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Abstract

We all have in mind Einstein’s famous thought experiment in the elevator
where we observe the free fall of a body and then the trajectory of a light
ray. Simply here, in addition to the qualitative aspect, we carry out the exact
calculation. We consider a uniformly accelerated reference frame in rectilin-
ear translation and we show that the trajectories of the particles are ellipses
centered on the horizon of the events. The frame of reference is non-inertial,
the space-time is flat, the metric is non-Minkowskian and the computations
are performed within the framework of special relativity. Some experimental
consequences are discussed such as trajectory deviation, desynchronization of
a falling clock and the Michelson interferometer. The differences, compared
to the classical case, are important at large scale and close to the horizon, but
they are small in the box where the interest is above all theoretical and peda-
gogical. The study helps the student to become familiar with the concepts of
metric, coordinate velocity, horizon, and, to do the analogy with the black hole.
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1 Introduction

We imagine a portion of empty space infinitely distant from all masses. We have a large
box in which an observer floats in weightlessness. With the help of a hook and a rope,
a constant force is exerted on the box thus animated by a rectilinear translation motion
uniformly accelerated. The observer then experiences an artificial gravity. We will study
in the reference frame of the elevator the motion of light, then of a massive particle, and,
finally, we will make a comparison with the black hole during a free fall from rest.

Figure 1:
Einstein’s Elevator.

In the frame of the box, first inertial, a light beam prop-
agates at speed c along a straight line trajectory. Then, the
box is accelerated and a ray, initially perpendicular to the di-
rection of motion, follows a curved trajectory. Let us quote
Albert Einstein in his book Relativity [1]: “It can easily be
shown that the path of the same ray of light is no longer a
straight line”.

Following the birth of special relativity in 1905, the ac-
celerated elevator thought experiment, proposed by Einstein
as early as 1908, allowed to draw the analogy with gravity
to develop an intuition and to guide the foundation of gen-
eral relativity. New theory of gravitation established in 1915
which then supplanted Newton’s theory. This image was used
to illustrate the principle of equivalence and to predict the de-
viation of light rays by a massive star.

Nevertheless, the historical development of the theory
should not hide an essential point: the deviation of a light
ray in the accelerated elevator is fully explained within the
framework of special relativity. Indeed, in the accelerated el-

evator frame of reference, spacetime remains flat, no gravitational field here, and the
deviation of light rays is understood by a purely kinematic reasoning.

According to Einstein’s second postulate, the speed of light in vacuum is constant and
equal to c in all inertial frames of reference. A logical consequence of this postulate: in a
non-inertial frame the speed of light can, a priori, be different than c 1. Another property:
a free particle follows a rectilinear and uniform trajectory in an inertial frame. Therefore,
a free particle can follow a curved trajectory in a non-inertial frame. As we will show, this
is precisely what happens here for the ray of light.

1It remains, of course, that an object can in no case exceed the speed of light, and that the speed of
light for a local Minkowskian observer is always equal to c.
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2 Uniformly accelerated reference frame

2.1 Coordinate system

We want to describe physics from the point of view of the accelerated observer. A reference
frame is a physical entity to which we associate a coordinate system for localization. A
uniformly accelerated reference frame R is defined as a set of observers who remain at
rest with respect to each other in a hypothetical rigid three-dimensionnal structure. We
imagine a continuous set of infinitesimal observers each equipped with a ruler and a clock
[2] [3]. An event is uniquely specified with the observer on whose worldline the event
occurs. We decide to assign a set of three numbers (x, y, z) to each observer and a number
t at each point on its worldline. For an inertial frame R′ all the clocks can be synchronized
and t corresponds to the proper time of each observer at rest in R′. For a non-inertial
frame, this is no longer possible and each observer has a second clock called coordinate
clock. However, the uniformly accelerated frame is still rigid, because the relationships
between the observers remain unchanged. We choose an observer O of R used as reference:
x = 0 and in his particular case the proper and coordinate times remain equal. By
shifting the ruler as much as necessary in the direction of the proper acceleration given
by an accelerometer, we assign an x to each observer X. We proceed in the same way
in two orthogonal directions for y and z. O emits a periodic light signal and each of the
other observers X equals the rate of its coordinate clock with the signal received from
O. To synchronize all the coordinate clocks we use the radar method: O sends a signal
at t1 reflected by X and back to O at t2. When the signal is reflected by X the time
t = (t1 + t2)/2 is assigned to its coordinate clock. A coordinate clock can be compared to
a clock radio-controlled by O’s proper clock.

The coordinate system has been built intrinsically with the non-inertial observers. To
define a constant acceleration for O in an inertial frame R′, we consider R′ coinciding
instantaneously with R and then it is easy to show that the proper acceleration ap is equal
to the acceleration a of R′ with respect to R. At this instant all the clocks are set to zero.
If later at t, a second inertial frame R′′ coincides with R, the set of coordinate clocks of
R will still be synchronized and we will be able to equalize their dates with the set of
proper clocks of R′′, however the set of proper clocks of R will no longer be synchronized
especially as x is large.

When a particle passes close to an observer, to measure velocity and acceleration, he
can use one or the other of his clocks: coordinate velocity and acceleration, vµ = dxµ/dt
and aµ = dvµ/dt, or local, dxµ/dτ and d2xµ/dτ2. In an inertial reference frame the speed
of light is constant and we can indifferently measure distances with a ruler or a radar. In
a non-inertial frame the coordinate velocity of the light varies and the distances measured
by each method are generally different [4].

2.2 Metric and change of coordinates

In a non-inertial frame of reference the metric is non-Minkowskian. We consider the frame
R in rectilinear translation and uniformly accelerated with respect to R′ inertial. We have
the coordinate system (ct, x, y, z) and we give the metric for a particle and a constant
acceleration ~a = a~ux [5] [6]:

ds2 = c2dτ2 = gµνdx
µdxν =

(
1 +

ax

c2

)2
c2dt2 − dx2 − dy2 − dz2. (1)
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Figure 2: Minkowski diagram in R′ inertial. The uniformly accelerated rocket has a
hyperbolic worldline. We have represented the coordinate lines of R′ and R in R′. In
both cases, the coordinate lines of space and time are orthogonal. In this case, the rocket
defines a rigid body of reference [2,5,3] with respect to which we can study the trajectory
of the light rays.

The calculation shows that all the components of the Riemann curvature tensor are zero[7],
so the spacetime is flat, and there is a global change of coordinates from R to R′ [5]:

ct′ =

(
x+

c2

a

)
sh

(
at

c

)
, x′ =

(
x+

c2

a

)
ch

(
at

c

)
− c2

a
, y′ = y, z′ = z. (2)

with ~ux′ = ~ux, x′(t′ = 0) = x(t = 0) = 0 and v′x′(t
′ = 0) = 0. In R′, we find back the

Minkowski metric: ds2 = ds′2 = c2dt′2 − dx′2 − dy′2 − dz′2.
To simplify the study, we use dimensionless quantities. For the distances, X = x/dH

with the horizon distance dH = c2/a. For times, T = t/tH with the horizon time tH = c/a.
For an acceleration equivalent to the intensity of gravity at the earth’s surface, the horizon
quantities are approximately one light-year and one year. To further illustrate our point,
we can associate the reference frame R′ to the galactic reference frame where the stars are
supposed to be fixed, and replace the elevator frame R by the rocket frame which makes
an interstellar voyage. The hyperplane x = −dH defines the event horizon as a break in
the causal link. The astronauts will see the Earth, their starting point, moving away, then
stopping at a light-year with a proper time frozen at one year.

The proper acceleration felt by an observer is inversely proportional to the horizon
distance: ap = a/(1 +X), so the rigidity is ensured.
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Figure 3: The worldlines of 12 par-
ticular rays in a Minkowski diagram
(T ′, X ′, Y ′) with θ′(t′ = 0) = θ(t = 0)
as initial conditions.

3 Rays of light

Without losing in generality, we take as initial condition a light ray that enters the elevator
when it has a zero speed in the inertial reference frame. All clocks are then set to zero,
and the angle of entry of the ray is the same for all observers. The trajectories are all
located in the plane z′ = z = 0.

3.1 Lateral rays

In R′, the ray worldline equations are Y ′ = T ′ and X ′ = 0. Also Y ′ = Y , hence we
have [7]:

X = 1/chT − 1, Y = thT ⇒ (X + 1)2 + Y 2 = 1. (3)

The ray of light traces a quarter circle of radius dH and center (−dH , 0). For a light
ray dτ = 0 then |β| = 1 + X with β = dL/dT . |β| 6= 1 because the coordinate system
(x, t) uses different physical methods of measuring distance and time: rods for x and O’s
clock for t. The coordinate velocity of the light ray, initially equal to c, decreases and
becomes zero on the horizon in an infinite time. As the components of the metric tensor
depend on the point, the coordinate velocity corresponds to the local velocity just for the
particular observer O, whereas for an inertial frame this velocity keeps the same meaning
for all observers. For example, for the uniformly accelerated frame, the notion of rigidity
is maintained, but, on the other hand, we can no longer define a set of proper clocks
synchronized on the worldline of a particle. For the observer O, the measurements of his
observers placed at different x’s with their coordinate clock tell him that everything goes
slower downwards, and faster upwards. This is why from his point of view light goes slower
at the lower levels, while a lower observer measures, where he is with is proper clock, a
speed of light well equal to c.

For comparison, we give the predictions of Newton’s theory: X = −Y 2/2 and β =√
1− 2X. In this approximation the trajectory is parabolic and the speed of light increases

towards infinity.
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Figure 4: The circular trajectory of the ray traced
on a vertical wall of the elevator. The deviation is
greater than that of Newton’s parabolic trajectory.
At the level of the horizon the deviation is double.

Figure 5: The speed of light which
decreases and tends towards zero
in x = −dH . In classical theory,
there is no horizon and the speed
of light increases.

3.2 Any rays

In general, the worldline of a ray in R′ has for equations Y ′ = T ′sinθ′ and X ′ = T ′cosθ′.
The calculation gives (X + 1)2 + (Y − 1/tanθ)2 = 1/sin2θ. The ray of light describes
a circular trajectory of radius dH/|sinθ| and center (−dH , dH/tanθ). The speed of a
luminous ray, whatever the initial conditions of the trajectory, varies linearly with X. If
X > 0 the ray goes faster than c, and if X < 0 the speed of light becomes less than c and
tends towards zero when X tends towards −1.

Let us imagine that we place a large drawing sheet on the vertical wall (Oxy) of the
elevator and that we reproduce with a pen the passage of the light rays on the sheet.
We then detach the drawing, and, back in an inertial reference frame, we present it to
geometricians, who will attest that they are indeed arcs of circles.

For vertical rays we give the speed and the equations of the world lines:

β = dX/dT = ±(1 +X) then T = ±ln(1 +X), Y = 0. (4)

Newton’s parabolic trajectory: X = −Y 2/(2sin2θ)+Y/tanθ. For example, if the light
ray initially goes forward, its speed first decreases, then the ray returns downward and its
speed increases and tends towards infinity. A notable difference with the classical theory
is that the relativistic rocket cannot overtake the ray sent forward.
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Figure 6: In the (X,Y ) plane, the trajec-
tories of non-vertical light rays are portions
of circles centered on the horizon. The rays
thus arrive perpendicularly to the line of cen-
ters which is identified with the horizon. The
grayed straight lines correspond to the iner-
tial trajectories, in case the rocket is not ac-
celerated. The gray parabolic lines are the
Newtonian trajectories.

Figure 7: The Minkowski diagram in the non-inertial reference frame (T,X, Y ). Apart
from the limit case θ = 0, all the light rays follow a partially helical worldline that
asymptotically joins the horizon plane x = −dH in an infinite time t. The maximum
deviation tends towards the half-turn for a ray emitted in the direction close to θ = 0°.
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4 Non-zero mass particles

4.1 Trajectories and worldlines

The worldline of a particle in R′ has for equations Y ′ = β0T
′sinθ′ and X ′ = β0T

′cosθ′

with β0c the initial velocity. The calculation gives (X + 1)2/RX
2 + (Y − YC)2/RY

2 = 1

with RX = a/dH = 1/
√

1− β02cos2θ and RY = b/dH = β0|sinθ|RX2. The particle
describes an elliptical trajectory of semi-major axis a, of semi-minor axis b and center
(−dH , β02sinθcosθRX2dH).

Figure 8: In the (X,Y ) plane, the trajec-
tories of the particles are portions of el-
lipses centered on the horizon. The tra-
jectories are perpendicular to the horizon
line.

Figure 9: The Minkowski diagram
in the non-inertial reference frame
(T,X, Y ). Worldlines for v0 = 50%
of c. In bold the worldline for a par-
ticle released at rest.
The intersection between a horizon-
tal plane and the tubular worldsheet,
formed by the set of worldlines for
different θ and a given β0, also forms
an ellipse (dotted curve).
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World lines equations:

X =
1

chT − β0shTcosθ
− 1 and Y =

β0shTsinθ

chT − β0shTcosθ
. (5)

Newton’s parabolic trajectory: X = −Y 2/(2β0
2sin2θ) + Y/tanθ.

Although the underlying theory is known for more than a century, to my knowledge, the
specific results obtained here, an elliptical trajectory for a massive particle, and previously
a circular trajectory for a ray of light, are new.

4.2 Velocity and acceleration for a particle released at rest

The initial speed of the particle is zero and the motion is vertical:

X =
1

chT
− 1, β =

dX

dT
= − thT

chT
= −

√
1− (X + 1)2(X + 1),

A =
dβ

dT
=
ch2T − 2

ch3T
= [1− 2(X + 1)2](X + 1) (6)

We have vmax = c/2 at X(vmax) = 1/
√

2− 1 ' −0.3 [8] [3]. Initially the speed increases,
then it decreases and tends to zero on the horizon. The acceleration is first negative,
then zero and becomes positive. The elevator observer can initially interpret the metric
effects as a inertial force similar to gravitation, but then his measurements will lead him to
interpret a repulsive force as the particle approaches the horizon. These are spatiotemporal
perspective effects experienced by the observer of the rocket. These metric effects due to
the non-inertial character of the frame of reference are sometimes described in terms of
fictitious forces, because the particle in R′ inertial does not undergo any force and follows
a rectilinear and uniform trajectory.

For Minkowskian observers, instantaneously at rest in successive inertial reference
frames that coincide at every moment with R: dtMink = (1 + X)dt then vMink(xvmax) =
c/
√

2 ' 71%c also vmax = vlight/
√

2.

For the proper time, the metric gives τ(X) = tH
√

1− (1 +X)2. In the plane (τ/tH , X)
we have a quarter circle. For example, as shown in figure 12, when the falling speed is
maximum, T = argch

√
2 ' 0.9 and τ/tH = 1/

√
2 ' 0.7. And for the observer of the

vessel at O, the time of the object in free fall freezes, and tends towards tH when the time
of the clock at O tends towards infinity. When a free-falling observer crosses the horizon,
apart from the breaking of the causal link with the vessel, nothing special happens and
his proper time continues to elapse indefinitely.

Figure 10: Falling velocity of a particle re-
leased at rest from O at T = 0. In gray
the classical case.

Figure 11: Particle acceleration during a
free fall in the uniformly accelerating ref-
erence frame.
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Figure 12: The Minkowski diagram in
the non-inertial frame (T,X). The cones
indicate how the coordinate velocity of
light varies with respect to c.

Figure 13: Minkowski diagram in the
Schwarzschild frame (T,R) [9] [10].

4.3 Comparison with the black hole

To broaden our view we will look at another non-inertial frame of reference R defined by
the Schwarzschild metric. We have an observer at far distance from a spherical, static,
neutral and of mass M star. There is also a horizon and the velocity and acceleration
curves show analogies. On the other hand space-time is curved, there is no global change
of coordinates to an underlying inertial reference frame, tidal effects will be present, free
fall is no longer adiabatic because of the emission of gravitational waves, and the metric
changes during the fall if the body is of non-negligible mass in front of the main star [11]
[12]. We will use the Lagrangian approach to determine the equation of motion. The free-
falling particle maximizes its proper time and follows a geodesic. We limit the study to
the adiabatic radial fall of a test mass with an velocity of zero to infinity. The differential
equation is then solved by a numerical approach for the plotting of the curves.
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Metric and Lagrangian for a particle:

ds2 = c2dτ2 = g(r)c2dt2 − dr2

g(r)
with g = 1− rS

r
and rS =

2GM

c2
, (7)

τ =

∫
L(r, v)dt, L =

√
g − β2

g
and L− ∂L

∂v
v = cst. (8)

We obtain, with R = r/rS , T = t/tS , tS = rS/c and aS = c2/rS :

β = −
(

1− 1

R

)
1√
R

and A =
dβ

dT
=

r̈

aS
=

1

2R2

(
1− 1

R

)(
3

R
− 1

)
. (9)

We have vmax = 2/(3
√

3)c ' 38%c at r(vmax) = 3rS [13]. Here too the speed reaches
a maximum and the acceleration changes of sign. The metric effects correspond to gravi-
tation, they cannot be canceled over the whole space by a change of coordinates and they
are well real.

For Minkowskian observers: dtMink =
√
gdt and drMink = dr/

√
g then vMink(rvmax) =

c/
√

3 ' 58%c and vmax = vlight/
√

3 with vlight(rvmax) = 2/3c.

Figure 14: Falling velocity of a particle
dropped without velocity from infinity. In
dark gray the curve according to Newton’s
laws. Dotted the speed of light. In light
gray, the speed for a local observer.

Figure 15: The acceleration of the particle
in radial fall towards a black hole. In gray
the classical curve.

For the proper time the metric gives τ(R) = 2/3(R0
3/2 − R3/2)tS . For example, as

shown in figure 13, with the initial condition τ = 0 when T = 0 at R0 = 10, when the
speed of fall is maximum, T ' 21 and τ/tS ' 18. For an observer outside the black
hole, the time of the falling object freezes on the horizon when the time of its clock tends
towards infinity. Whereas for the observer in free fall, a finite proper time of about 2.8tS
elapses between the maximum speed and the crossing of the horizon, and, apart from the
breaking of the causal link with the outside, nothing special happens during the crossing.
Then 2/3tS of proper time is added until the singularity where the observer is destroyed.
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5 Experimental aspects

5.1 Deviation measurement

The difference is difficult to measure experimentally. We can have an accelerated rocket,
but its width d is very small in front of the horizon distance dH , and, consequently, the
observed deviation is tiny. The deviation depends on the ratio D = d/dH and we perform
a series expansions:

X = RX

√
1− (D − YC)2 /RY

2 − 1

' D

tanθ︸ ︷︷ ︸
rect.traj.

− D2

2β0
2sin2θ︸ ︷︷ ︸

parabol. corr.

+
D3

2β0
2sin2θtanθ

−
[
D4

8β0
4

]
θ=±π

2

+ ...︸ ︷︷ ︸
elliptical corrections

(10)

The term in D2 corresponds to the non-zero first order of the deviation due to the
non-inertial character of the reference frame. The terms D3 and beyond correspond to
the deviation between classical theory and special relativity. For d = 10 m, a = 10 m/s2

and θ = 45°, we have |∆x| ' 11 fm for the parabolic correction of a light ray, or, for the
elliptic correction of a non-zero mass particle of velocity v0 = 10 m/s (bell shot).

Figure 16: Minkowski diagram
(T,X) for a vertical launch.
τ/tH(X) draws a circle arc.

The deviation is extremely small and a direct mea-
surement seems out of reach.

5.2 Desynchronization of clocks

On the other hand, with the precision of atomic clocks,
the time deviation is experimentally accessible. For exam-
ple, let’s launch a clock upwards with a vertical motion.
Let us consider a maximum height reached of h = 45 m.
On its return, when the moving clock falls back in free
fall to the level of the clock that remained at X = 0, with
a = 10 m/s2 and v0 ' 30 m/s, the time difference be-
tween the two clocks is ∆t ' 10 fs for a time of flight of
6 s. For θ = 0 an expansion with respect to β0 gives [7]:

∆t/tH = τ/tH − T = 2(γ0β0 − argthβ0) ' β03/3
with H = γ0 − 1 ' β02/2,

and ∆t ' v03/(3ac2). (11)

5.3 Michelson interferometer

We know the famous experiment of Michelson and Morley carried out from 1881 and which
allowed to demonstrate the non-existence of the ether. The speed of light is therefore the
same in all reference frames of inertia. What happens now if we perform the experiment
in the accelerated reference frame?

In an inertial frame, or, here, horizontally in R, the rays take the same time to go and
return on each of the arms and there is no optical path difference δ at I. We then turn the
interferometer around the axis (OM2) so that arm 1 is up. As light travels faster than c
for positive X, the ray 1 that goes up and returns will be back before the ray 2: according
to Eq.(4), for a round trip of ray 1, T = 2ln(1 + L) ' 2L − L2. Ray 2 follows arcs of
circles, but this effect produces a smaller variation and we can consider the horizontal
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Figure 17: Michelson interferometer with two arms OM1 and OM2 of same length l.

round trip to be along a straight line: according to Eq.(3), for a round trip of ray 2, the
lateral circular trajectory folds on M2 and T = argth(2L) ' 2L + 8/3L3. We turn the
interferometer again by 90° but this time along the axis (Oz) as shown in figure 17. The
situation is now the opposite and it is ray 2 that arrives first. We have drawn the world
lines for configuration a) in figure 18. We deduce the value of the difference of pathlength
and the number of fringes ng that scroll by tilting the interferometer from a) to b):

ng =
2δ

λ
=

2

λ
[argth(2L)− 2ln(1 + L)] dH '

2al2

c2λ
. (12)

Figure 18: Minkowski diagram of the
world lines of rays along the two arms of
the interferometer for the case a).

For a = 10m/s2, l = 10m and λ = 600nm, the calculation gives ng ' 0.4× 10−7. The
variation is less than one ten millionth of a fringe. The larger a and l are, and the smaller
λ is, the more appreciable the effect will be. The spatial coherence of the interference is
not lost with the vertical displacement of ray 2: |∆x| ' 22fm.

Also the arms are not perfectly rigid and we have to consider the mechanical con-
straints exerted on the vertical arm by the proper acceleration. We model the arm by a
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homogeneous cylinder of density ρ and modulus of rigidity E. According to Hooke’s law
σ = Eε with σ the pressure exerted and ε = ∆l/l the relative deformation. The vertical
arm becomes shorter and the ray will go up and return even faster. We calculate the
compression ∆l by integrating over the entire arm, and deduce the difference in travel
time induced by ap (acceleration assumed constant along the arm):

∆l ' ρal2

2E
then na '

4∆l

λ
' 2ρal2

Eλ
and

na
ng
' ρ

E
c2. (13)

Very rigid, low-density materials give an optical pathlength difference of the order
of one fringe: na ' 1. The relative difference na/ng does not depend on a, l or λ but
only on the mechanical properties of the material. The metric effect is tens of millions
of times smaller than that due to mechanical constraints and will therefore be difficult
to isolate experimentally. In a gravitational field, we will have the same results, because
the spacetime curvature and tidal forces appear only at the following orders of the series
expansions [7].

6 Conclusion

The calculations remain relatively simple and allow students to become familiar with
concepts that are partly reused in general relativity. At the same time, this textbook
case helps to avoid a lot of confusion in relativity. Pushing special relativity to its last
non-inertial limits, where an underlying global Minkowskian framework persists, makes it
easy to implement a progressive learning pedagogy of relativity. Moreover, the theoretical
vision is broadened, and perhaps one day direct experimental verifications will be feasible.

References

[1] A. Einstein, Relativity: The Special and the General Theory, in chapter: A few
inferences from the general theory of relativity (1917).

[2] C. Møller, The Theory of Relativity, See p253 in Oxford 1st Ed. (1952).

[3] E. A. Desloge and R. J. Philpott, Uniformly accelerated reference frames in special
relativity, Am. J. Phys. 55(3), 252 (1987), doi:10.1119/1.15197.

[4] E. A. Desloge, Spatial geometry in a uniformly accelerating reference frame, Am. J.
Phys. 57(7), 598 (1989), doi:10.1119/1.15953.

[5] W. Rindler, Relativity: Special, General, and Cosmological, Oxford Univ. Press, See
p71 2nd Ed. (2006).

[6] C. Semay, Observer with a constant proper acceleration, Eur. J. Phys. 27(5), 1157
(2006), doi:10.1088/0143-0807/27/5/015.

[7] M. Rouaud, Special Relativity, A Geometric Approach, ISBN 9782954930930, See
p243, 167, 387 and 157 (2020), http://www.voyagepourproxima.fr/SR.pdf.

[8] J. D. Hamilton, The uniformly accelerated reference frame, Am. J. Phys. 46(1), 83
(1978), doi:10.1119/1.11169.

14

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2021                   doi:10.20944/preprints202103.0230.v2

https://doi.org/10.1119/1.15197
https://doi.org/10.1119/1.15953
https://doi.org/10.1088/0143-0807/27/5/015
http://www.voyagepourproxima.fr/SR.pdf
https://doi.org/10.1119/1.11169
https://doi.org/10.20944/preprints202103.0230.v2


[9] K. S. Thorne, C. W. Misner and J. A. Wheeler, Gravitation, Freeman, ISBN
0716703440, See p848 (1971).

[10] P. Tourrenc, Relativity and Gravitation, Cambridge University Press (1997).

[11] A. D. Spallicci and P. Ritter, A fully relativistic radial fall, Int. J. Geom. Methods
Mod. Phys. 11(10) (2014), doi:10.1142/S021988781450090X.

[12] E. A. Desloge, Nonequivalence of a uniformly accelerating reference frame and a
frame at rest in a uniform gravitational field, Am. J. Phys. 57(12), 1121 (1989),
doi:10.1119/1.15802.

[13] S. I. Blinnikov, L. B. Okun' and M. I. Vysotskii, Critical velocities c/
√

3 and
c/
√

2 in the general theory of relativity, Physics-Uspekhi 46(10), 1099 (2003),
doi:10.1070/pu2003v046n10abeh001661.

15

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2021                   doi:10.20944/preprints202103.0230.v2

https://doi.org/10.1142/S021988781450090X
https://doi.org/10.1119/1.15802
https://doi.org/10.1070/pu2003v046n10abeh001661
https://doi.org/10.20944/preprints202103.0230.v2

