INVARIANT PSEUDOPARALLEL SUBMANIFOLDS OF AN ALMOST α -COSYMPLECTIC (κ, μ, ν) -SPACE

MEHMET ATÇEKEN

ABSTRACT. In this article, the geometry of pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci-generalized pseudoparallel invariant submanifolds of an almost α -cosymplectic (κ, μ, ν) space has been searched under the some conditions. We also give some characterizations for such submanifolds. I think that obtained new results contribute to differential geometry.

1. Introduction

An almost contact manifold is odd-dimensional manifold \widetilde{M}^{2n+1} which carries a field ϕ of endomorphism of the tangent space, a vector field ξ , called characteristic, and a 1-form η -satisfying

(1)
$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1,$$

where I denote the identity mapping of tangent space of each point at M. From (1), it follows

(2)
$$\phi \xi = 0, \quad \eta \circ \phi = 0 \quad rank(\phi) = 2n.$$

An almost contact manifold $\widetilde{M}^{2n+1}(\phi,\xi,\eta)$ is said to be normal if the tensor field $N=[\phi,\phi]+2d\eta\otimes\xi=0$, where $[\phi,\phi]$ denote the Nijenhuis tensor field of ϕ . It is well known that any almost contact manifold $\widetilde{M}^{2n+1}(\phi,\xi,\eta)$ has a Riemannian metric such that

(3)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

for any vector fields X, Y on $\widetilde{M}[5]$. Such metric g is called compatible metric and manifold \widetilde{M}^{2n+1} together with the structure (ϕ, η, ξ, g) is called an almost contact metric manifold and denoted by $\widetilde{M}^{2n+1}(\phi, \eta, \xi, g)$. The 2-form Φ of $\widetilde{M}^{2n+1}(\phi, \eta, \xi, g)$ is defined $\Phi(X, Y) = g(\phi X, Y)$ is called the fundamental form of $\widetilde{M}^{2n+1}(\phi, \eta, \xi, g)$. If an almost contact metric

¹⁹⁹¹ Mathematics Subject Classification. 53C15; 53C44, 53D10.

Key words and phrases. (κ, μ, ν) -space, pseudoparallel, Ricci-generalized pseudoparallel and 2-pseudoparallel submanifolds.

manifold such that η and Φ are closed, that is, $d\eta = d\Phi = 0$, then it called cosymplectic manifold[6].

An almost α -cosymplectic manifold for any real number α which is defined as

(4)
$$d\eta = 0, \quad d\Phi = 2\alpha\eta \wedge \Phi.$$

A normal almost α -cosymplectic manifold is said to be α -cosymplectic manifold[4].

It is well known that on a contact metric manifold $\widetilde{M}^{2n+1}(\phi, \xi, \eta, g)$, the tensor h, defined by $2h = L_{\xi}\phi$, the following equalities satisfies;

(5)
$$\widetilde{\nabla}_X \xi = -\phi X - \phi h X$$
, $h\phi + \phi h = 0$, $trh = tr\phi h = 0, h\xi = 0$,

where $\widetilde{\nabla}$ is the Levi-Civita connection on $\widetilde{M}^{2n+1}[3]$.

In [4], the authors studied the almost α -cosymplectic (κ, μ, ν) -spaces under different conditions and gave an example in dimension 3.

Going beyond generalized (κ, μ) -spaces, in [2], the notation of (κ, μ, ν) -contact metric manifold was introduced as follows;

(6)
$$\widetilde{R}(X,Y)\xi = \eta(Y)[\kappa I + \mu h + \nu \phi h]X - \eta(X)[\kappa I + \mu h + \nu \phi h]Y$$
,

for some smooth functions κ, μ and ν on \widetilde{M}^{2n+1} , where \widetilde{R} denotes the Riemannian curvature tensor of \widetilde{M}^{2n+1} and X, Y are vector fields on \widetilde{M}^{2n+1} .

They proved that this type of manifold is intrinsically related to the harmonicity of the Reeb vector on contact metric 3-manifolds. Some authors have studied manifolds satisfying condition (6) but a non-contact metric structure. In this connection, P. Dacko and Z. Olszak defined an almost cosymplectic (κ, μ, ν)-spaces as an almost cosymplectic manifold that satisfies (6), but with κ, μ and ν functions varying exclusively in the direction of ξ in [6]. Later examples have been given for this type manifold [7].

Pseudoparallel submanifolds have been studied in different structures and working on [8, 9, 10]. In the present paper, we generalize the ambient space and research cases of existence or non-existence pseudoparallel submanifold in α -cosymplectic (κ, μ, ν) -space.

Proposition 1.1. Given $\widetilde{M}^{2n+1}(\phi, \xi, \eta, g)$ an almost α -cosymplectic (κ, μ, ν) -space, then

$$(7) h^2 = (\kappa + \alpha^2)\phi^2,$$

(8)
$$\xi(\kappa) = 2(\kappa + \alpha^2)(\nu - 2\alpha)$$

(9)
$$\widetilde{R}(\xi, X)Y = \kappa[g(X, Y)\xi - \eta(Y)X] + \mu[g(hX, Y)\xi - \eta(Y)hX]$$

(10)
$$+ \nu[g(\phi hX, Y)\xi - \eta(Y)\phi hX]$$

$$(11) \ (\widetilde{\nabla}_X \phi) Y = g(\alpha \phi X + hX, Y) \xi - \eta(Y) (\alpha \phi X + hX)$$

$$(12) \qquad \widetilde{\nabla}_X \xi = -\alpha \phi^2 X - \phi h X,$$

for all vector fields X, Y on $\widetilde{M}^{2n+1}[5]$.

Now, let M be an immersed submanifold of an almost α -cosymplectic (κ, μ, ν) -space \widetilde{M}^{2n+1} . By $\Gamma(TM)$ and $\Gamma(T^{\perp}M)$, we denote the tangent and normal subspaces of M in \widetilde{M} . Then the Gauss and Weingarten formulae are, respectively, given by

(13)
$$\widetilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y),$$

and

(14)
$$\widetilde{\nabla}_X V = -A_V X + \nabla_X^{\perp} V,$$

for all $X,Y \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$, where ∇ and ∇^{\perp} are the induced connections on M and $\Gamma(T^{\perp}M)$ and σ and A are called the second fundamental form and shape operator of M, respectively, $\Gamma(TM)$ denote the set differentiable vector fields on M. They are related by

(15)
$$g(A_V X, Y) = g(\sigma(X, Y), V).$$

The covariant derivative of σ is defined by

(16)
$$(\widetilde{\nabla}_X \sigma)(Y, Z) = \nabla_X^{\perp} \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z),$$

for all $X, Y, Z \in \Gamma(TM)$. If $\nabla \sigma = 0$, then submanifold is said to be its second fundamental form is parallel.

By R, we denote the Riemannian curvature tensor of the submanifold M, we have the following Gauss equation

$$\widetilde{R}(X,Y)Z = R(X,Y)Z + A_{\sigma(X,Z)}Y - A_{\sigma(Y,Z)}X + (\widetilde{\nabla}_X \sigma)(Y,Z)$$

$$(17) - (\widetilde{\nabla}_Y \sigma)(X,Z),$$

for all $X, Y, Z \in \Gamma(TM)$.

MEHMET ATÇEKEN

For a (0, k)-type tensor field $T, k \ge 1$ and a (0, 2)-type tensor field A on a Riemannian manifold (M, g), Q(A, T)-tensor field is defined by

$$Q(A,T)(X_1, X_2, ..., X_k; X, Y) = -T((X \wedge_A Y)X_1, X_2, ..., X_k)...$$

$$- T(X_1, X_2, ... X_{k-1}, (X \wedge_A Y)X_k),$$

for all $X_1, X_2, ..., X_k, X, Y \in \Gamma(TM)[8]$, where

$$(19) (X \wedge_A Y)Z = A(Y,Z)X - A(X,Z)Y.$$

Definition 1.2. A submanifold of a Riemannian manifold (M,g) is said to be pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci-generalized pseudoparallel if

$$\widetilde{R} \cdot \sigma \quad and \quad Q(g, \sigma)$$

$$\widetilde{R} \cdot \widetilde{\nabla} \sigma \quad and \quad Q(g, \widetilde{\nabla} \sigma)$$

$$\widetilde{R} \cdot \sigma \quad and \quad Q(S, \sigma)$$

$$\widetilde{R} \cdot \widetilde{\nabla} \sigma \quad and \quad Q(S, \widetilde{\nabla} \sigma)$$

are linearly dependent, respectively[10].

Equivalently, this cases can be explained by the following way;

$$(20) \widetilde{R} \cdot \sigma = L_1 Q(g, \sigma),$$

(21)
$$\widetilde{R} \cdot \widetilde{\nabla} \sigma = L_2 Q(g, \widetilde{\nabla} \sigma),$$

(22)
$$\widetilde{R} \cdot \sigma = L_3 Q(S, \sigma),$$

(23)
$$\widetilde{R} \cdot \widetilde{\nabla} \sigma = L_4 Q(S, \widetilde{\nabla} \sigma),$$

where the functions L_1, L_2, L_3 and L_4 are, respectively, defined on $M_1 = \{x \in M : \sigma(x) \neq g(x)\}, M_2 = \{x \in M : \widetilde{\nabla}\sigma(x) \neq g(x)\}, M_3 = \{x \in M : S(x) \neq \sigma(x)\} \text{ and } M_4 = \{x \in M : S(x) \neq \widetilde{\nabla}\sigma(x)\} \text{ and } S \text{ denote the Ricci tensor of } M.$

Particularly, if $L_1 = 0$ (resp. $L_2 = 0$), the submanifold is said to be semiparallel (resp. 2-semiparallel)[9].

2. Invariant Submanifolds of an almost α -cosymplectic (κ, μ, ν) Space

Now, let $\widetilde{M}^{2n+1}(\phi,\xi,\eta,g)$ be an almost α cosymplectic (κ,μ,ν) -space and M an immersed submanifold of \widetilde{M}^{2n+1} . If $\phi(T_xM)\subseteq T_xM$, for each point at $x\in M$, then M is said to be an invariant submanifold of $\widetilde{M}^{2n+1}(\phi,\xi,\eta,g)$ with respect to ϕ . After we will easily to see that an

4

invariant submanifold with respect to ϕ is also invariant with respect to h.

Proposition 2.1. Let M be an invariant submanifold of an almost α -cosymplectic (κ, μ, ν) -space $\widetilde{M}^{2n+1}(\phi, \xi, \eta, g)$ such that ξ tangent to M. Then the following equalities hold on M;

$$R(X,Y)\xi = \kappa[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY]$$

$$(24) + \nu[\eta(Y)\phi hX - \eta(X)\phi hY]$$

$$(25) \quad (\nabla_X \phi)Y = g(\alpha \phi X + hX, Y)\xi - \eta(Y)(\alpha \phi X + hX)$$

(26)
$$\nabla_X \xi = -\alpha \phi^2 X - \phi h X$$

(27)
$$\phi \sigma(X,Y) = \sigma(\phi X,Y) = \sigma(X,\phi Y), \quad \sigma(X,\xi) = 0,$$

where ∇ , σ and R denote the induced Levi-Civita connection on M, the shape operator and Riemannian curvature tensor of M, respectively.

Proof. We will not give the proof as it is a result of direct calculations. \Box

In the rest of this paper, we will assume that M is an invariant submanifold of an α -cosymplectic (κ, μ, ν) -space $\widetilde{M}^{2n+1}(\varphi, \xi, \eta, g)$. In this case, from (5), we have

$$(28) \varphi hX = -h\varphi X,$$

for all $X \in \Gamma(TM)$, that is, M is also invariant with respect to the tensor field h.

We need the following theorem to quarante for the second fundamental form σ is not always identically zero.

Theorem 2.2. Let M be an invariant submanifold of an almost α cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. Then the second fundamental form σ of M is parallel M is totally geodesic provided $\kappa \neq 0$.

Proof. Let us suppose that σ is parallel. From (16), we have

$$(29) (\widetilde{\nabla}_X \sigma)(Y, Z) = \nabla_X^{\perp} \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z) = 0,$$

for all vector fields X, Y and Z on M^{2n+1} . Setting $Z = \xi$ in (29) and taking into account (26) and (27), we have

$$\sigma(\nabla_X \xi, Y) = \sigma(\alpha \phi^2 X + \phi h X, Y) = 0,$$

that is,

(30)
$$-\alpha\sigma(X,Y) + \phi\sigma(hX,Y) = 0.$$

Writing hX of X in (30) and by using (7) and (27), we obtain

$$-\alpha \sigma(hX, Y) + \phi \sigma(h^2X, Y) = 0,$$

$$\alpha \sigma(hX, Y) - (\alpha^2 + \kappa)\phi \sigma(X, Y) = 0.$$

From (30) and (31), we conclude that $\kappa \sigma(X, Y) = 0$, which proves our assertion.

Theorem 2.3. Let M be an invariant pseudoparallel submanifold of an almost α cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. Then M is either totally geodesic submanifold or the function L_1 satisfies $L_1 = \kappa \mp \sqrt{(\nu^2 - \mu^2)(\kappa + \alpha^2)}$, $\mu\nu(\kappa + \alpha^2) = 0$.

Proof. We suppose that M is an invariant pseudoparallel submanifold of an almost α -cosymplectic $M^{2n+1}(\phi, \xi, \eta, g)$ -space. Then there exists a function L_1 on M such that

$$(R(X,Y)\cdot\sigma)(U,V)=L_1Q(g,\sigma)(U,V;X,Y),$$

for all vector fields X, Y, U, V on M. By means of (18) and (20), we have

$$R^{\perp}(X,Y)\sigma(U,V) - \sigma(R(X,Y)U,V) - \sigma(U,R(X,Y)V)$$

$$= -L_1\{\sigma((X \wedge_g Y)U,V) + \sigma(U,(X \wedge_g Y)V)\}.$$

Here taking $Y = U = \xi$ in (32) and taking account Proposition 2.1, we obtain

$$R^{\perp}(X,\xi)\sigma(\xi,V) - \sigma(R(X,\xi)\xi,V) - \sigma(\xi,R(X,\xi)V) = -L_{1}\{\sigma((X \wedge_{g} \xi)\xi,V) + \sigma(\xi,(X \wedge_{g} \xi)V)\} = -L_{1}\{\sigma(X - \eta(X)\xi,V) + \sigma(\xi,\eta(V)X - g(X,V)\xi)\},$$

that is,

(33)
$$\sigma(R(X,\xi)\xi,V) = L_1\sigma(X,V).$$

By means of Proposition 2.1 and (6), we conclude that

(34)
$$(L_1 - \kappa)\sigma(X, V) = \mu\sigma(hX, V) + \nu\sigma(\phi hX, V).$$

If hX is substituted for X at (34) and making use of (7) and (27), we obtain

(35)
$$(L - \kappa)\sigma(hX, V) = -(\kappa + \alpha^2)[\mu\sigma(X, V) + \nu\phi\sigma(X, V)].$$

From (34) and (35), we reach at

$$[(L_1 - \kappa)^2 + (\kappa + \alpha^2)(\mu^2 - \nu^2)]\sigma(X, V) = -2\mu\nu(\kappa + \alpha^2)\phi\sigma(X, V).$$

This yields to

$$(L_1 - \kappa)^2 + (\kappa + \alpha^2)(\mu^2 - \nu^2) = 0, \mu\nu(\kappa + \alpha^2) = 0 \text{ or } \sigma = 0.$$

This completes of the proof.

From Theorem 2.3, we have following Corollary.

Corollary 2.4. Let M be an invariant submanifold of an almost α cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. Then M is semiparallel if
and only if M is totally geodesic.

Theorem 2.5. Let M be an invariant submanifold of an almost α -cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. If M is a 2-pseudoparallel submanifold, then M is either totally geodesic or the functions α, κ, μ, ν and L_2 satisfy $L_2 = \kappa \mp \sqrt{(\kappa + \alpha^2)(\nu^2 - \nu^2)}$ and $\mu\nu(\kappa + \alpha^2) = 0$.

Proof. Let us suppose that M is an 2-pseudoparallel submanifold of (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. Then by means of (21), there exists a function L_2 such that

$$(\widetilde{R}(X,Y)\cdot\widetilde{\nabla}\sigma)(U,V,Z)=L_2Q(g,\widetilde{\nabla}\sigma)(U,V,Z;X,Y),$$

for all vector fields X, Y, Z, U, V on M. This implies that

$$R^{\perp}(X,Y)(\nabla_{U}\sigma)(V,Z) - (\widetilde{\nabla}_{R(X,Y)U}\sigma)(V,Z) - (\widetilde{\nabla}_{U}\sigma)(R(X,Y)V,Z) - (\widetilde{\nabla}_{U}\sigma)(V,R(X,Y)Z) = -L_{2}\{(\widetilde{\nabla}_{(X\wedge_{g}Y)U}\sigma)(V,Z) + (\widetilde{\nabla}_{U}\sigma)((X\wedge_{g}Y)V,Z) + (\widetilde{\nabla}_{U}\sigma)(V,(X\wedge_{g}Y)Z)\}.$$

Taking $X = Z = \xi$ in (36), we can infer

$$R^{\perp}(\xi,Y)(\widetilde{\nabla}_{U}\sigma)(V,\xi) - (\widetilde{\nabla}_{R(\xi,Y)U}\sigma)(V,\xi) - (\nabla_{U}\sigma)(R(\xi,Y)V,\xi) - (\widetilde{\nabla}_{U}\sigma)(V,R(\xi,Y)\xi) = -L_{2}\{(\widetilde{\nabla}_{(\xi\wedge_{g}Y)U}\sigma)(V,\xi) + (\widetilde{\nabla}_{U}\sigma)((\xi\wedge_{g}Y)V,\xi) + (\widetilde{\nabla}_{U}\sigma)(V,(\xi\wedge_{g}Y)\xi)\}.$$
(37)

Next, we will calculation each of this statements, respectively. Taking account of (16), (26) and (27), we obtain

$$R^{\perp}(\xi,Y)(\widetilde{\nabla}_{U}\sigma)(V,\xi) = R^{\perp}(\xi,Y)\{\nabla_{U}^{\perp}\sigma(V,\xi) - \sigma(\nabla_{U}V,\xi) - \sigma(\nabla_{U}\xi,V)\}$$

$$= -R^{\perp}(\xi,Y)\sigma(\nabla_{U}\xi,V)$$

$$= -R^{\perp}(\xi,Y)\sigma(-\alpha\phi^{2}U - \phi hU,V)$$

$$= -\alpha R^{\perp}(\xi,Y)\sigma(U,V) + R^{\perp}(\xi,Y)\phi\sigma(hU,V).$$
(38)

On the other hand, from (6), (17) and (27), by a direct calculation, we can infer

$$R(\xi, X)Y = \kappa[g(Y, X)\xi - \eta(Y)X] + \mu[g(hY, X)\xi - \eta(Y)hX]$$

$$+ \nu[g(X, \phi hY)\xi - \eta(Y)\phi hX].$$

7

MEHMET ATCEKEN

Thus

8

$$\begin{split} (\widetilde{\nabla}_{R(\xi,Y)U}\sigma)(V,\xi) &= \nabla^{\perp}_{R(\xi,Y)U}\sigma(V,\xi) - \sigma(\nabla_{R(\xi,Y)U}V,\xi) - \sigma(\nabla_{R(\xi,Y)U}\xi,V) \\ &= -\sigma(\nabla_{R(\xi,Y)U}\xi,V) \\ &= \sigma(\alpha\phi^2R(\xi,Y)U + \phi hR(\xi,Y)U,V) \\ &= -\alpha\sigma(R(\xi,Y)U,V) + \sigma(\phi hR(\xi,Y)U,V) \\ &= -\alpha\sigma(-\kappa\eta(U)Y - \mu\eta(U)hY - \nu\eta(U)\phi hY,V) \\ &+ \sigma(-\kappa\eta(U)\phi hY - \mu\eta(U)\phi h^2Y - \nu\eta(U)\phi h\phi hY,V) \\ &= \alpha\kappa\eta(U)\sigma(V,Y) + \alpha\mu\eta(U)\sigma(hY,V) \\ &+ \alpha\nu\eta(U)\sigma(\phi hY,V) - \kappa\eta(U)\sigma(\phi hY,V) \\ &+ \mu(\kappa + \alpha^2)\eta(U)\sigma(\phi Y,V) + \nu(\kappa + \alpha^2)\sigma(V,Y). \end{split}$$

Furthermore, by using (26) and ()39, we have

$$(\widetilde{\nabla}_{U}\sigma)(R(\xi,Y)V,\xi) = \nabla_{U}^{\perp}\sigma(R(\xi,Y)V,\xi) - \sigma(\nabla_{U}R(\xi,Y)V,\xi) - \sigma(\nabla_{U}\xi,R(\xi,Y)V) = -\sigma(\nabla_{U}\xi,R(\xi,Y)V) = \sigma(\alpha\phi^{2}U + \phi hU,R(\xi,Y)V) = \alpha\sigma(\phi^{2}U,R(\xi,Y)V) + \sigma(\phi hU,R(\xi,Y)V) = -\alpha\sigma(U,-\kappa\eta(V)Y - \mu\eta(V)hY - \nu\eta(V)\phi hY) + \sigma(\phi hU,-\kappa\eta(V)Y - \mu\eta(V)hY - \nu\eta(V)\phi hY) = \kappa\alpha\eta(V)\sigma(U,Y) + \mu\alpha\eta(V)\sigma(hY,U) + \alpha\nu\eta(V)\sigma(U,\phi hY) - \kappa\eta(V)\sigma(\phi hU,Y) - \mu\eta(V)\sigma(\phi hU,hY) + \nu\eta(V)\sigma(hU,hY) = \kappa\alpha\eta(V)\sigma(U,Y) + \mu\alpha\eta(V)\sigma(hY,U) + \alpha\nu\eta(V)\sigma(U,\phi hY) - \kappa\eta(V)\sigma(\phi hU,Y) + \alpha\nu\eta(V)\sigma(U,\phi hY) - \kappa\eta(V)\sigma(\phi hU,Y) + \mu(\kappa + \alpha^{2})\eta(V)\sigma(\phi U,Y) - \nu(\kappa + \alpha^{2})\eta(V)\sigma(U,Y).$$

$$(41)$$

The fourth term gives us

$$(\nabla_{U}\sigma)(V, R(\xi, Y)\xi)$$

$$= (\nabla_{U}\sigma)(V, \kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY).$$

On the other hand, by view of (19), (26) and (27), we obtain

$$(\widetilde{\nabla}_{(\xi \wedge_{g} Y)U} \sigma)(V, \xi) = \nabla^{\perp}_{(\xi \wedge_{g} Y)U} \sigma(V, \xi) - \sigma(\nabla_{(\xi \wedge_{g} Y)U} V, \xi)$$

$$- \sigma(V, \nabla_{(\xi \wedge_{g} Y)U} \xi)$$

$$= \sigma(V, \alpha \phi^{2}(\xi \wedge_{g} Y)U + \phi h(\xi \wedge_{g} Y)U)$$

$$= -\alpha \sigma(V, (\xi \wedge_{g} Y)U) + \sigma(V, (\xi \wedge_{g} Y)U)$$

$$= \alpha \eta(U) \sigma(Y, V) - \eta(U) \sigma(\phi hY, V),$$

$$(43)$$

and

$$(\widetilde{\nabla}_{U}\sigma)((\xi \wedge_{g} Y)V, \xi) = \nabla_{U}^{\perp}\sigma((\xi \wedge_{g} Y)V, \xi) - \sigma(\nabla_{U}(\xi \wedge_{g} Y)V, \xi) - \sigma((\xi \wedge_{g} Y)V, \nabla_{U}\xi) = \sigma(\alpha\alpha\phi^{2}U + \phi hU, g(Y, V)\xi - \eta(V)Y) = \alpha\eta(V)\sigma(Y, U) - \eta(V)\sigma(Y, \phi hU).$$

$$(44)$$

Finally,

$$(\widetilde{\nabla}_{U}\sigma)(V,\eta(Y)\xi-Y) = -(\widetilde{\nabla}_{U}\sigma)(V,Y) + (\widetilde{\nabla}_{U}\sigma)(V,\eta(Y)\xi)$$

$$= -(\widetilde{\nabla}_{U}\sigma)(V,Y) + \nabla_{U}^{\perp}\sigma(V,\eta(Y)\xi)$$

$$- \sigma(\nabla_{U}V,\eta(Y)\xi) - \sigma(V,\nabla_{U}\eta(Y)\xi)$$

$$= -(\widetilde{\nabla}_{U}\sigma)(V,Y) - \sigma(V,U[\eta(Y)]\xi + \eta(Y)\nabla_{U}\xi)$$

$$= -(\widetilde{\nabla}_{U}\sigma)(V,Y) + \eta(V)\sigma(\alpha\phi^{2}U + \phi hU,V)$$

$$= -(\widetilde{\nabla}_{U}\sigma)(V,Y) - \alpha\eta(Y)\sigma(U,V)$$

$$+ \eta(Y)\sigma(\phi hU,V).$$

Substituting (38), (40), (41), (42), (43), (44) and (45) into (37), we react at

$$-\alpha R^{\perp}(\xi,Y)\sigma(U,V) + R^{\perp}(\xi,Y)\phi\sigma(U,V) - \kappa\alpha\eta(U)\sigma(V,Y)$$

$$-\mu\alpha\eta(U)\sigma(V,hY) - \nu\alpha\eta(U)\sigma(V,\phi hY) + \kappa\eta(U)\sigma(V,\phi hY)$$

$$-\mu(\kappa + \alpha^{2})\eta(U)\sigma(\phi Y,V) - \nu(\kappa + \alpha^{2})\eta(U)\sigma(V,Y) - \kappa\alpha\eta(V)\sigma(U,Y)$$

$$-\alpha\mu\eta(V)\sigma(hY,U) - \alpha\nu\eta(V)\sigma(U,\phi hY) + \kappa\eta(V)\sigma(\phi hU,Y)$$

$$-\mu(\kappa + \alpha^{2})\eta(V)\sigma(\phi U,Y) + \nu(\kappa + \alpha^{2})\eta(V)\sigma(U,Y)$$

$$-(\nabla_{U}\sigma)(V,\kappa[\eta(Y)\xi - Y] - \mu hY - \nu\phi hY) = -L_{2}\{\alpha\eta(U)\sigma(V,Y)$$

$$-\eta(U)\sigma(\phi hY,V) + \alpha\eta(V)\sigma(Y,U) - \eta(V)\sigma(Y,\phi hU)$$

$$-(\nabla_{U}\sigma)(V,Y) - \alpha\eta(Y)\sigma(U,V) + \eta(Y)\sigma(\phi hU,V)\}.$$

MEHMET ATÇEKEN

Here, taking $V = \xi$ in the last equality and using (27), we conclude that

$$L_{2}\{\alpha\sigma(U,Y) - \sigma(Y,\phi hU) - (\widetilde{\nabla}_{U}\sigma)(Y,\xi)\} = \kappa\alpha\sigma(U,Y) + \alpha\mu\sigma(U,hY) + \alpha\nu\sigma(U,\phi hY) - \kappa\alpha\sigma(\phi hY,U) + \mu(\kappa + \alpha^{2})\sigma(\phi U,Y) - \nu(\kappa + \alpha^{2})\sigma(U,Y) + (\widetilde{\nabla}_{U}\sigma)(\xi,\kappa[\eta(Y)\xi - Y] - \mu hY - \nu\phi hY),$$

$$(46) + (\widetilde{\nabla}_{U}\sigma)(\xi,\kappa[\eta(Y)\xi - Y] - \mu hY - \nu\phi hY),$$

where

10

(47)
$$(\widetilde{\nabla}_{U}\sigma)(Y,\xi) = -\sigma(\nabla_{U}\xi,Y) = \sigma(\alpha\phi^{2}U + \phi hU,Y)$$
$$= -\alpha\sigma(U,Y) + \phi\sigma(hU,Y)$$

and

(48)

$$(\widetilde{\nabla}_{U}\sigma)(\xi,\kappa[\eta(Y)\xi-Y]-\mu hY-\nu\phi hY)$$

$$= -\sigma(\nabla_{U}\xi,\kappa[\eta(Y)\xi-Y]-\mu hY-\nu\phi hY)$$

$$= \sigma(\alpha\phi^{2}U+\phi hU,\kappa[\eta(Y)\xi-Y]-\mu hY-\nu\phi hY)$$

$$= -\alpha\sigma(U,\kappa[\eta(Y)\xi-Y]-\mu hY-\nu\phi hY)$$

$$+ \sigma(\phi hU,\kappa[\eta(Y)\xi-Y]-\mu hY-\nu\phi hY)$$

$$= \kappa\alpha\sigma(U,Y)+\alpha\mu\sigma(hY,U)+\alpha\nu\sigma(\phi hY,U)$$

$$- \kappa\sigma(\phi hU,Y)+\mu(\kappa+\alpha^{2})\sigma(\phi U,Y)-\nu(\kappa+\alpha^{2})\sigma(U,Y).$$

Substituting (47) and (48) into (46), we get

$$[\alpha L_2 - \kappa \alpha + \nu(\kappa + \alpha^2)]\sigma(U, Y) + [\kappa - L_2 - \alpha \nu]\phi\sigma(hU, Y)$$

$$(49) \quad - \quad \mu(\kappa + \alpha^2)\phi\sigma(U, Y) - \alpha\mu\sigma(hU, Y) = 0.$$

If hU is written instead of U in (49) and using (7), (12) and (27), we have

$$[\alpha L_2 - \kappa \alpha + \nu(\kappa + \alpha^2)] \sigma(hU, Y) - (\kappa + \alpha^2) [\kappa - L_2 - \alpha \nu] \phi \sigma(U, Y)$$

$$(50) - \mu(\kappa + \alpha^2) \phi \sigma(hU, Y) + \alpha \mu(\kappa + \alpha^2) \sigma(U, Y) = 0.$$

From (49) and (50), for $\kappa \neq 0$, we obtain

$$[(L_2 - \kappa)^2 - (\kappa + \alpha^2)(\nu^2 - \mu^2)]\sigma(U, Y) + 2\mu\nu(\kappa + \alpha^2)\phi\sigma(U, Y) = 0.$$

Since the vectors $\phi\sigma(U,Y)$ and $\sigma(U,Y)$ are orthogonal, we conclude that M is a totally geodesic or

$$\mu\nu(\kappa + \alpha^2) = 0,$$

and

$$L_2 = \kappa \mp \sqrt{(\kappa + \alpha^2)(\nu^2 - \nu^2)}.$$

Thus the proof is completed.

From Theorem 2.5, we have following corollary.

Corollary 2.6. Let M be an invariant submanifold of an almost α -cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. Then M is 2-semiparallel if and only if M is totally geodesic.

Theorem 2.7. Let M be an invariant Ricci-generalized pseudoparallel submanifold an almost α -cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$ Then M is either totally geodesic submanifold or the functions L_3 , κ, μ, ν and α satisfy the condition

$$L_3 = \frac{1}{2n} \left(1 \mp \frac{1}{\kappa} \sqrt{(\kappa + \alpha^2)(\nu^2 - \mu^2)} \right), \quad \mu \nu (\kappa + \alpha^2) = 0.$$

Proof. We suppose that M is an invariant Ricci-generalized pseudoparallel. Then there exists a function L_3 on M such that

$$(\widetilde{R}(X,Y)\cdot\sigma)(U,V)=L_3Q(S,\sigma)(U,V;X,Y),$$

for all vector fields X, Y, U, V on M. This implies that

$$R^{\perp}(X,Y)\sigma(U,V) - \sigma(R(X,Y)U,V) - \sigma(U,R(X,Y)V)$$

$$= -L_{3}\{\sigma((X \wedge_{S} Y)U,V) + \sigma(U,(X \wedge_{S} Y)V)\}$$

$$= -L_{3}\{\sigma(X,V)S(U,Y) - \sigma(Y,V)S(X,U)$$

$$+ \sigma(U,X)S(Y,V) - \sigma(U,Y)S(X,V)\}.$$
(51)

By a direct calculation, we obtain

(52)
$$S(X,\xi) = 2n\kappa\eta(X).$$

Taking $U = \xi$ in (51)and by view means of (6), (27) and (52), we have $\sigma(R(X,Y)\xi,V) = 2n\kappa L_2\{\sigma(X,V) - \sigma(Y,V)\},$

that is,

$$2n\kappa L_2\{\sigma(X,V) - \sigma(Y,V)\} = \sigma(\kappa[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY] + \nu[\eta(Y)\phi hX - \eta(X)\phi hY], V).$$

This yields to

(53)
$$\kappa(2nL_3 - 1)\sigma(X, V) = \mu\sigma(hX, V) + \nu\phi\sigma(hX, V).$$

If hX is written instead of X and using (7) and (27), we get

$$(54)\kappa(2nL_3 - 1)\sigma(hX, V) = -(\kappa + \alpha^2)\{\mu\sigma(X, V) - \nu\phi\sigma(X, V)\}.$$

From (53) and (54), we can derive

$$\{\kappa^{2}(2nL_{3}-1)^{2} + (\kappa + \alpha^{2})(\mu^{2} - \nu^{2})\}\sigma(X,V)$$

= $-2\mu\nu(\kappa + \alpha^{2})\phi\sigma(X,V)$.

12

Since σ and $\phi\sigma$ are orthogonal vectors, it follows that

$$\kappa^2 (2nL_3 - 1)^2 + (\kappa + \alpha^2)(\mu^2 - \nu^2) = 0, \quad \mu\nu(\kappa + \alpha^2) = 0,$$

which proves our assertions.

Theorem 2.8. Let M be an invariant 2-Ricci-generalized pseudoparallel submanifold an almost- α -cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$ Then M is either totally geodesic submanifold or the function L_4 satisfies

$$L_4 = \frac{1}{2n} \left(1 \mp \frac{1}{\kappa} \sqrt{(\kappa + \alpha^2)(\nu^2 - \mu^2)} \right), \quad \mu \nu (\kappa + \alpha^2) = 0.$$

Proof. Given M is an invariant 2-Ricci-generalized pseudoparallel submanifold, we have

$$(\widetilde{R}(X,Y)\cdot\widetilde{\nabla}\sigma)(U,V,W)=L_4Q(S,\widetilde{\nabla}\sigma)(U,V,W;X,Y)$$

for all vector fields X, Y, U, V, W on M. This means that

$$R^{\perp}(X,Y)(\widetilde{\nabla}_{U}\sigma)(V,W) - (\widetilde{\nabla}_{R(X,Y)U}\sigma)(V,W) - (\widetilde{\nabla}_{U}\sigma)(R(X,Y)V,W) - (\widetilde{\nabla}_{U}\sigma)(V,R(X,Y)W) = -L_{4}\{(\widetilde{\nabla}_{(X\wedge_{S}Y)U}\sigma)(V,W) + (\widetilde{\nabla}_{U}\sigma)((X\wedge_{S}Y)V,W) + (\widetilde{\nabla}_{U}\sigma)(V,(X\wedge_{S}Y)W)\}.$$

Taking $X = V = \xi$ in (55), we obtain

$$R^{\perp}(\xi,Y)(\widetilde{\nabla}_{U}\sigma)(\xi,W) - (\widetilde{\nabla}_{R(\xi,Y)U}\sigma)(\xi,W) - (\widetilde{\nabla}_{U}\sigma)(R(\xi,Y)\xi,W) - (\widetilde{\nabla}_{U}\sigma)(\xi,R(\xi,Y)W) = -L_{4}\{(\widetilde{\nabla}_{(\xi\wedge_{S}Y)U}\sigma)(\xi,W) + (\widetilde{\nabla}_{U}\sigma)(\xi\wedge_{S}Y)\xi,W) + (\widetilde{\nabla}_{U}\sigma)(\xi,(\xi\wedge_{S}Y)W)\}.$$
(56)

Now, let's calculate each of these terms separately. Firstly,

$$R^{\perp}(\xi, Y)\{-\sigma(\nabla_{U}\xi, W)\} = R^{\perp}(\xi, Y)\sigma(\alpha\phi^{2}U + \phi hU, W)$$

$$= -\alpha R^{\perp}(\xi, Y)\sigma(U, W) + R^{\perp}(\xi, Y)\sigma(\phi hU, W).$$
(57)

Making use of (7), (26) and (39), can we calculate second term as

$$(\widetilde{\nabla}_{R(\xi,Y)U}\sigma)(W,\xi) = -\sigma(\nabla_{R(\xi,Y)U}\xi,W) = \alpha\sigma(\phi^{2}R(\xi,Y)U,W) + \sigma(\phi h \nabla_{R(\xi,Y)U},W) = \alpha\kappa\eta(U)\sigma(Y,W) + \alpha\mu\eta(U)\sigma(hY,W) + \alpha\nu\eta(U)\sigma(\phi hY,W) - \kappa\eta(U)\sigma(\phi hY,W) + \mu(\kappa + \alpha^{2})\eta(U)\sigma(\phi Y,W) - \nu\eta(U)\sigma(\phi h\phi hY,W) = \alpha\kappa\eta(U)\sigma(Y,W) + \alpha\mu\eta(U)\sigma(hY,W) + \alpha\nu\eta(U)\sigma(\phi hY,W) - \kappa\eta(U)\sigma(\phi hY,W) - \kappa\eta(U)\sigma(\phi hY,W) + \mu\eta(U)(\kappa + \alpha^{2})\sigma(\phi Y,W) (58)$$

(59)
$$(\widetilde{\nabla}_{U}\sigma)(R(\xi,Y)\xi,W)$$
$$=(\widetilde{\nabla}_{U}\sigma)(\kappa[\eta(Y)\xi-Y]-\mu hY-\nu\phi hY,W).$$

In the same way,

$$(\widetilde{\nabla}_{U}\sigma)(R(\xi,Y)W,\xi) = -\sigma(\nabla_{U}\xi,R(\xi,Y)W) = \sigma(\alpha\phi^{2}U + \phi hU,R(\xi,Y)W)$$

$$= \alpha\kappa\eta(W)\sigma(U,Y) + \alpha\mu\eta(W)\sigma(hY,W)$$

$$+ \alpha\nu\eta(W)\sigma(U,\phi hY) - \kappa\eta(W)\sigma(\phi hU,Y)$$

$$- \mu\eta(W)\sigma(\phi h^{2}U,Y) + \nu\eta(W)\sigma(h^{2}U,Y)$$

$$= \alpha\kappa\eta(W)\sigma(U,Y) + \alpha\mu\eta(W)\sigma(hY,W)$$

$$+ \alpha\nu\eta(W)\sigma(U,\phi hY) - \kappa\eta(W)\sigma(\phi hU,Y)$$

$$+ \mu(\kappa + \alpha^{2})\eta(W)\sigma(\phi U,Y)\nu(\kappa + \alpha^{2})\eta(W)\sigma(U,Y),$$

$$(60)$$

$$(\widetilde{\nabla}_{(\xi \wedge_S Y)U}\sigma)(\xi, W) = -\sigma(\nabla_{(\xi \wedge_S Y)U}\xi, W)$$

$$= \sigma(\alpha\phi^2(\xi \wedge_S Y)U + \phi h(\xi \wedge_S Y)U, W)$$

$$= -\alpha\sigma(S(Y, U)\xi - S(\xi, U)Y, W)$$

$$+ \sigma(\phi h[S(Y, U)\xi - S(\xi, U)Y], W)$$

$$= 2n\kappa\eta(U)\{\alpha\sigma(Y, W) - \sigma(\phi hY, W)\},$$

MEHMET ATÇEKEN

$$(\widetilde{\nabla}_{U}\sigma)((\xi \wedge_{S} Y)\xi, W) = -\sigma(\nabla_{U}(\xi \wedge_{S} Y)\xi, W)$$

$$= (\widetilde{\nabla}_{U}\sigma)(S(\xi, Y)\xi - S(\xi, \xi)Y, W)$$

$$= 2n\{(\nabla_{U}\sigma)(\kappa\eta(Y)\xi, W) - (\nabla_{U}\sigma)(\kappa Y, W)\}$$

$$= 2n\{-\sigma(U[\kappa\eta(Y)]\xi + \kappa\eta(Y)\nabla_{U}\xi, W)$$

$$- (\nabla_{U}\sigma)(\kappa Y, W)\}$$

$$= 2n\{-\kappa\alpha\eta(Y)\sigma(U, W) + \kappa\eta(Y)\sigma(\phi hU, W)$$

$$- (\nabla_{U}\sigma)(\kappa Y, W)\}.$$
(62)

Finally

$$(\widetilde{\nabla}_{U}\sigma)(\xi, (\xi \wedge_{S} Y)W) = -\sigma(\nabla_{U}\xi, (\xi \wedge_{S} Y)W)$$

$$= \sigma(\alpha\phi^{2}U + \phi hU, S(Y, W)\xi - S(\xi, W)Y)$$

$$= 2n\kappa\alpha\eta(W)\sigma(U, Y) - 2n\kappa\eta(W)\sigma(\phi hU, Y).$$
(63)

Consequently, substituting (57), (58), (59), (60), (61), (62) and (63) into (56), we reach at

$$-\alpha R^{\perp}(\xi,Y)\sigma(U,W) + R^{\perp}(\xi,Y)\sigma(\phi hU,W) - \alpha \kappa \eta(U)\sigma(Y,W)$$

$$-\alpha \mu \eta(U)\sigma(hY,W) - \alpha \nu \eta(U)\sigma(\phi hY,W) + \kappa \eta(U)\sigma(\phi hY,W)$$

$$-\mu \eta(U)(\kappa + \alpha^{2})\sigma(\phi Y,W) + \nu(\kappa + \alpha^{2})\eta(U)\sigma(Y,W)$$

$$-(\nabla_{U}\sigma)(\kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY,W) - \alpha \kappa \eta(W)\sigma(U,Y)$$

$$-\alpha \mu \eta(W)\sigma(hY,W) - \alpha \nu \eta(W)\sigma(U,\phi hY) + \kappa \eta(W)\sigma(\phi hU,Y)$$

$$-\mu(\kappa + \alpha^{2})\eta(W)\sigma(\phi U,Y) + \nu(\kappa + \alpha^{2})\eta(W)\sigma(U,Y)$$

$$= -L_{4}\{2n\kappa\alpha\eta(U)\sigma(Y,W) - 2n\kappa\eta(U)\sigma(\phi hY,W) - 2n\kappa\alpha\eta(Y)\sigma(U,W)$$

$$+2n\kappa\eta(Y)\sigma(\phi hU,W) - 2n(\nabla_{U}\sigma)(\kappa Y,W) + 2n\alpha\kappa\eta(W)\sigma(U,Y)$$

$$-2n\kappa\eta(W)\sigma(\phi hU,Y)\}.$$

In the last equality, putting $W = \xi$, we have

$$2nL_{4}\{(\nabla_{U}\sigma)(\kappa Y,\xi) - \kappa\alpha\sigma(U,Y) + \kappa\sigma(\phi hU,Y)\} = \nu(\kappa + \alpha^{2})\sigma(U,Y) - \alpha\kappa\sigma(U,Y) - \alpha\mu\sigma(hY,U) - \alpha\nu\sigma(\phi hU,Y) - \mu(\kappa + \alpha^{2})\sigma(\phi U,Y) + \kappa\sigma(\phi hU,Y) - (\nabla_{U}\sigma)(\kappa[\eta(Y)\xi - Y] - \mu hY - \nu\phi hY,\xi),$$

$$(64)$$

where

$$(\nabla_{U}\sigma)(\kappa Y,\xi) = -\sigma(\nabla_{U}\xi,\kappa Y) = \sigma(\alpha\phi^{2}U + \phi hU,\kappa Y)$$

$$= -\alpha\kappa\sigma(U,Y) + \kappa\sigma(\phi hU,Y),$$
(65)

and

$$(\nabla_{U}\sigma)(\kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY, \xi)$$

$$= -\sigma(\nabla_{U}\xi, \kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY)$$

$$= \sigma(\alpha\phi^{2}U + \phi hU, \kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY)$$

$$= \alpha\kappa\sigma(U, Y) + \alpha\mu\sigma(U, hY) + \alpha\nu\sigma(U, \phi hY)$$

$$(66) - \kappa\sigma(\phi hU, Y) + \mu(\kappa + \alpha^{2})\sigma(\phi U, Y) - \nu(\kappa + \alpha^{2})\sigma(U, Y).$$

(65) and (66) are put in (64), we conclude that

$$[\kappa\alpha(2nL_4 - 1) + (\kappa + \alpha^2)(\nu - \mu\phi)]\sigma(U, Y)$$

$$- [\kappa(2nL_4 - 1)\phi + \alpha(\nu\phi + \mu)]\sigma(hU, Y) = 0.$$

Here hU is written instead of U and taking into account of (7) and (27), we have

$$[\kappa\alpha(2nL_4 - 1) + (\kappa + \alpha^2)(\nu - \mu\phi)]\sigma(hU, Y)$$
(68) + $[\kappa(2nL_4 - 1)\phi + \alpha(\nu\phi + \mu)](\kappa + \alpha^2)\sigma(U, Y) = 0.$
From (67) and (68), it follows for $\kappa \neq 0$,

$$[\kappa^2(2nL_4 - 1)^2 + (\mu^2 - \nu^2)(\kappa + \alpha^2)]\sigma(U, V) + 2\mu\nu(\kappa + \alpha^2)\phi\sigma(U, V) = 0.$$

This proves our assertion.
$$\Box$$

References

- [1] T. W. Kim and H. K. Pak. Canonical Foliations of Certain Classes of Almost Contact Metric Structures. Acta Mathematica Sinica, English Series, 2005, Vol:21, No:4,841-856.
- [2] T. Koufogiorgos, M. Markellos and V. J. Papantoniou. The Harmonicity of the Reeb Vector Fields on Contact 3-Manifolds. Pasific J. Math. 2008, 234(2), 325-344.
- [3] N. Aktan, S. Balkan and M. Yildirim. On Weakly Symmetries of Almost Kenmotsu (κ, μ, ν) -Spaces. Hacettepe J. of Math. and Stat. 2013, 42(4), 447-453.
- [4] H. Ozturk, N. Aktan and C. Murathan. Almost α -Cosymplectic (κ, μ, ν) -Spaces. ArXiv:1007.0527v1.
- [5] A. Carriazo and V. Martin-Molina. Almost Cosymplectic and Almost Kenmotsu (κ, μ, ν) -Spaces. Mediterr. J. Math.10 (2013), 1551-1571
- [6] P. Dacko and Z. Olszak. On Almost Cosympletic (κ, μ, ν) -Spaces. Banach Center Publications, 2005, Vol. 69, Issue: 1, 211-220
- [7] P. Dacko and Z. Olszak. On Almost Cosymplectic $(-1, \mu, o)$ -Spaces. Central European Journal of Math. CEJM, 2005, 318-330.
- [8] M. Atçeken, Ü. Yildirim and S. Dirik. Pseudoparallel Invariant Submanifolds of $(LCS)_n$ -Manifolds. Korean J. Math. 28(2), 2020, 275-284.
- [9] M. Atçeken and P. Uygun. Characterizations for Totally Geodesic Submanifolds of (κ, μ) -Paracontact Metric Manifolds. Korean J. Math. 28(3), 555-571.

MEHMET ATÇEKEN

[10] S. Sular , C. Özgr and C. Murathan. Pseudoparallel Anti-Invariant Submanifolds of Kenmotsu Manifolds. Hacettepe J. of Math. and Stat. 39(4), 2010, 335-343.

AKSARAY UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHEMATICS, 68100, AKSARAY, TURKEY

 $E ext{-}mail\ address: mehmet.atceken382@gmail.com}$