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Abstract: Machine learning (ML) has a large capacity to learn and analyze a large volume of data. 

This study aimed to train different algorithms to discriminate between healthy and pathologic cor-

neal images by evaluating digitally processed spectral-domain optical coherence tomography (SD-

OCT) corneal images. A set of 22 SD-OCT images belonging to a random set of corneal pathologies 

was compared to 71 healthy corneas (control group). A binary classification method was applied; 

three approaches of ML were used. Once all images were analyzed, representative areas from every 

digital image were also processed and analyzed for a statistical feature comparison between healthy 

and pathologic corneas. The best performance was obtained from transfer learning - support vector 

machine (TL-SVM) (AUROC = 0.94, SPE 88%, SEN 100%) and transfer learning – random forest (TL- 

RF) method (AUROC = 0.92, SPE 84%, SEN 100%), followed by convolutional neural network (CNN) 

(AUROC = 0.84, SPE 77%, SEN 91%) and random forest (AUROC = 0.77, SPE 60%, SEN 95%). The 

highest diagnostic accuracy in classifying corneal images was achieved with the TL-SVM and the 

TL-RF models. In image classification, CNN was a strong predictor. This pilot experimental study 

developed a systematic mechanized system to discern pathologic from healthy corneas. 

Keywords: Artificial intelligence; machine learning; cornea; SD-OCT; keratoconus; ectasia; keratitis; 

random forest, convolutional neural network; transfer learning.  

 

1. Introduction 

Despite recent advances in corneal digital imaging analysis, an objective and repro-

ducible system for preclinical detection and measurement of corneal pathologic changes 

is still an unmet goal. Standardized quantitative measurement of different corneal struc-

tural alterations, such as stromal thinning and edema, inflammatory infiltration, fibrosis, 

and scarring, are crucial for early detection, objective documentation, grading, and dis-

ease progression.  

A major disadvantage of spectral-domain optical coherence tomography (SD-OCT) 

corneal pathology imaging is that it fails to provide precise measurement values associ-

ated with specific diseases compared to other technologies such as corneal topography-

tomography and aberrometry that could guide clinicians to a more objective diagnostic 

analysis. 

During the last two decades, computer science research has evolved like no other 

field in humankind. Artificial intelligence (AI) has an immense capacity to learn and ana-

lyze a large volume of data and, simultaneously, autocorrect and continues learning to 

improve the sensitivity and specificity as a diagnostic and disease progression tool in 

medicine. Hence, AI has a promising future application in ophthalmology. Recently, 
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supervised ML has been applied to systematic identification and diagnosis of different 

ocular pathologies, including diabetic retinopathy[1,2], age-related macular degenera-

tion[3–6], glaucoma[7–9], keratoconus[10–13], among others. Different deep learning and 

conventional machine learning methods of analysis have been used in ophthalmology; 

among the most commonly used ones are random forest (RF)[14], support vector machine 

(SVM)[15,16], convolutional neural network (CNN)[17,18], and transfer learning (TL)[19–

21]. RF solves classification and regression problems based on rules to binary split data 

by assembling many decision trees for classification. In this model, the prediction is made 

by majority voting[22]. In SVM, a given labeled training data is submitted to an algorithm 

that outputs an optimal hyperplane which separates the elements of different groups[23]. 

CNN employs algorithms that use a cascade of multilayered artificial neural networks for 

feature extraction and transformation of data, and TL is a machine learning method where 

a model developed (eg., fine-tuned weights) for a task is reused as the starting point for a 

model on a second task[24]. These deep learning algorithms provide an extraordinary 

amount of information, which is crucial for data analysis, but also such information can 

be overwhelming and may significantly affect decision making. 

This study aimed to train different AI algorithms to discriminate between healthy 

and pathologic corneal images by evaluating digitally processed SD-OCT corneal images. 

2. Materials and Methods 

A prospective, cross-sectional, pilot exploratory cohort study was designed. All pa-

tients read and signed informed consent to voluntarily participate in the study, which was 

previously approved by the Ethics and Research Committees of our institution (protocol 

registration No. CONBIOETICA-14-CEI-0003-2019 and 18-CI-14-120058, respectively), 

and conducted according to the tenets of the Declaration of Helsinki.  

SD-OCT is now a conventional imaging diagnostic tool in the clinical environment 

that helps study the microstructural changes of different eye pathologies, including the 

cornea. SD-OCT provides non-contact in-vivo corneal cross-sectional, high-resolution im-

ages. The RTVue-100 (Optovue®, Fremont, CA. USA) SD-OCT corneal module permits a 

high-speed acquisition of image frames (1,024 axial scans in 0.4 seconds) with little motion 

artifacts, reducing background noise. This SD-OCT works at a wavelength of 830nm, and 

a speed of 26,000 A-scans per second[25]. 

The experiments shown below were performed on a dataset comprising corneal im-

ages belonging to a random set of corneal pathologies. This set of images was compared 

to healthy corneas (control group). The problem was confronted using binary classifica-

tion methods. The quest illustrates three approaches: 

1. Traditional machine learning, including RF and SVM.  

2. Deep learning using end-to-end CNN.  

3. TL using the pre-trained model (e.g., AlexNet)[26]. 

 

A) Segmentation and Feature Extraction 

Cornea Scan Postprocessing: Digital SD-OCT images usually are contaminated with 

noise inherited from the sensor (Figure 1a). This problem is easily circumvented by ap-

plying a 2D median filter. Nevertheless, in order to extract statistical features from these 

images, one must do what is known in the imaging domain as image segmentation, which 

partitions the image into different segments (a.k.a., regions), which are, in our case, three 

segments (background, corneal image, and region of interest) as shown in Figure 1. In the 

figure, the cornea region mask is obtained by applying contrast limited adaptive histo-

gram equalization (CLAHE) followed by fixed thresholding (Figure 1b). The background 

region is simply the inverse of the mask (Figure 1c). The region of interest (ROI) is ob-

tained using our fast image segmentation method based on Delaunay Triangula-

tions,[27,28] which is fully automatic and does not require specifying the number of clus-

ters, as is the case with the k-means clustering[29] or the multilevel image thresholds using 

Otsu’s method[30] (Figure 1d). 
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Figure 1. Digital image segmentation process. In order to extract statistical features, image seg-

mentation was performed into different portions. 

Feature Extraction: In image processing and its intersection with machine learning, 

feature extraction plays a crucial role in pattern recognition. The process starts by calcu-

lating a set of measured data from images intended to be informative and non-redundant, 

facilitating subsequent machine learning tasks. There is a plethora of features one can ex-

tract from images; however, in this study, we resorted to measuring a few simple statisti-

cal features, which are: 1) the mean intensity value, 2) the standard deviation of values, 3) 

the ratio of features (“/” denotes the ratio of two columns, eg., H/J is the ratio of column 

H and column J), and 4) the absorbance (Table 1). Absorbance is a transform made to the 

image, calculated by using ln(A/A ), where ln is the natural logarithm, A is the image, and 

𝐴 is the mean of the background region of A (Figure. 1). 
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Table 1. Sample of statistical features retrieved from all corneal SD-OCT digital images. Mean: 

mean intensity value; std: standard deviation value; “/”: ratio of two columns; ROI: region of inter-

est. 

Column B C D E F G H I J K L M N O P Q  

Feature # #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16  

Feature/ 

Patient 

mean

Corne

a 

meanCor

neaAbso

rbance 

stdCor

nea 

stdCorneaA

bsorbance 

B/D C/E 

meanR

OI 

meanROIA

bsorbance 

stdROI 

stdROIAb

sorbance 

H/J I/K H/B J/D I/C K/E Label 

1 

81.608

56298 

1.632988

07 

48.8462

7884 

0.624292992 

1.67072

2211 

2.61573

9869 

184.692

0656 

2.569931007 

30.5683

7893 

0.16094087

4 

6.04193

1959 

15.9681

6861 

2.26314

5666 

0.62580

7731 

1.57375

9818 

0.25779

7021 

Healthy 

2 

74.053

86141 

1.164938

42 

48.4912

1628 

0.542022869 

1.52716

0321 

2.14924

2194 

177.471

7582 

2.023791252 

29.5678

8087 

0.16810316

7 

6.00218

0507 

12.0389

8352 

2.39652

2677 

0.60975

746 

1.73725

1702 

0.31014

0358 

Healthy 

3 

90.311

20278 

2.137742

167 

57.1522

065 

0.714624194 

1.58018

7508 

2.99142

1483 

201.036

2925 

3.146969188 

14.6166

5438 

0.07157747

3 

13.7539

1983 

43.9659

1629 

2.22603

9365 

0.25574

9608 

1.47209

9506 

0.10016

0999 

Pathologic 

4 

69.848

67255 

1.466197

69 

42.5004

1774 

0.607825603 

1.64348

2023 

2.41220

1266 

157.582

0257 

2.362927459 

20.6386

2454 

0.12815301

4 

7.63529

6886 

18.4383

2923 

2.25604

8969 

0.48560

9922 

1.61160

2224 

0.21083

8459 

Healthy 

5 

107.03

24462 

3.380685

912 

51.7275

7053 

0.620774315 

2.06915

6643 

5.44591

7832 

206.947

3494 

4.184606264 

20.4003

243 

0.09684122 

10.1443

1665 

43.2110

0296 

1.93350

1072 

0.39438

0097 

1.23779

8001 

0.15600

0688 

Pathologic 

 

B) Experimental Set-up 

Random forest: The experimental set up to execute RF classification of data into 

healthy or pathologic images comprises two stages. The bag of decision trees is set to 50 

growing trees (this number provides the right balance between AUC, processing time, 

and memory usage) in the training stage, which was used with a training set of 50 control 

and 15 pathologic images. The RF constructs decision trees based on the predictive char-

acteristics of the features in Table 1. See also Figure 2 for a visualization of three out of the 

fifty trees. Figure 3 depicts how RF optimizes its performance across several growing trees 

(50 trees in our case) by performing out-of-bag (OBD) error calculation. The training phase 

converges into a model that we used, in the second stage, on a new validation test dataset 

comprising 21 controls and 7 pathologic images. 

 

 

Figure 2. Random forest tree visualization. Ensemble classifiers from the aggregation of multiple 

decision trees. 
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Figure 3. Random forest classification error minimization across the growing trees during training. 

RF optimizes its performance across several growing trees (50 trees) by performing out-of-bag 

(OBD) error calculation. 

 

Convolutional Neural Network: CNN is a deep learning method and architecture 

that is well known in its capabilities for image classification. Input image dimensions are 

fixed to [227 227 3] (to match that of the AlexNet pre-trained model input size require-

ment), and the fully connected layer is set to two classes (healthy/pathologic). The archi-

tecture embodies three convolution layers, each of which has a filter size of 5-by-5, the 

activation function is set to the rectified linear unit (ReLU), and the number of epochs is 

set to eight. Images are fed directly to the CNN classifier with the same training and test-

ing proportions as in section A. 

Transfer Learning: In TL, the statistical model we use for prediction had been pre-

trained on an enormous data set of natural images (eg., millions of samples); and the 

weights are then used in local learning. Features were augmented to yield 4096 features, 

which are then fed to classifiers with the same training and testing proportions as in sec-

tion A. They used shallow learning classifiers are the SVM and RF. 

Statistical metrics analysis: We categorized the registries in cases with corneal pathol-

ogy and healthy corneal OCT entries. We used traditional machine learning, including 

random forest (RF) and support vector machine (SVM); deep learning using the convolu-

tional neural network (CNN); and transfer learning (TL) using a pre-trained model (e.g., 

AlexNet). Then we applied the algorithm to another image matrix and finally measured 

the model precision, relative risk, sensitivity, specificity, negative predictive, and positive 

predictive values of the algorithm. Receiver operating characteristic (ROC) curves were 

analyzed to determine the optimal cut-off values, sensitivity, and specificity. The area un-

der the curve (AUC) was used as a measure of accuracy. Accuracy was measured on the 

test dataset (correctly predicted class/total testing class) × 100. All measurements are re-

ported as the average of 10 runs on a random selection of samples to eliminate any train-

ing/test dataset selection bias. For all models, the data was divided according to the same 

ratio shown in Table 2. 
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Table 2. Training and test data ratio. 

 

 

 

 

 

All of the 

experiments, including the developed algorithms, were implemented using MATLAB 

ver. 9.5.0.944444 (R2018b) and IP Toolbox ver. 10.3 running on a 64-bit workstation with 

Windows 10 and 32.GB of RAM, 2.60 GHz. 

3. Results 

A total of 93 SD-OCT corneal images were registered in the study, 71 images formed 

part of the control group, and 22 pathologic images were included in the experimental 

group. The latter comprised 14 (63.6%) ectatic corneas and 8 (36.4%) corneas with infec-

tious keratitis. The total analyzed corneas belonged to 55 (59.2%) women and 38 (40.8%) 

men. The mean age of patients in the experimental group was 38.68 ± 11.74 years, and in 

the control group, 45.56 ± 20.69 years.  

 

 We tested each model sequence's accuracy to assign the entry as pathologic or 

healthy. The RF method (AUROC = 0.77, SPE 60%, SEN 95%) had the lowest precision in 

the set (86.07%, ±5.44); however, the model only used 16 possible features extracted from 

the data, followed by CNN (AUROC = 0.84, SPE 77%, SEN 91%). Figure 4 displays the 

importance of statistical features of images analyzed by RF. The measure represents the 

increase in prediction error for any given variable if that variable's values are permuted 

across the out-of-bag observations. This measure is computed for every tree, then aver-

aged over the entire ensemble, and divided by the standard deviation over the entire en-

semble. It appears that features 12, 13, and 15 (e.g., corresponding to columns M, N, P in 

Table 1) are the most important in this classification model (Figure. 4). 

 

 

 Healthy Pathologic 

Train data set 50 (77%) 15 (23%) 

Test data set 21 (75%) 7 (25%) 

Sum 71 (76%) 22 (24%) 
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Figure 4. Features importance using the random forest method. Represents the increase in predic-

tion error for any given variable if the values of that variable are permuted across the out-of-bag 

observations. 

Algorithms that used more (4,096) had higher precision. The transfer learning-SVM 

model yielded the best results (TL-SVM. AUROC = 0.94, SPE 88.12%, SEN 100%) followed 

by the transfer learning-RF model (TL-RF. AUROC = 0.92, SPE 84%, SEN 100%). The vis-

ualization of this classification's performance can be further examined in Figure 5 showing 

the best performing test's confusion matrices from the 10 random tests for each algorithm. 

Table 3 summarizes the outcomes of the constructed models. 

 

 

Figure 5. Confusion charts. Performance visualization using confusion matrix charts for the exam-

ined classification problem using the four different approaches (best accuracy out of the ten tests). 

 Table 3. Performance of the classification methods using different algorithms. (*) All metrics are 

the average over 10 runs (**) Area under the curve (-) CNN extracts its own features automatically 

from images. PPV: positive predictive value; NPV: negative predictive value. 

4. Discussion 

AI is an upcoming technology in medicine that enables us to facilitate early detection; 

diagnosis accuracy; objective evaluation of disease progression; and detailed follow-up of 

therapeutic results of certain ophthalmologic disorders, particularly those most related to 

Method # of Features 
Accuracy 

(%) 
Specificity 

Sensitivity 

(Recall) 
PPV NPV 

Youden 

Index 
AUC** 

RF 16 86.07±5.44 0.60±0.20 0.95±0.05 0.88±0.05 0.83±0.16 0.55±0.19 0.77±0.10 

CNN - 86.79±6.95 0.77±0.16 0.91±0.04 0.92±0.06 0.71±0.13 0.67±0.19 0.84±0.10 

TL-

SVM 
4,096 97.14±2.82 0.88±0.12 1.00 0.96±0.04 1.00 0.88±0.12 0.94±0.06 

TL-RF 4,096 96.07±4.89 0.84±0.18 1.00 0.95±0.05 1.00 0.84±0.18 0.92±0.09 
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images of specific ocular structures, like the cornea, iris, lens, and retina.[24] It is a pow-

erful tool that permits us to increase the diagnostic sensitivity and specificity of ophthal-

mic pathology[31]. 

The analysis of the corneal shape, refractive power, and in-depth microstructural 

changes related to degenerative, infectious, or inflammatory pathologies has significantly 

evolved in recent years through the development of topography, tomography, and aber-

rometry, which yield more accurate corneal measurements. Because these devices gener-

ate multiple maps and images of the cornea, the amount of data available from each ac-

quisition may be overwhelming. Therefore, machine learning algorithms are being ap-

plied for early detection and accurate progression analysis of different corneal conditions, 

including keratoconus and endothelial health[12,31,32]. Currently, refractive surgery 

screening is the most fertile field for machine learning development in corneal disease. 

The reason for this is the increased risk of iatrogenic post-LASIK keratectasia due to un-

recognized preoperative evaluation[12]. 

We tested different machine learning algorithms' performance for the discrimination 

between pathologic and healthy corneas to optimize their role in early detection, differen-

tiation, and monitoring disease progression of different corneal pathologies. Artificial 

neural networks like CNN are strong predictors in image classification, with the ad-

vantage of dealing with noisy and missed clinical data, understanding complex data pat-

terns in a way not possible for linear and non-linear calculations. However, this model 

requires massive clinical datasets (in the order of tens of thousands) for proper train-

ing[33], explaining why the CNN model performed poorly with the limited data set used 

for analysis in the present study[1]. Moreover, the availability of large training datasets is 

not always feasible, especially in corneal imaging analysis, where there are specific diffi-

culties, including the devices´ high costs, technical acquisition challenges, and methodol-

ogy differences that prevent building large datasets, thus making it a challenging task, if 

not impossible. When analyzing large datasets, there is a need for high computational 

power, limiting availability and increasing costs. 

On the other hand, our results highlight the benefit of adopting the TL approach. A 

linear solution (two dimensional) is impossible in many ophthalmologic cases; therefore, 

getting a solution in a higher-dimensional dataset is required. An advantage of the TL-RF 

method is that it can model nonlinear class boundaries and may give variable importance, 

but at the same time, it may be slow, and it may be difficult to get insights into the decision 

rules. The TL-SVM solves the linearity problem with a relatively less computational cost 

using the kernel trick; a function used to obtain nonlinear variants of a selected algo-

rithm[23]. In the present study, the highest diagnostic accuracy in classifying normal from 

pathologic corneal images was achieved with the TL-SVM and the TL-RF models in this 

order. Although transfer learning models (e.g., AlexNet) are models that have been 

trained to extract reliable and unique features from millions of raw images, it is proven 

here that their image descriptors can be extended to medical images. 

Indeed, random forest learning models can achieve satisfactory outcomes with small 

datasets, but with the inconvenience of requiring a manual selection of specific visual fea-

tures before classification. This condition can result in a set of suboptimal features that 

limits the application of the algorithms[31]. RF generates meta-models or ensembles of 

decision trees, and it is capable of fitting highly nonlinear data given relatively small sam-

ples[34]. RF reached this performance with merely 16 features (values), a strong indication 

that if more statistical features (hypothetically driven by ophthalmology experts) are 

added, the model may, with overwhelming probability, outperform CNN in this small 

dataset. Additionally, unlike other deep learning models, RF models are capable of pin-

pointing individual feature significance, which can help trace back diseases and trigger 

scientific discovery or physiological new findings. 

Considering potential future research directions, we envision extending this work 

to classify different corneal disease sub-types; this will eventually aid clinicians in their 

diagnostic procedures. Furthermore, we aim to develop algorithms for risk prediction of 

corneal disease, which will help us identify individuals at higher risk of developing a 
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corneal disease (e.g., personalized medicine), hence improving its earlier detection before 

the disease reaches a devastating stage. However, as mentioned before, the necessity of 

collecting a substantial amount of data to get more accurate predictions and also to be 

able to use RF algorithms that are more suitable for image analysis is imperative, but an 

arduous task[35,36]. 

 

 

5. Conclusions  

Applying AI optimal algorithms to different corneal pathologies for early detection, 

accurate diagnosis, and disease progression is a challenging job. There are economic lim-

itations related to the high costs of equipment, technical acquisition challenges, and dif-

ferences in the methodologic analysis that make it difficult to build large and reliable da-

tasets. Furthermore, without the availability of vast datasets to feed data-hungry machine 

learning, the algorithms would be limited in their capability to give reliable results. 

In the present experimental study with limited dataset samples, TL-SVM and TL-RF 

showed better sensitivity and specificity indices, and hence, they were more accurate to 

discriminate between healthy and pathologic corneas. On the contrary, the CNN algo-

rithm showed less reliable results due to the limited samples. We believe that this revolu-

tionary technology will mark the beginning of a new trend in image processing and cor-

neal SD-OCT analysis, differing from current tendencies, where different anatomic char-

acteristics like reflectivity, shadowing, thickness, among others, are subjectively analyzed. 
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