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Abstract: Machine learning (ML) has a large capacity to learn and analyze a large volume of data.
This study aimed to train different algorithms to discriminate between healthy and pathologic cor-
neal images by evaluating digitally processed spectral-domain optical coherence tomography (SD-
OCT) corneal images. A set of 22 SD-OCT images belonging to a random set of corneal pathologies
was compared to 71 healthy corneas (control group). A binary classification method was applied;
three approaches of ML were used. Once all images were analyzed, representative areas from every
digital image were also processed and analyzed for a statistical feature comparison between healthy
and pathologic corneas. The best performance was obtained from transfer learning - support vector
machine (TL-SVM) (AUROC = 0.94, SPE 88%, SEN 100%) and transfer learning — random forest (TL-
RF) method (AUROC =0.92, SPE 84%, SEN 100%), followed by convolutional neural network (CNN)
(AUROC = 0.84, SPE 77%, SEN 91%) and random forest (AUROC = 0.77, SPE 60%, SEN 95%). The
highest diagnostic accuracy in classifying corneal images was achieved with the TL-SVM and the
TL-RF models. In image classification, CNN was a strong predictor. This pilot experimental study
developed a systematic mechanized system to discern pathologic from healthy corneas.

Keywords: Artificial intelligence; machine learning; cornea; SD-OCT; keratoconus; ectasia; keratitis;
random forest, convolutional neural network; transfer learning.

1. Introduction

Despite recent advances in corneal digital imaging analysis, an objective and repro-
ducible system for preclinical detection and measurement of corneal pathologic changes
is still an unmet goal. Standardized quantitative measurement of different corneal struc-
tural alterations, such as stromal thinning and edema, inflammatory infiltration, fibrosis,
and scarring, are crucial for early detection, objective documentation, grading, and dis-
ease progression.

A major disadvantage of spectral-domain optical coherence tomography (SD-OCT)
corneal pathology imaging is that it fails to provide precise measurement values associ-
ated with specific diseases compared to other technologies such as corneal topography-
tomography and aberrometry that could guide clinicians to a more objective diagnostic
analysis.

During the last two decades, computer science research has evolved like no other
field in humankind. Artificial intelligence (AI) has an immense capacity to learn and ana-
lyze a large volume of data and, simultaneously, autocorrect and continues learning to
improve the sensitivity and specificity as a diagnostic and disease progression tool in
medicine. Hence, Al has a promising future application in ophthalmology. Recently,
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supervised ML has been applied to systematic identification and diagnosis of different
ocular pathologies, including diabetic retinopathy[1,2], age-related macular degenera-
tion[3-6], glaucoma[7-9], keratoconus[10-13], among others. Different deep learning and
conventional machine learning methods of analysis have been used in ophthalmology;
among the most commonly used ones are random forest (RF)[14], support vector machine
(SVM)[15,16], convolutional neural network (CNN)[17,18], and transfer learning (TL)[19-
21]. RF solves classification and regression problems based on rules to binary split data
by assembling many decision trees for classification. In this model, the prediction is made
by majority voting[22]. In SVM, a given labeled training data is submitted to an algorithm
that outputs an optimal hyperplane which separates the elements of different groups[23].
CNN employs algorithms that use a cascade of multilayered artificial neural networks for
feature extraction and transformation of data, and TL is a machine learning method where
a model developed (eg., fine-tuned weights) for a task is reused as the starting point for a
model on a second task[24]. These deep learning algorithms provide an extraordinary
amount of information, which is crucial for data analysis, but also such information can
be overwhelming and may significantly affect decision making.

This study aimed to train different Al algorithms to discriminate between healthy
and pathologic corneal images by evaluating digitally processed SD-OCT corneal images.

2. Materials and Methods

A prospective, cross-sectional, pilot exploratory cohort study was designed. All pa-
tients read and signed informed consent to voluntarily participate in the study, which was
previously approved by the Ethics and Research Committees of our institution (protocol
registration No. CONBIOETICA-14-CEI-0003-2019 and 18-CI-14-120058, respectively),
and conducted according to the tenets of the Declaration of Helsinki.

SD-OCT is now a conventional imaging diagnostic tool in the clinical environment
that helps study the microstructural changes of different eye pathologies, including the
cornea. SD-OCT provides non-contact in-vivo corneal cross-sectional, high-resolution im-
ages. The RTVue-100 (Optovue®, Fremont, CA. USA) SD-OCT corneal module permits a
high-speed acquisition of image frames (1,024 axial scans in 0.4 seconds) with little motion
artifacts, reducing background noise. This SD-OCT works at a wavelength of 830nm, and
a speed of 26,000 A-scans per second[25].

The experiments shown below were performed on a dataset comprising corneal im-
ages belonging to a random set of corneal pathologies. This set of images was compared
to healthy corneas (control group). The problem was confronted using binary classifica-
tion methods. The quest illustrates three approaches:

1. Traditional machine learning, including RF and SVM.

2. Deep learning using end-to-end CNN.

3. TL using the pre-trained model (e.g., AlexNet)[26].

A) Segmentation and Feature Extraction

Cornea Scan Postprocessing: Digital SD-OCT images usually are contaminated with
noise inherited from the sensor (Figure 1a). This problem is easily circumvented by ap-
plying a 2D median filter. Nevertheless, in order to extract statistical features from these
images, one must do what is known in the imaging domain as image segmentation, which
partitions the image into different segments (a.k.a., regions), which are, in our case, three
segments (background, corneal image, and region of interest) as shown in Figure 1. In the
figure, the cornea region mask is obtained by applying contrast limited adaptive histo-
gram equalization (CLAHE) followed by fixed thresholding (Figure 1b). The background
region is simply the inverse of the mask (Figure 1c). The region of interest (ROI) is ob-
tained using our fast image segmentation method based on Delaunay Triangula-
tions,[27,28] which is fully automatic and does not require specifying the number of clus-
ters, as is the case with the k-means clustering[29] or the multilevel image thresholds using
Otsu’s method[30] (Figure 1d).
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a) Pathologic cornea b) Cornea region

¢) Background region d) Region of interest

Figure 1. Digital image segmentation process. In order to extract statistical features, image seg-
mentation was performed into different portions.

Feature Extraction: In image processing and its intersection with machine learning,
feature extraction plays a crucial role in pattern recognition. The process starts by calcu-
lating a set of measured data from images intended to be informative and non-redundant,
facilitating subsequent machine learning tasks. There is a plethora of features one can ex-
tract from images; however, in this study, we resorted to measuring a few simple statisti-
cal features, which are: 1) the mean intensity value, 2) the standard deviation of values, 3)
the ratio of features (“/” denotes the ratio of two columns, eg., H/J is the ratio of column
H and column J), and 4) the absorbance (Table 1). Absorbance is a transform made to the
image, calculated by using In(A/A ), where In is the natural logarithm, A is the image, and
A is the mean of the background region of A (Figure. 1).
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Table 1. Sample of statistical features retrieved from all corneal SD-OCT digital images. Mean:
mean intensity value; std: standard deviation value; “/”: ratio of two columns; ROI: region of inter-

est.
Column B C D E F G H I J K L M N o P Q
Feature # #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16
mean meanCor
Feature/ stdCor stdCorneaA meanR meanROIA stdROIAb
Corne neaAbso B/D C/E stdROI H/J /K H/B J/D 1c K/E Label
Patient nea bsorbance oI bsorbance sorbance
E rbance
81.608 1.632988 48.8462 1.67072 2.61573 184.692 30.5683 0.16094087 6.04193 15.9681 226314 0.62580 1.57375 0.25779
1 0.624292992 2.569931007 Healthy
56298 07 7884 2211 9869 0656 7893 4 1959 6861 5666 7731 9818 7021
74.053 1.164938 48.4912 1.52716 214924 177.471 29.5678 0.16810316 6.00218 12.0389 2.39652 0.60975 1.73725 0.31014
2 0.542022869 2.023791252 Healthy
86141 42 1628 0321 2194 7582 8087 7 0507 8352 2677 746 1702 0358
90.311 2137742 57.1522 1.58018 2.99142 201.036 14.6166 0.07157747 13.7539 43.9659 2.22603 0.25574 1.47209 0.10016
3 0.714624194 3.146969188 Pathologic
20278 167 065 7508 1483 2925 5438 3 1983 1629 9365 9608 9506 0999
69.848 1.466197 42.5004 1.64348 2.41220 157.582 20.6386 0.12815301 7.63529 18.4383 2.25604 0.48560 1.61160 0.21083
4 0.607825603 2.362927459 Healthy
67255 69 1774 2023 1266 0257 2454 4 6886 2923 8969 9922 2224 8459
107.03 3.380685 51.7275 2.06915 5.44591 206.947 20.4003 10.1443 43.2110 1.93350 0.39438 1.23779 0.15600
5 0.620774315 4.184606264 0.09684122 Pathologic
24462 912 7053 6643 7832 3494 243 1665 0296 1072 0097 8001 0688

B) Experimental Set-up

Random forest: The experimental set up to execute RF classification of data into
healthy or pathologic images comprises two stages. The bag of decision trees is set to 50
growing trees (this number provides the right balance between AUC, processing time,
and memory usage) in the training stage, which was used with a training set of 50 control
and 15 pathologic images. The RF constructs decision trees based on the predictive char-
acteristics of the features in Table 1. See also Figure 2 for a visualization of three out of the
fifty trees. Figure 3 depicts how RF optimizes its performance across several growing trees
(50 trees in our case) by performing out-of-bag (OBD) error calculation. The training phase
converges into a model that we used, in the second stage, on a new validation test dataset
comprising 21 controls and 7 pathologic images.
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Figure 2. Random forest tree visualization. Ensemble classifiers from the aggregation of multiple
decision trees.
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Figure 3. Random forest classification error minimization across the growing trees during training.
RF optimizes its performance across several growing trees (50 trees) by performing out-of-bag
(OBD) error calculation.

Convolutional Neural Network: CNN is a deep learning method and architecture
that is well known in its capabilities for image classification. Input image dimensions are
fixed to [227 227 3] (to match that of the AlexNet pre-trained model input size require-
ment), and the fully connected layer is set to two classes (healthy/pathologic). The archi-
tecture embodies three convolution layers, each of which has a filter size of 5-by-5, the
activation function is set to the rectified linear unit (ReLU), and the number of epochs is
set to eight. Images are fed directly to the CNN classifier with the same training and test-
ing proportions as in section A.

Transfer Learning: In TL, the statistical model we use for prediction had been pre-
trained on an enormous data set of natural images (eg., millions of samples); and the
weights are then used in local learning. Features were augmented to yield 4096 features,
which are then fed to classifiers with the same training and testing proportions as in sec-
tion A. They used shallow learning classifiers are the SVM and RF.

Statistical metrics analysis: We categorized the registries in cases with corneal pathol-
ogy and healthy corneal OCT entries. We used traditional machine learning, including
random forest (RF) and support vector machine (SVM); deep learning using the convolu-
tional neural network (CNN); and transfer learning (TL) using a pre-trained model (e.g.,
AlexNet). Then we applied the algorithm to another image matrix and finally measured
the model precision, relative risk, sensitivity, specificity, negative predictive, and positive
predictive values of the algorithm. Receiver operating characteristic (ROC) curves were
analyzed to determine the optimal cut-off values, sensitivity, and specificity. The area un-
der the curve (AUC) was used as a measure of accuracy. Accuracy was measured on the
test dataset (correctly predicted class/total testing class) x 100. All measurements are re-
ported as the average of 10 runs on a random selection of samples to eliminate any train-
ing/test dataset selection bias. For all models, the data was divided according to the same
ratio shown in Table 2.
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Table 2. Training and test data ratio.

Healthy Pathologic
Train data set 50 (77%) 15 (23%)
Test data set 21 (75%) 7 (25%)
Sum 71 (76%) 22 (24%)

All of the
experiments, including the developed algorithms, were implemented using MATLAB
ver. 9.5.0.944444 (R2018b) and IP Toolbox ver. 10.3 running on a 64-bit workstation with
Windows 10 and 32.GB of RAM, 2.60 GHz.

3. Results

A total of 93 SD-OCT corneal images were registered in the study, 71 images formed
part of the control group, and 22 pathologic images were included in the experimental
group. The latter comprised 14 (63.6%) ectatic corneas and 8 (36.4%) corneas with infec-
tious keratitis. The total analyzed corneas belonged to 55 (59.2%) women and 38 (40.8%)
men. The mean age of patients in the experimental group was 38.68 + 11.74 years, and in
the control group, 45.56 + 20.69 years.

We tested each model sequence's accuracy to assign the entry as pathologic or
healthy. The RF method (AUROC = 0.77, SPE 60%, SEN 95%) had the lowest precision in
the set (86.07%, +5.44); however, the model only used 16 possible features extracted from
the data, followed by CNN (AUROC = 0.84, SPE 77%, SEN 91%). Figure 4 displays the
importance of statistical features of images analyzed by RF. The measure represents the
increase in prediction error for any given variable if that variable's values are permuted
across the out-of-bag observations. This measure is computed for every tree, then aver-
aged over the entire ensemble, and divided by the standard deviation over the entire en-
semble. It appears that features 12, 13, and 15 (e.g., corresponding to columns M, N, P in
Table 1) are the most important in this classification model (Figure. 4).
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Figure 4. Features importance using the random forest method. Represents the increase in predic-
tion error for any given variable if the values of that variable are permuted across the out-of-bag
observations.

Algorithms that used more (4,096) had higher precision. The transfer learning-SVM
model yielded the best results (TL-SVM. AUROC =0.94, SPE 88.12%, SEN 100%) followed
by the transfer learning-RF model (TL-RF. AUROC = 0.92, SPE 84%, SEN 100%). The vis-
ualization of this classification's performance can be further examined in Figure 5 showing
the best performing test's confusion matrices from the 10 random tests for each algorithm.
Table 3 summarizes the outcomes of the constructed models.

Confusion chartof RF (best result ACC =93%) Confusion chartof CNN (bestresult ACC = 92.86%)
Healthy Pathologic Healthy Pathologic

Healthy
Healthy

True class
True class

Pathologic
o
o
Pathologic
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Confusion chartof TL-RF (bestresult ACC =100%) Confusion chartof TL-SVM (best result ACC =100%)
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Pathologic
@
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Figure 5. Confusion charts. Performance visualization using confusion matrix charts for the exam-
ined classification problem using the four different approaches (best accuracy out of the ten tests).

Table 3. Performance of the classification methods using different algorithms. (*) All metrics are
the average over 10 runs (**) Area under the curve (-) CNN extracts its own features automatically
from images. PPV: positive predictive value; NPV: negative predictive value.

Accuracy Sensitivity Youden
Method  # of Features Specificity PPV NPV AUC**
(%) (Recall) Index
RF 16 86.07+5.44 0.60+0.20 0.95+0.05 0.88+0.05 0.83+0.16  0.55+0.19 0.77+0.10
CNN - 86.79+6.95 0.77+0.16 0.91+0.04 0.92+0.06 0.71#0.13  0.67+0.19 0.84+0.10
TL-
4,096 97.14+2.82 0.88+0.12 1.00 0.96+0.04 1.00 0.88+0.12 0.94+0.06
SVM
TL-RF 4,096 96.07+4.89 0.84+0.18 1.00 0.95+0.05 1.00 0.84+0.18 0.92+0.09

4. Discussion

Al is an upcoming technology in medicine that enables us to facilitate early detection;
diagnosis accuracy; objective evaluation of disease progression; and detailed follow-up of
therapeutic results of certain ophthalmologic disorders, particularly those most related to
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images of specific ocular structures, like the cornea, iris, lens, and retina.[24] It is a pow-
erful tool that permits us to increase the diagnostic sensitivity and specificity of ophthal-
mic pathology[31].

The analysis of the corneal shape, refractive power, and in-depth microstructural
changes related to degenerative, infectious, or inflammatory pathologies has significantly
evolved in recent years through the development of topography, tomography, and aber-
rometry, which yield more accurate corneal measurements. Because these devices gener-
ate multiple maps and images of the cornea, the amount of data available from each ac-
quisition may be overwhelming. Therefore, machine learning algorithms are being ap-
plied for early detection and accurate progression analysis of different corneal conditions,
including keratoconus and endothelial health[12,31,32]. Currently, refractive surgery
screening is the most fertile field for machine learning development in corneal disease.
The reason for this is the increased risk of iatrogenic post-LASIK keratectasia due to un-
recognized preoperative evaluation[12].

We tested different machine learning algorithms' performance for the discrimination
between pathologic and healthy corneas to optimize their role in early detection, differen-
tiation, and monitoring disease progression of different corneal pathologies. Artificial
neural networks like CNN are strong predictors in image classification, with the ad-
vantage of dealing with noisy and missed clinical data, understanding complex data pat-
terns in a way not possible for linear and non-linear calculations. However, this model
requires massive clinical datasets (in the order of tens of thousands) for proper train-
ing[33], explaining why the CNN model performed poorly with the limited data set used
for analysis in the present study[1]. Moreover, the availability of large training datasets is
not always feasible, especially in corneal imaging analysis, where there are specific diffi-
culties, including the devices” high costs, technical acquisition challenges, and methodol-
ogy differences that prevent building large datasets, thus making it a challenging task, if
not impossible. When analyzing large datasets, there is a need for high computational
power, limiting availability and increasing costs.

On the other hand, our results highlight the benefit of adopting the TL approach. A
linear solution (two dimensional) is impossible in many ophthalmologic cases; therefore,
getting a solution in a higher-dimensional dataset is required. An advantage of the TL-RF
method is that it can model nonlinear class boundaries and may give variable importance,
but at the same time, it may be slow, and it may be difficult to get insights into the decision
rules. The TL-SVM solves the linearity problem with a relatively less computational cost
using the kernel trick; a function used to obtain nonlinear variants of a selected algo-
rithm[23]. In the present study, the highest diagnostic accuracy in classifying normal from
pathologic corneal images was achieved with the TL-SVM and the TL-RF models in this
order. Although transfer learning models (e.g., AlexNet) are models that have been
trained to extract reliable and unique features from millions of raw images, it is proven
here that their image descriptors can be extended to medical images.

Indeed, random forest learning models can achieve satisfactory outcomes with small
datasets, but with the inconvenience of requiring a manual selection of specific visual fea-
tures before classification. This condition can result in a set of suboptimal features that
limits the application of the algorithms[31]. RF generates meta-models or ensembles of
decision trees, and it is capable of fitting highly nonlinear data given relatively small sam-
ples[34]. RF reached this performance with merely 16 features (values), a strong indication
that if more statistical features (hypothetically driven by ophthalmology experts) are
added, the model may, with overwhelming probability, outperform CNN in this small
dataset. Additionally, unlike other deep learning models, RF models are capable of pin-
pointing individual feature significance, which can help trace back diseases and trigger
scientific discovery or physiological new findings.

Considering potential future research directions, we envision extending this work
to classify different corneal disease sub-types; this will eventually aid clinicians in their
diagnostic procedures. Furthermore, we aim to develop algorithms for risk prediction of
corneal disease, which will help us identify individuals at higher risk of developing a
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corneal disease (e.g., personalized medicine), hence improving its earlier detection before
the disease reaches a devastating stage. However, as mentioned before, the necessity of
collecting a substantial amount of data to get more accurate predictions and also to be
able to use RF algorithms that are more suitable for image analysis is imperative, but an
arduous task[35,36].

5. Conclusions

Applying Al optimal algorithms to different corneal pathologies for early detection,
accurate diagnosis, and disease progression is a challenging job. There are economic lim-
itations related to the high costs of equipment, technical acquisition challenges, and dif-
ferences in the methodologic analysis that make it difficult to build large and reliable da-
tasets. Furthermore, without the availability of vast datasets to feed data-hungry machine
learning, the algorithms would be limited in their capability to give reliable results.

In the present experimental study with limited dataset samples, TL-SVM and TL-RF
showed better sensitivity and specificity indices, and hence, they were more accurate to
discriminate between healthy and pathologic corneas. On the contrary, the CNN algo-
rithm showed less reliable results due to the limited samples. We believe that this revolu-
tionary technology will mark the beginning of a new trend in image processing and cor-
neal SD-OCT analysis, differing from current tendencies, where different anatomic char-
acteristics like reflectivity, shadowing, thickness, among others, are subjectively analyzed.

Author Contributions: Conceptualization, A.B-A and A.R-.; design of the work, A.B-A, A.C and
A .R-G; analysis, A.C; acquisition of data, A.B-A: interpretation of data, A.B-A, A.C, ].C.J-P and A.R-
G; drafting the work, A.B-A, A.C, ].CJ-P and A.R-G; writing, A.B-A, A.C, ].C.J-P and A R-G; revis-
ing, A.B-A, A.C, J.CJ-P and A.R-G. All authors have read and agreed to the published version of
the manuscript.

Acknowledgments: Susana Imperial Sauceda for corneal SD-OCT analyses.
Funding: The Immuneye Foundation, Monterrey, Mexico.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.;
Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal
fundus photographs. JAMA 2016, 316, 2402-2410, doi:10.1001/jama.2016.17216.

Ting, D.S.W.; Cheung, C.Y.-L.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; San Yeo, I.Y.; Lee,
S.Y,; et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using
retinal images from multiethnic populations with diabetes. JAMA 2017, 318, 2211-2223, doi:10.1001/jama.2017.18152.

Lee, C.S.; Baughman, D.M.; Lee, A.Y. Deep learning is effective for the classification of OCT images of normal versus age-
related macular degeneration. Ophthalmol. Retin. 2017, 1, 322-327, doi:10.1016/j.oret.2016.12.009.

Burlina, P.M.; Joshi, N.; Pekala, M.; Pacheco, K.D.; Freund, D.E.; Bressler, N.M. Automated grading of age-related macular
degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017, 135, 1170-1176,
doi:10.1001/jamaophthalmol.2017.3782.

Aslam, T.M.; Zaki, H.R.; Mahmood, S.; Ali, Z.C.; Ahmad, N.A.; Thorell, M.R.; Balaskas, K. Use of a neural net to model the
impact of optical coherence tomography abnormalities on vision in age-related macular degeneration. Am. |. Ophthalmol.
2018, 185, 94-100, d0i:10.1016/.aj0.2017.10.015.

Grassmann, F.; Mengelkamp, J.; Brandl, C.; Harsch, S.; Zimmermann, M.E.; Linkohr, B.; Peters, A.; Heid, LM.; Palm, C,;
Weber, B.H.F. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular
degeneration from color fundus photography. Ophthalmology 2018, 125, 1410-1420, doi:10.1016/j.ophtha.2018.02.037.
Raghavendra, U.; Fujita, H.; Bhandary, S. V; Gudigar, A.; Tan, J.H.; Acharya, U.R. Deep convolution neural network for


https://doi.org/10.20944/preprints202103.0226.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 March 2021 d0i:10.20944/preprints202103.0226.v1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

accurate diagnosis of glaucoma using digital fundus images. Inf. Sci. 2018, 441, 41-49, doi:10.1016/j.ins.2018.01.051.

Li, Z; He, Y.; Keel, S.; Meng, W.; Chang, R.T.; He, M. Efficacy of a deep learning system for detecting glaucomatous optic
neuropathy based on color fundus photographs. Ophthalmology 2018, 125, 1199-1206, doi:10.1016/j.ophtha.2018.01.023.
Yousefi, S.; Kiwaki, T.; Zheng, Y.; Sugiura, H.; Asaoka, R.; Murata, H.; Lemij, H.; Yamanishi, K. Detection of longitudinal
visual field progression in glaucoma using machine learning. Am. J. Ophthalmol. 2018, 193, 71-79, d0i:10.1016/j.ajo.2018.06.007.
Ambrésio, RJ.; Lopes, B.T.; Faria-Correia, F.; Salomao, M.Q.; Biihren, J.; Roberts, C.J.; Elsheikh, A.; Vinciguerra, R.;
Vinciguerra, P. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia
detection. . Refract. Surg. 2017, 33, 434-443, d0i:10.3928/1081597X-20170426-02.

Ruiz Hidalgo, I.; Rodriguez, P.; Rozema, J.J.; Ni Dhubhghaill, S.; Zakaria, N.; Tassignon, M.-].; Koppen, C. Evaluation of a
machine-learning classifier for keratoconus detection based on Scheimpflug tomography. Cornea 2016, 35, 827-832,
d0i:10.1097/1C0O.0000000000000834.

Lopes, B.T.; Ramos, I.C.; Salomao, M.Q.; Guerra, F.P.; Schallhorn, S.C.; Schallhorn, ].M.; Vinciguerra, R.; Vinciguerra, P.; Price,
F.W.,; Price, M.O,; et al. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence. Am. J.
Ophthalmol. 2018, 195, 223-232, d0i:10.1016/j.ajo.2018.08.005.

Hwang, E.S.; Perez-Straziota, C.E.; Kim, S.W.; Santhiago, M.R.; Randleman, ].B. Distinguishing highly asymmetric
keratoconus eyes using combined Scheimpflug and spectral-domain OCT analysis. Ophthalmology 2018, 125, 18621871,
doi:10.1016/j.0phtha.2018.06.020.

Meinshausen, N. Quantile Regression forests. . Mach. Learn. Res. 2006, 7, 983-999.

Chang, C.-C,; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2,
d0i:10.1145/1961189.1961199.

Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297, doi:10.1007/BF00994018.

LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436—444, d0i:10.1038/nature14539.

LeCun, Y.; Haffner, P.; Bottou, L.; Bengio, Y. Object Recognition with gradient-based learning. In Shape, Contour and Grouping
in Computer Vision; Forsyth, D. A., Mundy, J. L., Gest, V., Cipolla, R., Eds.; Springer-Verlag Berlin Heidelberg, Germany:
1999; pp. 319-345.

Freund, Y.; Schapire, R. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst.
Sci. 1997, 55, 119-139.

Ayodele, T.O. Types of machine learning algorithms. In New Advances in Machine Learning; Zhang, Y., Ed.; IntechOpen,
London, England: Rijeka, 2010.

Lu, W.;Tong, Y.; Yu, Y.; Xing, Y.; Chen, C; Shen, Y. Applications of artificial intelligence in ophthalmology: General overview.
J. Ophthalmol. 2018, 2018, 1-15, doi:10.1155/2018/5278196.

Segal, M. R. Machine learning benchmarks and random forest regression. UCSF: Center for Bioinformatics and Molecular
Biostatistics. California, USA. Retrieved from https://escholarship.org/uc/item/35x3v9t4 (2004).

Scholkopf, B.; Smola, A. Learning with kernels: Support vector machines, regularization, optimization, and beyond. In
Proceedings of the Adaptive Computation and Machine Learning Series; MIT Press, Cambdrige, Mass. USA. 2002.

Ting, D.S.W; Pasquale, L.R.; Peng, L.; Campbell, ].P.; Lee, A.Y.; Raman, R.; Tan, G.S.W.; Schmetterer, L.; Keane, P.A.; Wong,
T.Y. Artificial intelligence and deep learning in ophthalmology. Br. ]. Ophthalmol. 2019, 103, 167-175,
doi:10.1136/bjophthalmol-2018-313173.

Huang, D.; Duker, J.S.; Fujimoto, ].G; Lumbroso, B.; Schuman, J.S.; Weinred, R.N. Imaging the Eye from Front to Back with
RTVue Fourier-Domain Optical Coherence Tomography, 1st ed.; Huang, D. Duker, J.S. Fujimoto, ]J.G Lumbroso, B. Eds.; Slack
Incorporated, California, USA. 2010; ISBN 1556429630.

Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.,
2012; pp. 1097-1105.


https://doi.org/10.20944/preprints202103.0226.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 March 2021 d0i:10.20944/preprints202103.0226.v1

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

Cheddad, A.; Condell, J.; Curran, K.; Kevitt, P.M. On points geometry for fast digital image segmentation in The 8th
International Conference on Information Technology and Telecommunication. Ireland: IEEE. 2008, 54—61.

Cheddad, A.; Mohamad, D.; Manaf, A.A. Exploiting voronoi diagram properties in face segmentation and feature extraction.
Pattern Recognit. 2008, 41, 3842-3859, doi:10.1016/j.patcog.2008.06.007.

Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129-137, doi:10.1109/TIT.1982.1056489.

Otsu, N. A Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62-66,
doi:10.1109/TSMC.1979.4310076.

Lopes, B.T.; Eliasy, A.; Ambrosio, R. Artificial intelligence in corneal diagnosis: Where are we? Curr. Ophthalmol. Rep. 2019,
7,204-211, doi:10.1007/s40135-019-00218-9.

Kolluru, C.; Benetz, B.; Joseph, N.; Lass, J.; Wilson, D.; Menegay, H. Machine learning for segmenting cells in corneal
endothelium images. In Proceedings of the Medical Imaging 2019: Computer-Aided Diagnosis; Hahn, H.K., Mori, K., Eds;
SPIE, March 13 2019; p. 158.

Livingstone, D.]J.; Manallack, D.T.; Tetko, I. V. Data modelling with neural networks: Advantages and limitations. . Comput.
Aided. Mol. Des. 1997, 11, 135-142, d0i:10.1023/A:1008074223811.

Dasari, S.K.; Cheddad, A.; Andersson, P. Random forest surrogate models to support design space exploration in aerospace
use-case. In Artificial Intelligence Applications and Innovations. AIAI 2019. IFIP Advances in Information and Communication
Technology; Maclntyre, J., Maglogiannis, I, Iliadis, L., Pimenidis, E., Eds.; Springer: 2019; pp. 532-544.

Cheddad, A.; Czene, K,; Eriksson, M.; Li, J.; Easton, D.; Hall, P.; Humphreys, K. Area and volumetric density estimation in
processed full-field digital mammograms for risk assessment of breast cancer. PLoS One 2014, 9, e110690,
doi:10.1371/journal.pone.0110690.

Cheddad, A.; Czene, K.; Shepherd, J.A.; Li, J.; Hall, P.; Humphreys, K. Enhancement of mammographic density measures in
breast cancer risk prediction. Cancer Epidemiol. Biomarkers Prev. 2014, 23, 1314-1323, d0i:10.1158/1055-9965.EPI-13-1240.


https://doi.org/10.20944/preprints202103.0226.v1

