*)n(V)a(U,Y)

— (Vuo)(Vik[(Y)E = Y] = phY —vohY) = —Lo{an(U)o(V,Y)

— (U)o (ohY, V) + an(V)o(Y,U) = n(V)o(Y, ohU)

= (Vuo)(V,Y) —an(Y)o(U, V) +n(Y)o(ohU,V)}.
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Here, taking V' = £ in the last equality and using (27), we conclude that
Lo{aa(UY) — o(Y,0hU) — (Vyo)(Y,€)} = kao(U,Y) + auc (U, hY)
+ ava(U, phY) — kao(phY,U) + u(k + a?)o(oU,Y)
— v(k+a)o(UY)

(46) + (Vuo) (& kn(Y)E = Y] — phY — vghY),
where

(Vuo)(Y,€) = —o(Vu&,Y) =o(ad®U + ¢hlU,Y)
(47) = —ao(U,Y)+ ¢o(hU,Y)
and

(Vuo) (& kn(Y)E = Y] — phY — vghY)

(Vb Aln(Y)E — Y] - phY — wghY)
o(ag®U + ohU, k[n(Y)E = Y] — puhY — vohY)

= —ao(U,knY) —=Y]—puhY —vohY)

+ o(ohU,k[n(Y), = Y] — uhY — vohY)

= kao(U,Y) + auo(hY,U) + ava(phY,U)
(48)  — ko(ohU,Y) + pu(k + a*)o (U, Y) — v(k + o*)o(U,Y).
Substituting (47) and (48) into (46), we get

[aLy — ko + v(k + a®)]o(U,Y) + [k — Ly — av]ga(hU,Y)

(49) — p(k+a*eo(U,Y) — auo(hU,Y) = 0.
If AU is written instead of U in (49) and using (7), (12) and (27), we

have
[aLy — ka + v(k+a®)]o(hU,Y) — (k+ a?)[k — Ly — av]éa(U,Y)
(50) — (e +a®)go(hU,Y) + ap(k + o*)o(U,Y) = 0.

From (49) and (50), for k # 0, we obtain
[(Ly — K)* — (k+ o) (v — 1?)]o(U,Y) + 2uv(k + a?)pa(U,Y) = 0.

Since the vectors ¢po(U,Y') and o(U,Y') are orthogonal, we conclude that
M is a totally geodesic or

pr(k+a?) = 0,

and

Ly =k F /(K +a2)(v? — 12).
Thus the proof is completed. U


https://doi.org/10.20944/preprints202103.0241.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2021 d0i:10.20944/preprints202103.0241.v1

INVARIANT PSEUDOPARALLEL SUBMANIFOLDS ... 11

From Theorem 2.5, we have following corollary.

Corollary 2.6. Let M be an invariant submanifold of an almost «-
cosymplectic (K, u,v)-space M*" T (p & n,g). Then M is 2-semiparallel
if and only if M is totally geodesic.

Theorem 2.7. Let M be an invariant Ricci-generalized pseudoparal-
lel submanifold an almost a-cosymplectic (k, u, v)-space M*""(p, € n, g)
Then M is either totally geodesic submanifold or the functions Ls, Kk, u, v
and « satisfy the condition

1

1
Ly = o (1 F —/ (5 + a?)(v? —,u2) , vk +a?) =0.
n K

Proof. We suppose that M is an invariant Ricci-generalized pseudopar-
allel. Then there exists a function L3 on M such that

(R(X,Y) 0)(U,V) = LsQ(S,0)(U, V; X, Y),
for all vector fields X,Y, U,V on M. This implies that
R (X, Y)o(U,V) — o(R(X,Y)U,V)—0o(URX,Y)V)
= —Li{oc((X As YU, V) +0o(U, (X As Y)V)}
= —L3{o(X,V)S(U,Y)—o(Y,V)S(X,U)
(51) + o(U,X)S(Y,V)—0o(U,Y)S(X,V)}.

By a direct calculation, we obtain
(52) S(X,€) = 2nmn(X).

Taking U = ¢ in (51)and by view means of (6), (27) and (52), we have
o(R(X,Y),, V) =2nkLy{c(X,V)—0c(Y,V)},
that is,
2nkLo{o(X, V) —o(Y,V)} = o(kn(Y)X —n(X)Y]+ pln(Y)hX
— (X)RY ]+ v[n(Y)ohX — n(X)ohY], V).
This yields to
(53) k(2nLs — 1)o(X,V) = po(hX, V) + voo(hX, V).
If hX is written instead of X and using (7) and (27), we get
(54)k(2nLs — 1)o(hX,V) = —(k + a*){uc(X,V) — vea(X,V)}.
From (53) and (54), we can derive
{k*(2nLs; —1)* + (k+a®)(p® —1*)}o(X,V)
= —2uv(k+a®)pa(X,V).
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Since o and ¢o are orthogonal vectors, it follows that
K*(2nLs — 1) + (k + o) (u®> — v*) =0, uv(s+a?) =0,
which proves our assertions. O

Theorem 2.8. Let M be an invariant 2-Ricci-generalized pseudoparal-
lel submanifold an almost-ai-cosymplectic (k, u, v)-space M*"T(p, & n, g)
Then M 1is either totally geodesic submanifold or the function Ly satisfies

1

L=~ (1; —/ (k5 + a?)(v? /ﬂ), pv(k +a?) = 0.

Proof. Given M is an invariant 2-Ricci-generalized pseudoparallel sub-
manifold, we have

(R(X,Y) - Vo)(U,V,W) = LiQ(S.Vo)(U,V,W; X,Y)
for all vector fields X, Y, U, V., W on M. This means that

RHXV)(Voo) (VW) = (Vo) (VW) = (Vo) (R(X, V)V, W)
— (Vuo)(V, R(X,Y)W) = —L{(Vixagvypo) (V, W)
(55) + (Vo) (X AsY)V, W) + (Vuo)(V,(X As Y)W)}.

Taking X =V = ¢ in (55), we obtain

RYHEY) (Vo) (&, W) — (Vaeywo)(E W) — (Vuo)(R(EY)EW)
— (Vuo)(&,REY)W) = —L4{<V nsyIv) (& W)
(56) + (Vuo)(EAsY)EW) + (Vyo)(E (EAs Y)W)}.

Now, let’s calculate each of these terms separately. Firstly,

RL(&: Y){_O-(VU& W)} - RL(& Y)O'(O[QSQU + ¢hU7 W)
(57) = —aR(EY)o(U W)+ R, Y)o(ohU, W).
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Making use of (7), (26) and (39), can we calculate second term as

~0(Vreywé W) = ao(¢*R(E,Y)U, W)

o (¢hV gy, W)

akn(U)o(Y,W) + apn(U)o(hY, W)
avn(U)o(phY, W)

KUY (BhY, W) + (s + a)(U)o (67, )
vi(U)o(¢hohY, W)

akn(U)o(Y,W) + apn(U)o(hY, W)
avn(U)o(phY, W)

k(U)o (¢hY, W) + pn(U)(k + a*)a(¢Y, W)
vk +a®)n(U)a(Y, W),

(Vreyywo)(W,€)

L A I i |

(58)

(Vuo)(R(E,Y)E, W)
(59) = (Vyo)(s[n(Y)E — Y] — phY — vphY, W).

In the same way,

(Vuo)(REYI)W,E) = —o(Vu&, REY)W) = o(ag™U + ¢hU, R(E,Y)W)
arn(W)a(U,Y) + aun(W)o(hY, W)

avn(W)o (U, phY") — kn(W)o(ohU,Y)
un(W)a(¢ph*U,Y) + vn(W)o (h*U,Y)
arn(W)o(U,Y) + aun(W)a(hY, W)

avn(W)o (U, phY) — kn(W)o(ohU,Y)

(o + 2o (60, Y (s + o) (W)a (U, V),

+ + 0+

<
axY
>
195)
3
d
S
—
{h
|

= —0(Viensvio§, W)

o(ad*(§ As Y)U + oh(E As YU, W)
—ao(S(Y,U)E — S(E,U)Y, W)
o(oh[S(Y,U)§ — S, U)Y],W)
2nkn(U){ac(Y,W) — a(phY, W)},

I+
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(Vo) (€ As Y)E, W)

—o(Vu(Ens Y)E, W)

(Vuo)(S(E,Y)E = S(E,€Y, W)
2n{(Vya)(kn(Y)E, W) — (Vyo) (kY, W)}
2n{—a(Ulsn(Y)) + kn(Y)Vye, W)

— (Vyo)(rY, W)}
= 2n{—rkan(Y)o(U,W) + kn(Y)o(phU, W)
(62 — (Vuo)(sY, W)}
Finally
(Vuo)(& (€ AsYIW) = —o(Vug, (EAs V)W)
— o(ad?U + 6hU, S(Y, W)E — S(&, W)Y)
(63) = 2nkan(W)o(U,Y) — 2nkn(W)o(¢hU,Y).

Consequently, substituting (57), (58), (59), (60), (61), (62) and (63) into
(56), we reach at

— aRY&EY)o(U W) + RH(E,Y)o(ohU, W) — arn(U)a (Y, W)

— aun(U)o(hY, W) — avn(U)a(ohY, W) + kn(U)a(phY, W)

— (U)K + a®)o(¢Y, W) + v(k + a®)n(U)a (Y, W)

— (Vuo)(K[(Y)E = Y] = phY — vohY, W) — ann(W)o(U,Y)

— aun(W)a(hY, W) — avn(W)a(U, 6hY) + rn(W)a(6hU, Y )

(s + 2o (GU, Y) + (s + a2)n(W)o(U, Y)
—Ly(2nkan(U)o (Y, W) — 2nkn(U)o(¢hY, W) — 2nkan(Y )o (U, W)
2nkn(Y)o(phU, W) —2n(Vyo)(kY, W) + 2narxn(W)o (U, Y)
2nkn(W)o(¢hU,Y)}.

I

In the last equality, putting W = &, we have

2nL{(Vyo)(kY,€) — kao(U,Y)+ ko(ohU,Y)} = v(k + ®)o(U,Y)
— ako(U,Y) — auo(hY,U) — ava(phU,Y)
— ki + a2 ($UY) + ko (6hU,Y)

(64) (Vo) (Y)E — V] — uhY — vhY,€),

—0(Vyé, kY) = a(agp?U + ¢hU, kY)
—ako(U,Y) + ko(¢hU,Y),
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and
(Vo) (ln(Y )E = Y] = phY — vhY, €)
— (Vb kp(Y)E — Y] — phY — wghY)
= 0(ag’U + ¢hU, k[n(Y)E — Y] — uhY — vohY)
= aro(U,Y) + auo(U,hY) + avo(U, phY')
(66) — Kko(ohU,Y) + u(k + a*)o(oU,Y) — v(k + o*)o(U,Y).
(65) and (66) are put in (64), we conclude that

[ka(2nlys =1) + (k+0a®)(v—pe)|o(U,Y)
(67) — [k(2nLy — )¢ + a(vé + p)]o(hU,Y) = 0.

Here hU is written instead of U and taking into account of (7) and (27),
we have

[ka(@2nLy —1) + (k+a®) (v — po)|o(hU,Y)
(68) + [k(2nLy — )¢+ a(ve + p)](k + o) (U, Y) = 0.
From (67) and (68), it follows for x # 0,
[K*(2nLy — 1) + (u* — ) (k + aD)]o (U, V) + 2uv(k + o®)¢o(U, V) = 0.

This proves our assertion. U
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