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ABSTRACT

We all have in mind Einstein’s famous thought experiment in the elevator where we

observe the free fall of a body, and then the trajectory of a light ray. Simply here, in

addition to the qualitative aspect, we carry out the exact calculation, and for the first time

the worldlines equations are given. We consider a uniformly accelerated reference frame in

rectilinear translation, and we show that the trajectories of the particles are semi-ellipses

with the center on the event horizon. The frame of reference is non-inertial, the space-time

is flat, and the computations are performed within the framework of special relativity. Some

experimental consequences are discussed, especially the experiment with the accelerated

Michelson-Morley interferometer is solved, and we described an experiment where a new

relativistic paradox appears — a particle of matter seems to go faster than light. The differ-

ences, compared to the classical case, are important at large scale and close to the horizon,

but they are small in the lift where the interest is above all theoretical. The concepts of

metric, coordinated velocity and horizon are discussed, and the analogy with the black hole

is made.

Keywords: uniformly accelerating, worldline, circle, synchronization, Michelson, inter-

ferometer, paradox.
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I. INTRODUCTION

We imagine a portion of empty space infinitely distant from all masses. We have a large

box in which an observer floats in weightlessness. With the help of a hook and a rope,

a constant force is exerted on the box, thus animated by a rectilinear translation motion

uniformly accelerated. The observer then experiences an artificial gravity (figure 1). We will

study in the reference frame of the elevator the motion of light, then of a massive particle,

and, finally, we will make a comparison with the black hole during a free fall from rest.

FIG. 1.

Einstein’s Elevator.

In the frame of the box, first inertial, a light beam propa-

gates at speed c along a straight line trajectory. Then, the box is

accelerated and a ray, initially perpendicular to the direction of

motion, follows a curved trajectory. Let us quote Albert Einstein

in his book Relativity1: “It can easily be shown that the path of

the same ray of light is no longer a straight line”.

Following the birth of special relativity in 1905, the accelerated

elevator thought experiment, proposed by Einstein as early as

1908, allowed to draw the analogy with gravity, to develop an

intuition and to guide the foundation of general relativity. New

theory of gravitation established in 1915 which then supplanted

Newton’s theory. This image was used to illustrate the principle

of equivalence, and to predict the deviation of light rays by a

massive star.

Nevertheless, the historical development of the theory should not derail attention from an

fundamental point: the deviation of a light ray in the accelerated elevator is fully explained

with the special theory of relativity. Indeed, in the accelerating reference frame of the

elevator, spacetime remains flat ; no gravitational field here, and the deviation of light rays

is understood by a purely kinematic reasoning.

According to Einstein’s second postulate, the speed of light in vacuum has the same value

c in all inertial frames of reference. A logical consequence of this postulate: in a non-inertial

frame the speed of light can, a priori, be different than c (It remains, of course, that an

object can in no case exceed the speed of light in vacuum, and that the speed of light for a

local Minkowskian observer is always equal to c). Another property: a free particle follows a
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rectilinear and uniform trajectory in an inertial frame. Therefore, a free particle can follow

a curved trajectory in a non-inertial frame. As we will show, this is precisely what happens

here for the ray of light.

II. UNIFORMLY ACCELERATED REFERENCE FRAME

A. Coordinate system

We want to describe physics from the point of view of the observer with a constant proper

acceleration. A reference frame is a physical entity to which we associate a coordinate system

for localization. A uniformly accelerated reference frame R is defined as a set of observers

who remain at rest with respect to each other in a hypothetical rigid three-dimensional

structure2,3. We imagine a continuous set of infinitesimal observers each equipped with a

ruler and a clock. An event is uniquely specified with the observer on whose world-line

the event occurs. We decide to assign a set of three numbers (x, y, z) to each observer,

and a number t to each point of their worldline. For an inertial frame R′, all the clocks

can be synchronized, and t corresponds to the proper time of each observer at rest in R′.

For a non-inertial frame, this is no longer possible and each observer has a second clock

called coordinate clock. However, the uniformly accelerated frame is still rigid, because the

relationships between the observers remain unchanged. We choose an observer O of R used

as reference: x = 0, and in his particular case the proper and coordinate times remain equal.

By shifting the ruler as much as necessary in the directions of the proper acceleration given

by an accelerometer, we assign an x to each observer X. We proceed in the same way in two

orthogonal directions for y and z. x is the vertical upward direction, and y and z the lateral

directions. O emits a periodic light signal, and each of the other observers X equals the rate

of his coordinate clock with the signal received from O. To synchronize all the coordinate

clocks, we use the radar method: O sends a signal at t1 reflected by X, and back to O at

t2 (figure 2). When the signal is reflected by X, the time t = (t1 + t2)/2 is assigned to his

coordinate clock. A coordinate clock can be compared to a clock radio-controlled by O’s

proper clock.

The coordinate system has been built intrinsically with the non-inertial observers. To

define a constant proper acceleration for O in an inertial frame R′, we consider R′ coinciding
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instantaneously with R, and then it is easy to demonstrate that the proper acceleration ~ap

is momentarily equal to the acceleration ~a of R′ with respect to R. At this instant t′, all

clocks of R′ and coinciding are set to zero. If later at t, a second inertial frame R′′ coincides

with R, the set of coordinate clocks of R will still be synchronized, and we will be able to

equalize their dates with a set of synchronized proper clocks of R′′, however the set of proper

clocks of R will no longer be synchronized especially as x is large.

A reference system where the clocks can be synchronized over all space is called a syn-

chronous reference system4. A reference frame described by a metric gµν where the compo-

nents, with one temporal index and the other spatial, are zero, is synchronous. As we will

see in the following section II B, this is the case of the uniformly accelerated reference frame:

g0i = 0 with i=1, 2 or 3.

We can also synchronize clocks located in the same horizontal plane of R (protocol de-

scribed in section III C). There is invariance under translation along y and z, and, in this

case, the proper clocks are sufficient because the rhythm of the clocks is the same for a given

x.

When a particle passes close to an observer, to measure its velocity and acceleration, he

can use one or the other of his clocks: coordinate velocity and acceleration, vµ = dxµ/dt

and aµ = dvµ/dt, or local, dxµ/dτ and d2xµ/dτ 2. In an inertial reference frame, the speed

of light is constant: distances can be measured equally with a ruler or a radar. In a non-

inertial frame, the coordinate velocity of light varies: distances measured by each method

are generally different5.

B. Metric and change of coordinates

In a non-inertial frame of reference, the metric is non-Minkowskian. We consider the

spacetime metric of an observer with a constant proper acceleration. The accelerated frame

R is in rectilinear translation with respect to R′ inertial. We use the Rindler coordinate

system (ct, x, y, z)6 and we give the metric for a particle and a constant proper acceleration

~ap = −ap~ex, with ~ex the unit vector along the upward vertical x-direction7:

ds2 = c2dτ 2 = gµνdx
µdxν =

(
1 +

apx

c2

)2
c2dt2 − dx2 − dy2 − dz2. (1)
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FIG. 2. Minkowski diagram in R′ inertial. The uniformly accelerated rocket has a hyperbolic

worldline. We have represented the coordinate lines of R′ and R in R′. In both cases, the coordinate

lines of space and time are orthogonal. In this case, the rocket defines a rigid body of reference2,3,6

with respect to which we can study the trajectory of the light rays.

The calculation shows that all the components of the Riemann curvature tensor are zero8,

so the spacetime is flat, and there is a global change of coordinates from R to R′6:

ct′ =

(
x+

c2

ap

)
sinh

(
apt

c

)
, x′ =

(
x+

c2

ap

)
cosh

(
apt

c

)
− c2

ap
, y′ = y, z′ = z. (2)

with ~ex′ = ~ex, x
′(t′ = 0) = x(t = 0) = 0 and v′x′(t

′ = 0) = 0. In R′, we find back the

Minkowski metric: ds2 = ds′2 = c2dt′2 − dx′2 − dy′2 − dz′2.

Let’s use dimensionless quantities to simplify the study. For distances, X = x/dH with

the horizon distance dH = c2/ap. For times, T = t/tH with the horizon time tH = c/ap.

For an acceleration equivalent to the intensity of gravity at the earth’s surface, the horizon

quantities are approximately one light-year and one year. To further illustrate our point,

we can associate the reference frame R′ to the galactic reference frame where stars are

supposed to be fixed, and replace the elevator frame R by the frame of a rocket that makes
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an interstellar voyage. The hyperplane x = −dH defines the event horizon as a break in

the causal link. The astronauts will see their starting point, the Earth, moving away, then

stopping at a light-year with a proper time frozen at one year.

The proper acceleration felt by an observer is inversely proportional to the horizon dis-

tance: ap(X) = ap/(1 +X), so the rigidity is ensured9.

FIG. 3. The worldlines of 12 particular rays in

a Minkowski diagram (T ′, X ′, Y ′) with θ′(t′ =

0) = θ(t = 0) as initial conditions.

III. RAYS OF LIGHT

Without losing in generality, we take as initial condition a light ray that enters the elevator

when it has a zero speed in the inertial reference frame. All clocks are then set to zero, and

the angle of entry of the ray is the same for all observers (figure 3). The trajectories are all

located in the plane z′ = z = 0.

A. Lateral rays

In R′, the ray worldline equations are Y ′ = T ′ and X ′ = 0. Also Y ′ = Y , and6,8

X = 1/ coshT − 1, Y = tanhT ⇒ (X + 1)2 + Y 2 = 1. (3)

The ray of light traces a quarter circle of radius dH and center (−dH , 0) (figure 4). For a

light ray dτ = 0 then |β| = 1 + X with β = dL/dT and L =
√
X2 + Y 2. |β| 6= 1 because

6
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the coordinate system (x, t) uses different physical methods of measuring distance and time:

rods for x and O’s clock for t. The coordinate velocity of the light ray, initially equal to c,

decreases and becomes zero on the horizon in an infinite time. As the components of the

metric tensor depend on the point, the coordinate velocity corresponds to the local velocity

just for the particular observer O, whereas for an inertial frame this velocity keeps the same

meaning for all observers. For example, for the uniformly accelerated frame, the notion of

rigidity is maintained, but, on the other hand, we can no longer define a set of proper clocks

synchronized on the worldline of a particle. For the observer O, the measurements of his

observers placed at different x’s with their coordinate clocks tell him that everything goes

slower downwards, and faster upwards. This is why, from his point of view, light goes slower

at lower levels, while a lower observer measures, where he is with his proper clock, a speed

of light well equal to c.

For comparison, we give the predictions of Newton’s theory: X = −Y 2/2 and β =
√

1− 2X. In this approximation, the trajectory is parabolic and the speed of light increases

towards infinity.

B. Any rays

In general, the worldline of a ray in R′ has for equations Y ′ = T ′ sin θ′ and X ′ = T ′ cos θ′.

The calculation gives (X + 1)2 + (Y − 1/ tan θ)2 = 1/ sin2 θ. The ray of light describes a

circular trajectory of radius dH/| sin θ| and center (−dH , dH/ tan θ) (figures 6 and 7). The

speed of a luminous ray, no matter the initial conditions of the trajectory, varies linearly

with X. If X > 0, the ray goes faster than c ; if X < 0, the speed of light becomes less than

c, and tends towards zero when X tends towards −1 (figure 5).

Let us imagine that we place a large drawing sheet on the vertical wall (Oxy) of the

elevator and that we reproduce with a pen the passage of the light rays on the sheet. We

then detach the drawing, and, back in an inertial reference frame, present it to geometricians

who will attest that they are indeed arcs of circles.

For vertical rays, we give the speed and the equations of the worldlines:

β = dX/dT = ±(1 +X) then T = ± ln(1 +X), Y = 0. (4)

Newton’s parabolic trajectory: X = −Y 2/(2 sin2 θ) + Y/ tan θ. For example, if the light

7
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FIG. 4. The circular trajectory of the ray traced on a

vertical wall of the elevator. The deviation is greater

than that of Newton’s parabolic trajectory. At the level

of the horizon the deviation is double.

FIG. 5. The speed of light which

decreases and tends towards zero in

x = −dH . In classical theory, there

is no horizon and the speed of light

increases.

FIG. 6. In the (X,Y ) plane, the trajecto-

ries of non-vertical light rays are portions

of circles centered on the horizon. The rays

thus arrive perpendicularly to the line of

centers which is identified with the horizon.

The grayed straight lines correspond to the

inertial trajectories, in case the rocket is not

accelerated. The gray parabolic lines are

the Newtonian trajectories.

ray initially goes forward, its speed will first decrease, and then the ray will return downward

with its speed increasing and tending towards infinity. A notable difference with the classical

theory is that the relativistic rocket cannot overtake the ray sent forward.
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FIG. 7. The Minkowski diagram in the non-inertial reference frame (T,X, Y ). Apart from the

limit case θ = 0, all the light rays follow a partially helical worldline that asymptotically joins the

horizon plane x = −dH in an infinite time t. The maximum deviation tends towards the half-turn

for a ray emitted in the direction close to θ = 0°.

C. Horizontal synchronization

To synchronize clocks, we can use coinciding inertial reference frames, or, the radar

method directly from the non-inertial reference frame. In an inertial reference frame, the

light rays are straight and the speed of light is constant. In the Einstein elevator, the

trajectories are circular and the speed of light varies. Nevertheless, the method is analogous

and the round-trip time allows to synchronize the clock B with the one in A. There is an

angle θ for which the ray returns on its steps (figure 8).
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FIG. 8. Two clocks A and B at the same level are synchronized with the radar method. A light

beam is emitted by A, reflected in B by a catadioptric system, and, back in A after 2∆tAB.

D. Radar distance

In an inertial reference frame it was equivalent to use a ruler or the radar method to

measure distances. In the rocket, spatial geometry is Euclidean5 and the use of rulers is

natural ; on the other hand, the radar method must be adapted. For a pair of clocks A

and B in a vertical plane, there is a unique semi-circle centered on the horizon that passes

through A and B, and thus a unique pair (T = ∆T, θ) that allows to determine the position

of B with respect to A:

X =
1

coshT − sinhT cos θ
− 1, Y =

sinhT sin θ

coshT − sinhT cos θ
and L =

√
X2 + Y 2 (5)

For two clocks at the same level, the time interval 2∆t of the radar echo is no longer

proportional to the distance l, but, we can nevertheless express l as a function of ∆t:

X = 0 ⇒ L =
√

2(coshT − 1) and sin θ = 1/
√

1 + L2/4. (6)

In the elevator, for l = 10 m and ap = 10 m/s2, we can continue to consider straight rays

with velocity c, indeed

δ∆T = ∆T inertial −∆T non in. = L− arcosh

(
1 +

L2

2

)
' L3

24
and δ∆t '

l3a2p
24c5

(7)

then δ∆t ' 1.7×10−40 s, well beyond the accuracy of the best atomic clocks. To increase the

distance on the scale of the solar system, we can also exchange light rays between two rockets

A and B whose parallel accelerations are synchronized. Over a distance of one astronomical

unit δ∆t ' 5.8 ns for ∆t ' 8m 20s.
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IV. NON-ZERO MASS PARTICLES

A. Trajectories and worldlines

The worldline of a particle in R′ has for equations Y ′ = β0T
′ sin θ′ and X ′ = β0T

′ cos θ′

with β0c the initial velocity. The calculation gives (X + 1)2/RX
2 + (Y − YC)2/RY

2 = 1

with RX = a/dH = 1/
√

1− β02 cos2 θ and RY = b/dH = β0| sin θ|RX
2. The particle

describes an elliptical trajectory of semi-major axis a, of semi-minor axis b and center

(−dH , β02 sin θ cos θRX
2dH) (figures 9 and 10).

FIG. 9. In the (X,Y ) plane, the trajectories of

the particles are portions of ellipses with the cen-

ter on the horizon. The trajectories are perpen-

dicular to the horizon line. The trajectory from

t→ −∞ to t→ +∞ is a semi-ellipse, or a semi-

circle for a zero-mass particle.

We also obtain the world lines equations plotted in figure 10:

X =
1

coshT − β0 sinhT cos θ
− 1 and Y =

β0 sinhT sin θ

coshT − β0 sinhT cos θ
. (8)

B. Velocity and acceleration for a particle released at rest

The initial speed of the particle is zero and the motion is vertical:

X =
1

coshT
− 1, β =

dX

dT
= −tanhT

coshT
= −

√
1− (X + 1)2(X + 1),

A =
dβ

dT
=

cosh2 T − 2

cosh3 T
= [1− 2(X + 1)2](X + 1) (9)

We have vmax = c/2 at X(vmax) = 1/
√

2− 1 ' −0.33,10. Initially the speed increases, then

it decreases and tends to zero on the horizon (figure 11). The acceleration is first negative,

then zero and becomes positive (figure 12). The elevator observer can initially interpret

the metric effects as an inertial force similar to gravitation, but then his measurements will
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FIG. 10. The Minkowski diagram in the non-

inertial reference frame (T,X, Y ). Worldlines

for v0 = 50% of c. In bold, the worldline for

a particle released at rest.

The intersection between a horizontal plane

and the tubular worldsheet, formed by the

set of worldlines for different θ’s and a given

β0, also forms an ellipse (dotted curve).

lead him to interpret a repulsive force as the particle approaches the horizon. These are

spatiotemporal perspective effects experienced by the observer of the rocket. These metric

effects due to the non-inertial character of the frame of reference are sometimes described

in terms of fictitious forces, because the particle in R′ inertial does not undergo any force

and follows a rectilinear and uniform trajectory.

For Minkowskian observers, instantaneously at rest in successive inertial reference frames

that coincide at every moment withR: dtMink = (1+X)dt then vMink(xvmax) = c/
√

2 ' 71%c

also vmax = vlight/
√

2.

For the proper time, the metric gives τ(X) = tH
√

1− (1 +X)2. We have a quarter

circle in the plane (τ/tH , X). For example, as shown in figure 13, when the falling speed is

maximum, T = arcosh
√

2 ' 0.9 and τ/tH = 1/
√

2 ' 0.7. And for the observer of the vessel

at O, the time of the object in free fall freezes, and tends towards tH when the time of the

clock at O tends towards infinity. When a free-falling observer crosses the horizon, apart

from the breaking of the causal link with the vessel, nothing special happens and his proper

time continues to elapse indefinitely.
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FIG. 11. Falling velocity of a particle released

at rest from O at T = 0. In gray, the classical

case.

FIG. 12. Particle acceleration during a free fall

in the uniformly accelerating reference frame.

C. Comparison with the black hole

To broaden our view, we will look at another non-inertial frame of reference R described

by the Schwarzschild metric. We have an observer at far distance from a spherical, static,

and neutral star of mass M . There is also a horizon and the velocity and acceleration curves

show analogies. On the other hand, space-time is curved ; there is no global change of

coordinates to an underlying inertial reference frame ; tidal effects will be present ; free fall

is no longer adiabatic because of the emission of gravitational waves ; and, if the body is of

non-negligible mass in front of the main star, the metric changes during the fall13–15 . We will

use the Lagrangian approach to determine the equation of motion. The free-falling particle

maximizes its proper time and follows a geodesic. We limit the study to the adiabatic radial

fall of a test mass with a velocity of zero to infinity. The differential equation is then solved

by a numerical approach for the plotting of the curves.

Metric and Lagrangian for a particle:

ds2 = c2dτ 2 = g(r)c2dt2 − dr2

g(r)
with g = 1− rS

r
and rS =

2GM

c2
, (10)

τ =

∫
L(r, v)dt, L =

√
g − β2

g
and L− ∂L

∂v
v = cst. (11)

We obtain, with R = r/rS, T = t/tS, tS = rS/c and aS = c2/rS:

β = −
(

1− 1

R

)
1√
R

and A =
dβ

dT
=

r̈

aS
=

1

2R2

(
1− 1

R

)(
3

R
− 1

)
. (12)

13
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FIG. 13. The Minkowski diagram in the non-

inertial frame (T,X). The cones indicate

how the coordinate velocity of light varies

with respect to c.

FIG. 14. Minkowski diagram in the

Schwarzschild frame (T,R)11,12.

We have vmax = 2/(3
√

3)c ' 38%c at r(vmax) = 3rS
16. Here too, the speed reaches

a maximum and the acceleration changes of sign (figures 15 and 16). The metric effects

correspond to gravitation: they cannot be canceled over the whole space by a change of

coordinates and are well real.

For Minkowskian observers: dtMink =
√
gdt and drMink = dr/

√
g then vMink(rvmax) =

14
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c/
√

3 ' 58%c and vmax = vlight/
√

3 with vlight(rvmax) = 2/3c.

FIG. 15. Falling velocity of a particle dropped

without velocity from infinity. In dark gray,

the curve according to Newton’s laws. Dotted,

the speed of light. In light gray, the speed for

a local observer.

FIG. 16. The acceleration of the particle in

radial fall towards a black hole. In gray, the

classical curve.

For the proper time, the metric gives τ(R) = 2/3(R0
3/2−R3/2)tS. For example, as shown

in figure 14, with the initial condition τ = 0 when T = 0 at R0 = 10, when the speed of

fall is maximum, T ' 21 and τ/tS ' 18. For an observer outside the black hole, the time of

the falling object freezes on the horizon when the time of his clock tends towards infinity.

Whereas for the observer in free fall, a finite proper time of about 2.8tS elapses between the

maximum speed and the crossing of the horizon, and, nothing special happens during the

crossing apart from the breaking of the causal link with the outside. Then 2/3tS of proper

time is added until the singularity where the observer is destroyed.

V. EXPERIMENTAL ASPECTS

A. Deviation measurement

The difference is difficult to measure experimentally. We can have an accelerated rocket,

but its width d is very small in front of the horizon distance dH , and, consequently, the

observed deviation is tiny. The deviation depends on the ratio D = d/dH . We perform a

15
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series expansion:

X = RX

√
1− (D − YC)2 /RY

2 − 1

' D

tan θ︸ ︷︷ ︸
rect.traj.

− D2

2β0
2sin2θ︸ ︷︷ ︸

parabol. corr.

+
D3

2β0
2sin2θtan θ

−
[
D4

8β0
4

]
θ=±π

2

+ ...︸ ︷︷ ︸
elliptical corrections

(13)

The term in D2 corresponds to the non-zero first order of the deviation due to the non-

inertial character of the reference frame. The terms D3 and beyond correspond to the

deviation between classical theory and special relativity.

For d = 10 m, ap = 10 m/s2 and θ = 45°, we have |∆x| ' 11 fm for the parabolic

correction of a light ray, or, for the elliptic correction of a non-zero mass particle of velocity

v0 = 10 m/s (bell shot).

FIG. 17. Minkowski diagram

(T,X) for a vertical launch.

τ/tH(X) draws a circle arc.

The deviation is extremely small and a direct measurement

seems out of reach.

B. Desynchronization of clocks

On the other hand, with the precision of atomic clocks, the

time deviation is experimentally accessible. For example, let

say we launch a clock upwards with a vertical motion (figure

17). Let us consider a maximum height reached of h = 45 m.

When the moving clock falls back in free fall on its return

to the level of the clock that remained at X = 0, with ap =

10 m/s2 and v0 ' 30 m/s, the time difference between the

two clocks is ∆t ' 10 fs for a time of flight of 6 s. For θ = 0

an expansion with respect to β0 gives8:

∆t/tH = τ/tH − T = 2(γ0β0 − arctanh β0) ' β0
3/3

with H = γ0 − 1 ' β0
2/2, and ∆t ' v0

3/(3apc
2). (14)
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C. Michelson interferometer

We know the famous experiment of Michelson and Morley carried out from 1881 and that

allowed to demonstrate the non-existence of the ether. The speed of light is therefore the

same in all reference frames of inertia. What happens now if we perform the experiment in

the accelerated reference frame?

FIG. 18. Michelson interferometer with two arms OM1 and OM2 of same length l.

In an inertial frame, or, here, horizontally in R, the rays take the same time to go and

return on each of the arms and there is no optical path difference δ at I (figure 18). We

then turn the interferometer around the axis (OM2) so that arm 1 is up. As light travels

faster than c for positive X, the ray 1 that goes up and returns will be back before the ray 2:

according to Eq.(4), for a round trip of ray 1, T = 2 ln(1 +L) ' 2L−L2. Ray 2 follows arcs

of circles, but this effect produces a smaller variation and we can consider the horizontal

round trip to be along a straight line: according to Eq.(3), for a round trip of ray 2, the

lateral circular trajectory folds on M2 and T = arctanh(2L) ' 2L + 8/3L3. We turn the

interferometer again by 90° but this time along the axis (Oz) as shown in figure 18. The

situation is now the opposite and it is ray 2 that arrives first. We have drawn the worldlines

for configuration a) in figure 19. We deduce the value of the difference of pathlength and

the number of fringes ng that scroll by tilting the interferometer from a) to b):

ng =
2δ

λ
=

2

λ
[arctanh(2L)− 2 ln(1 + L)] dH '

2apl
2

c2λ
. (15)

For ap = 10 m/s2, l = 10 m and λ = 600 nm, the calculation gives ng ' 0.4× 10−7. The

variation is less than one ten millionth of a fringe. The larger ap and l are, and the smaller
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FIG. 19. Minkowski diagram of the world

lines of rays along the two arms of the in-

terferometer for the case a).

λ is, the more appreciable the effect will be. The spatial coherence of the interference is not

lost with the vertical displacement of ray 2: |∆x| ' 22 fm.

Also, the arms are not perfectly rigid and we have to consider the mechanical constraints

exerted on the vertical arm by the proper acceleration. We model the arm by a homogeneous

cylinder of density ρ and modulus of rigidity E. According to Hooke’s law σ = Eε with

σ the pressure exerted and ε = ∆l/l the relative deformation. The vertical arm becomes

shorter and the ray will go up and return even faster. We calculate the compression ∆l

by integrating over the entire arm, and deduce the difference in travel time induced by ap

(acceleration assumed constant along the arm):

∆l ' ρapl
2

2E
then na '

4∆l

λ
' 2ρapl

2

Eλ
and

na
ng
' ρ

E
c2. (16)

Very rigid, low-density materials give an optical pathlength difference of the order of one

fringe: na ' 1. The relative difference na/ng does not depend on ap, l or λ but only on the

mechanical properties of the material. The metric effect is tens of million times smaller than

that due to mechanical constraints, and will therefore be difficult to isolate experimentally.

In a gravitational field, we will have the same results because the spacetime curvature and

tidal forces appear only at the following orders of the series expansions8.
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D. Three rockets experiment

We materialize an accelerated solid at the scale of a stellar system by synchronizing the

parallel accelerations of three equidistant rockets (figure 20).

FIG. 20. In black, light signals: 2∆T = TAB + TBC > TAC . In gray, there is an initial velocity β0e

such that: 2∆T = TAC(β0e). Numerical values for L = 2: TAB+TBC = 2∆T ' 3.53 > TAC ' 2.89,

DAB +DBC =
√

2π < DAC ' 1.58π. β0e =
√

17/18 ' 0.972, γ0e = 3
√

2, DAC(β0e) ' 1.94π.

The differences in distance and time for the two luminous paths ABCBA and ACA:

TABCBA − TACA = 4× arcosh(1 + L2/2)− 2× arcosh(1 + 2L2) ' L3/2 if L << 1

DABCBA −DACA = 8
√

1 + L2/4× arctanL/2− 4
√

1 + L2 × arctanL ' −L3/2 (17)

For three rockets A, B and C, one astronomical unit apart and with the accelerations ap = 10

m/s2, tABCBA − tACA ' 69 ns.

If we assume that the speed of light is constant as in an inertial reference frame, we

obtain a paradox: the photon that runs the longest distance returns first. But what is even

more paradoxical here, perhaps, is that a particle of matter with an initial speed β0 between

1 and β0e will also arrive before light, despite of covering a greater distance and going, a
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priori, less quickly. We find a relativistic version of the tortoise and the hare paradox in La

Fontaine’s Fables.

For calculations:

TABCBA−TACA(β0) = 4×arcosh(1+L2/2)−2×arcosh

1−
√

1− (1− β02)(1 + β0
2 + 4L2)

1− β02


' L3/2− 4L(1− β0) if L << 1 and β0 ' 1 (18)

β0e =

√
L2(1 + L2/4)2 + 1

(1 + L2/2)2(1 + L2/4)
' 1− L2/8

and γ0e =
2 + L2

L

√
1 + L2/4 ' 2/L for L << 1 (19)

For an electron with γ0 =
√

2γ0e, again for ap = 10 m/s2 and l = 1 au, L = 1/60000 and, as

1− β ' 1/2γ2, tABCBA − tACA(β0) ' 35 ns.

Let us tell a relativistic fable: ”At the start of the race, the fast photon is ahead of the

massive electron. The electron then takes a trajectory of a single jump, which is longer but

brings the electron higher where time goes faster. Seen from above, the time of the photon

freezes, and so the electron manages to overtake its opponent.”

Already in C, the electron bounces before the photon.

VI. DISCUSSION

We have chosen to adopt the non-inertial point of view. It seems natural to put ourselves

in the shoes of the accelerated observer. For example, to understand why and how the

elevator occupant feels an artificial gravity. It is also interesting to note that the motion

of R with respect to R′ is defined from the non-inertial reference frame where the proper

acceleration ap is imposed constant. Unlike a(O′) plotted on figure 12, and a′(O) = ap/γ
3.

All the results of this article could, of course, also be found from the inertial reference

frame. From a mathematical standpoint, one could think that, from the inertial frame, the

calculations are simpler, because the free particles have rectilinear trajectories. But, this

is not obvious, because although the trajectories are rectilinear, the different parts of an

experimental apparatus move, as in the case of the Michelson interferometer or the three
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rockets experiment described in section V. Whereas in the accelerated frame, the trajectories

are indeed curved, but the different parts are at rest with respect to each other, and the final

set of coordinates is directly understandable by the observer. As a comparison, it is a bit

like when we try to understand two-dimensional beings living on the surface of a spherical

space, we prefer to immerse ourselves in the intrisic coordinates of Gauss1 and the metric of

the sphere, although we could solve the problem from the outside, in the three-dimensional

space17. Besides, this is a good exercise for the general theory of relativity, where there is

no inertial frame of reference. We need to be comfortable working directly in a non-inertial

world.

Nevertheless, the inertial point of view is welcome to complete the study of our pseudo-

paradox. A textbook4 gives the formulas X ′ =
√

1 + T ′2−1 and τ = c/ap×arcsinhT ′. Then,

we have to solve the intersections of various rectilinear world lines to find T ′AC and T ′ABC . In

R′, the trajectories are straight, the speed of light is c, and the ACA path is shorter than the

path ABCBA, but we loose symetries and the calculus is longer. As we see on the figure at

the end of the article, for L = 2, we have drawn the light paths only in one direction, because

to return to rocket A, the inertial trajectories will have to go very high on the diagram. We

find T ′AC = 2L
√

1 + L2 and T ′ABC = L(
√

1 + L2/4+
√

1 + L2/4(3 + L2)2), so, to make short,

with the help of the figure 20 symmetry, ∆T = 2c/apτ = 2(arcsinhT ′ABC − arcsinhT ′AC) and

we get the Eq.(17) result.

Anyway, whoever the observer is, the physics is the same. In any case, to obtain non-

inertial special relativity, two principles have to be added to inertial special relativity, the

clock hypothesis, two clocks at the same speed, whatever their acceleration, undergo the

same time dilation, and, the equivalence principle, for any space-time event there is, locally,

a coinciding inertial reference frame.

VII. CONCLUSION

The calculations remain relatively simple, and use concepts which are partly reused in

general relativity. At the same time, this textbook case helps to avoid a lot of confusion in

relativity. To push special relativity to its last non-inertial limits, where an underlying global

Minkowskian framework persists, allows to draw a continuous path from inertial relativity

to general relativity. Moreover, the theoretical vision is broadened, and maybe one day new
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experimental tests of non-inertial special relativity will be feasible.

1 Einstein A 1917 Relativity: The Special and the General Theory, in chapters: A few inferences

from the general theory of relativity, Gaussian Co-ordinates

2 Møller C 1952 The Theory of Relativity, See p253 in Oxford 1st Ed.

3 Desloge E A and Philpott R J 1987 Uniformly accelerated reference frames in special relativity,

Am. J. Phys. 55(3), 252

4 Landau L and Lifchitz E The classical Theory of Fields, in sections: § Distances and time

intervals, § The synchronous reference system, § Four-dimensional velocity

5 Desloge E A 1989 Spatial geometry in a uniformly accelerating reference frame, Am. J. Phys.

57(7), 598

6 Rindler W 2006 Relativity: Special, General, and Cosmological, Oxford Univ. Press, See p71

and 282 (Exercise 12.7) 2nd Ed.

7 Semay C 2006 Observer with a constant proper acceleration, Eur. J. Phys. 27(5), 1157

8 Rouaud M 2020 Special Relativity, A Geometric Approach, See p243, 167, 387 and 157

9 Born M 1909 Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips, Ann.

d. Phys. 335(11), 1-56, Wikisource translation The Theory of the Rigid Electron in the Kine-

matics of the Principle of Relativity

10 Hamilton J D 1978 The uniformly accelerated reference frame, Am. J. Phys. 46(1), 83

11 Thorne K S, Misner C W and J. A. Wheeler J A 1971 Gravitation, Freeman, See p848

12 Tourrenc P 1997 Relativity and Gravitation, Cambridge University Press

13 Spallicci A D and Ritter P 2014 A fully relativistic radial fall, Int. J. Geom. Methods Mod.

Phys. 11(10)

14 Desloge E A 1989 Nonequivalence of a uniformly accelerating reference frame and a frame at

rest in a uniform gravitational field, Am. J. Phys. 57(12), 1121
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Figure: the three rockets experiment seen from the inertial frame
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