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Abstract 
Single cell RNA-seq (scRNA-seq) profiles conceal temporal and spatial tissue 
developmental information. De novo reconstruction of single cell temporal trajectory 
has been fairly addressed, but reverse engineering single cell 3D spatial tissue 
localization is hitherto landmark based, and de novo spatial reconstruction is a 
compelling computational open problem. Here we show that a new algorithm - named 
D-CE - for coalescent embedding of single cell transcriptomic networks can address 
this open problem. We rely merely on the spatial information encoded in the 
expression patterns of developmental signal transcription factor (DST) genes, and we 
find that D-CE of cell-cell association DST-transcriptomic networks reliably 
reconstructs the Geo-seq or single cell samples’ 3D spatial tissue distribution. 
Comparison to the novoSpaRC and CSOmap (recent and only available de novo 3D 
spatial reconstruction methods) on 16 datasets and 681 reconstructions, reveals a 
significantly distinctive superior performance of D-CE.  
 
Main Text 
Developmental events are orchestrated temporally and spatially by cell-cell 
interactions and molecular changes during pluripotency exit and cell fate 
determination lead to branching canalization of development lineages as depicted in 
Waddington’s landscape1. Cell identity transition is precisely controlled and ordered, 
this implies that individual single cells are genetically fingerprinted and genomically 
programmed to evolve towards a 3D spatial tissue continuum. Single cell technologies 
- such as single cell RNA-seq (scRNA-seq) that simultaneously profile thousands and 
more single cells - have becoming powerful tools to capture such continuous 
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spatiotemporal changes during development2. Based on single cell profiles, the 
transition paths to the differentiated cells (or the developmental time trajectories) can 
be reconstructed by calculating transcriptomic similarities or dissimilarities between 
single cells. Various computational tools based on this assumption have been 
established to model the developmental time trajectories3. For instance, Monocle 
reduces the data dimensionality and uses the minimum spanning tree to model the 
developmental paths4. Diffusion pseudotime, which is based on diffusion-like random 
walk distances, is used to map developmental branching decisions5. As spatial 
information significantly contributes to the cellular developmental states, 
transcriptomic-based computational reverse engineering of 3D tissue distribution or 
‘pseudospace’ could be potentially achieved6. A benchmark cell population timer/clock 
has been proposed to test the performance of pseudotime algorithms to approximate 
the real developmental time of each single cell7. Similarly a benchmark 
microdissection-based 3D transcriptome, termed Geo-seq, can be used to test the 
performance of algorithms to approximately map single cells onto in vivo positions8.  
Some landmark-based computational approaches have been proposed to reconstruct 
spatial distribution of single cell transcriptomes in zebra fish embryos and mouse liver 
based on preselected or verified spatially expressed landmark genes that are tied to 
specific lineage structures9,10. But, in truth, these approaches cannot be considered 
de novo reconstruction methods because the landmark genes are ad hoc expressed 
in certain specific 3D spatial positions of the considered in vivo tissue, or surrogate 
labels for the positions that are revealed and input to the algorithms together with the 
positions they mark.  So far, effective, universally (tissue-wide) applicable, completely 
de novo approaches have yet to be developed, and only recently the first template 
structure constrained approach named novoSpaRC was proposed by Nitzan et al. 11 
with encouraging yet improvable results. Here, to address the de novo reconstruction 
of single cell 3D spatial tissue ordering and localization, we design a novel algorithm 
according to Coalescent Embedding (CE), which is a model-free unsupervised 
machine intelligence methodology for network geometry embedding12. Mapping 
networks to their underlying geometric spaces helps to understand structure/function 
interplay in complex networked systems12. CE encloses under its name a class of 
machine intelligence algorithms for efficient embedding of large real networks to the 
latent geometric space, which have been proven to impact hyperbolic big-network-
data analysis in biology, neuroscience and social science12. For instance, CE showed 
to boost the detection of community structural organization in social networks12 and to 
reliably capture the original geometry of macroscale structural brain connectomes13. 
The name coalescent embedding derives from “angular coalescence”, which is a term 
proposed to indicate that, as a result of this methodology of embedding, the individual 
network nodes geometrically aggregate together (from the Latin verb coalēscō: to join, 
merge, amalgamate single elements into a single mass or pattern) forming a pattern 
that is progressively ordered along the geometrical angular coordinates12. In CE 
algorithms, the node angular coordinates are ordered according to latent relations of 
topological homophily (similarity) between the network nodes12, instead the node 
radial coordinates according to latent relations of topological hierarchy between the 
network nodes12 (Fig. 1a). Our hypothesis is that, according to CE rationale, the 
embedding of a developmental network of transcriptomic topological similarity 
between cells (an association network derived from their gene expression) should 
produce an angular coalescent cell ordering that recapitulates the original single cell 
samples’ 3D spatial tissue distribution. 
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Figure 1. Method of spatial reconstruction of 3D localizations. a, Overview of spatial structure 
reconstruction by D-CE, which consists of angular and radial reconstruction. Angular reconstruction is 
based on dimensionality reduction by singular value decomposition (SVD), radial reconstruction is 
based on the strength-dependent hierarchy. Different normalization methods and network construction 
methods were applied to different gene set to construct an association network for D-CE. b, Then 
angular separation index (ASI), angular alignment index (AAI) and ordering index (OI) to the original 
sample layer order were used to assess the accuracy of spatial reconstruction of Geo-seq samples’ 
positions.  
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Figure 2. Knowledge based gene set selection. a, Various combinations of 3 different gene sets tested 
for Geo-seq data spatial reconstruction. These include 3795 developmental genes, 3470 signaling 
genes and 1646 transcription factors. Then the union, intersection and each unique part from these 3 
gene sets were derived into a total of 19 gene meta-sets from the non-overlapping 7 sections in the 
Venn diagram. We tested all 19 gene sets for their performance in retrieving the spatial information of 
the samples.  b, Overview of spatial structure reconstruction by D-CE. Different normalization methods 
and network construction methods were applied to each gene meta-set in panel (a) to construct an 
association network for D-CE. Then angular separation index (ASI), angular alignment index (AAI) and 
ordering index (OI) to the original sample layer order were used to assess the accuracy of spatial 
reconstruction of Geo-seq samples’ positions. c, KEGG and GO terms enriched in the 639 DST genes 
over the union of input genes as shown in panel a. 
 

Hence, in this study: i) we first develop a method to generate an association 
network of single cell samples starting only from their developmental signal 
transcription factor (DST) gene expressions (Fig. 1a and 2); ii) and then we embed 
this network in a 3D space. The union of these two steps represent a novel algorithm 
for de novo reconstruction of single cell 3D spatial tissue localization that we name 
“Developmental Coalescent Embedding” (D-CE, see methods for details, Fig. 1a).  

To arrive at this final design of D-CE, we examined different possible strategies 
to implement D-CE. The critical point that required a thorough investigation was the 
appropriate way to build the association single cell network starting from their gene 
expressions. To facilitate our investigation, we reduced the gene expression list to only 
three sets: developmental genes, signaling genes and transcription factor genes; 
because previous studies have emphasized that those three gene sets often display 
spatial distribution patterns during early embryonic development8,14. However, we care 
to stress that this is fundamentally and conceptually different from the landmark genes 
used by previous methods. Landmark genes are preferentially expressed in a certain 
specific 3D spatial position of the original unfragmented tissue and are input together 
with their position to the algorithms as surrogate position labels. Whereas, those three 
gene classes – considered in our study - are associated to tissue development but are 
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not necessarily specifically expressed in any particular 3D spatial position of a certain 
type of tissue and most importantly the spatial positions they are associated with are 
not known to our algorithm. They cannot be adopted to offer orientation to the 
reconstruction, and therefore cannot be adopted for knowledge-driven reconstruction, 
which indeed is the typical strategy implemented by landmark methods. 

In order to appraise the extent to which the three different gene sets would 
affect the performance of D-CE, we considered Geo-seq samples14 whose 3D 
geometric coordinates are known and can be used as gold standards to evaluate the 
reliability of a de novo 3D reconstruction algorithm. Each Geo-seq sample is not a 
single cell but a portion of tissue constituted by a cohort of 10~20 single cells, however 
this is an ideal dataset to design and to test D-CE performance. In particular, we 
examined the impact of various combinations of 3 different gene sets, developmental 
(D), signaling (S) and transcription factor (TF, T) genes, to retrieve by D-CE the spatial 
information of the Geo-seq samples. We derived 19 gene meta-sets through union, 
intersection and each unique part between and among these 3 original gene sets (Fig. 
2a, Methods). In addition, for each of the 19 gene meta-sets, we considered the 
sample-sample transcriptome distance matrix (weighted network) using each of 12 
normalization methods (Supplementary Table 1) and each of 5 distance measures (Fig. 
1a), resulting in 1140 (19x12x5) possible candidate association networks to test, and 
embedded each of them separately using the proposed D-CE algorithm (Fig. 1a, 
Methods). Specifically, we considered 5 distance measures, including: Spearman 
distance (SD) (1-Spearman rank coefficient (RCC)), Pearson distance (PD) (1-
Pearson correlation coefficient (PCC)), Euclidean distance (ED), and PCC and RCC 
filtered by connectivity specificity index (CSI)15, named PCC-CSI and RCC-CSI (Fig. 
1a and Supplementary Fig. 1, Methods). 

 
 
We tested each of these 1140 D-CE candidate strategies to spatially 

reconstruct the Geo-seq data of different germ layers in mouse early embryo 
development gastrulation stage (E6.5, E7.0 and E7.5). To evaluate the accuracy of the 
reconstruction, we grouped the Geo-seq samples into four groups: 1-2) proximal 
anterior and distal anterior (pA and dA); 3-4) proximal posterior and distal posterior 
(pP and dP). They can be further specified for each germ layer at each stage as: pA, 
dA, pP and aP of ectoderm (ect) and endoderm (en) at E6.5 and E7.0; pA, dA, pP and 
aP of ect, en and mesoderm (m) at E7.5 (Fig. 3a). Angular separation index12 (ASI, 
ranging from 0 to 1 with 1 being perfect separation, see Methods for details) is used 
to test how well the four groups are separated according to angular coordinates in the 
embedding space. Angular alignment index (AAI) measures the parallelness between 
to vectors, ranging from -1 to 1, with 1 being perfect alignment and -1 being anti-
parallel alignment (see Methods for details), and is used to test how well a relative 
spatial orientation is kept in among orthogonally distributed samples (e.g. proximal-
distal orientation in anterior and posterior samples) in the embedding space. Ordering 
Index (OI, ranging from -1 to 1 with 1 being perfect agreement between the original 
order and the reconstructed order) to evaluate the accuracy of ordering the layers from 
distal to proximal (e.g. layer 1 to 11 in E7.0 embryo, Fig. 1b and Methods). Finally, to 
evaluate with one unique value for each of the 1140 embedding solutions, we consider 
the maximum rank of these three indices for each embedding (Methods), this means 
that a method that ranks 1 for each of these three indices will be the perfect candidate 
to be selected, because it has the lowest maximum ranking across the three possible 
indices. Indeed, the lowest maximum rank will indicate the best reconstruction of both 
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the anterior and posterior localization and the order of layers (Supplementary Fig. 1), 
and the best strategy to perform D-CE turns out to be based on the intersection of 
developmental genes, signaling genes and transcription factor genes (DST genes for 
short) for a total of 639 genes. This selected D-CE offers a de novo reconstruction of 
the spatial relationships of the Geo-seq and singe cell samples which is reported in 
Fig. 3, Supplementary Fig. 2 and 3. KEGG and GO enrichment analysis shows that 
DST gene set is highly enriched for pluripotency regulators and chromatin remodeling 
complexes which were known to play important roles in mouse embryo development 
(Fig. 2b, Supplementary Fig. 4). We found that D-CE based on DST gene set, with 
most normalization methods and PD, showed a very high correspondence to the 
original geometric locations of the samples in the mouse embryo from where the Geo-
seq samples were derived (Fig. 3, Supplementary Fig. 2 and 3). The anterior and 
posterior samples of different germ layers in different stages are well separated into 
the opposing directions of the 3D space, similar to its original distribution in the 
developing mouse embryo, so are the proximal and distal samples, as evidenced by 
the significant ASI separating the pA, dA, pP and dP samples (ASI≥0.86 with ASI=1.00 
for E6.5) with all germ layers combined together at stage E6.5, E7.0 and E7.5 (Fig. 3, 
Supplementary Fig. 2), or in each germ layer separately (ASI≥0.84 with ASI=1.00 for 
E6.5 ect, E7.0 en, E7.5 en and E7.5 m) (Supplementary Fig. 3) and the correct relative 
orientation of A to P and p to d (AAI are all above 0.50) (Fig. 3a, b and c, 
Supplementary Fig. 2 and 3). Remarkably, the distal to proximal sequence (1~11 
horizontal layers) of the Geo-seq samples are also accurately captured by the 
embedded samples in the reconstructed structure (Fig. 3a, b and d, Supplementary 
Fig. 2 and 3, minimal OI for A, P and also E7.5 left or right (L/R) samples are all above 
0.50).  The E7.5 L/R samples are also correctly placed at the back of A and P samples 
(Fig. 3a, b and c, Supplementary Fig. 2 and 3). That the left and right samples of the 
same layers are aggregated together (Fig. 3, Supplementary Fig. 2 and 3) is expected 
because they are highly symmetric and have no expression differences as previously 
observed2. It should be noted that hierarchical clustering of the input PD matrix does 
not automatically separate the spatial domains (Supplementary Fig. 5). We also 
verified that by using: i) the first, second or third principle component correlated genes 
(PC1, 2 or 3) singularly or ii) the PC1, 2 and 3 correlated genes all together or iii) 
Scialdone et al’s pseudospace genes6, satisfactory 3D reconstructions was not 
achieved (Supplementary Fig. 6). Their results were much inferior compared to the de 
novo reconstruction of D-CE based on DST genes (Supplementary Fig. 6). The 
successful 3D reconstruction of the Geo-seq samples confirm that the spatial 
information encoded in DST genes can be properly preserved by D-CE.  
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Figure 3. Spatial reconstruction of 3D localizations of Geo-seq samples from gastrulating mouse 
embryo. a, Illustration of the original locations of Geo-seq samples from the three germ layers in E7.5 
mouse embryo. Sample positions are colored by spatial positions (purple, red, yellow and green for 
proximal anterior (pA), distal anterior (dA), proximal posterior (pP) and distal posterior (dP)). en, ect and 
m stand for endoderm, ectoderm and mesoderm. b, D-CE reconstructed 3D localizations of mouse 
Geo-seq samples from stage E7.5 all samples of all three germ layers. Samples’ original positions are 
color coded as in the model in panel a. c, Upper panel, the same D-CE reconstruction of the E7.5 
embryo samples as in panel b displaying only the A and P samples to visualize the clear distinction of 
proximal/distal anterior/posterior (pA, dA, pP, dP) samples. This is also reflected by the good separation 
and relative alignment of samples as measured by ASI and AAI. Lower panel, the same D-CE 
reconstruction of the E7.5 embryo samples as in panel b displaying only the L and R ectoderm samples 
(gray balls in panel b), which are highly symmetric and distributed to the back of the A and P samples. 
The L/R samples close to A and P (ectLa/ectRa and ectLp/ectRp) are labeled by open circles and stars, 
respectively, to visualize their closeness to anterior and posterior in the embedded structure. The most 
proximal and most distal L/R samples having no anterior or posterior bias are labeled as “L” or “R”. d, 
The same D-CE reconstruction of the E7.5 embryo samples as in panel b displaying only ectoderm, 
mesoderm and endoderm samples in the upper, middle and lower panels, respectively. Samples in the 
same horizontally micro-dissected layer are connected by lines, which are color coded from dark to light 
in the proximal to distal order to visualize the recapitulation of the proximal to distal order in the samples. 
For each layer, samples are first linked into 3 units (A-P, ectLa-ectRa, ectLp-ectRp), then the pair of 
samples in different units with shortest distance are connected. This is also reflected by the high 
correlations to the original sample orders in the embryo as measured by OI. e, D-CE reconstruction of 
single cells from mouse embryo E7.0 ectoderm based on their scRNA-seq (marked by ‘x’) together with 
Geo-seq samples (balls) (left panel) or D-CE reconstruction using the scRNA-seq data alone (right 
panel). Samples’ original positions are colored red for anterior and green for posterior. In the left panel, 
single cell samples derived from A and P regions are placed close to A and P Geo-seq samples, 
respectively. In the right panel, reconstruction with scRNA-seq alone maintained the similar spatial 
locations for these samples as in the left panel.  
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Next we investigated whether D-CE based on DST genes is also applicable to 
single cell data. To investigate this problem, we embedded the network of Geo-seq 
and scRNA-seq samples from the same stage together based on the DST gene 
expression similarities among the samples. As expected, the posterior single cell 
samples and posterior Geo-seq samples are mapped close by on the sphere, and well 
separated from the anterior single cell and Geo-seq samples (ASI = 0.82 between 
anterior and posterior) (Fig. 3e left panel), suggesting the de novo reconstruction is 
effective at various resolution or granularity.  Single cell embedding alone also well 
separated the known anterior and posterior single cells (ASI = 0.79) (Fig. 3e right 
panel). As most of the scRNA-seq data we obtained lack spatial labels or only have a 
label of A or P, we could only verify the correct reconstruction of all the A and P labels 
(Fig. 3e). Embedding of single cells alone largely retained the relative order (by 
shortest Euclidean distance) of the cells as in the single cell plus Geo-seq embedding 
(RCC=0.49), indicating that D-CE of single cells alone without any reference can de 
novo reconstruct the 3D position and spatial distribution of the single cells.  

Using ASI, AAI and OI as performance measures, we compared D-CE versus 
5 state-of-the art dimensionality reduction methods (PCA, tSNE, UMAP-corr, UMAP-
cos, UMAP-euc) on the Geo-seq data. D-CE performs better than all these popular 
dimensionality reduction methods in 3D spatial reconstruction (Supplementary Fig. 7). 

A single cell 3D position template-constrained spatial reconstruction method 
novoSpaRC11 on the Drosophila embryo 3D gene expression dataset BDTNP16 was 
recently developed. To compare our spatial reconstruction with novoSpaRC, we used 
the same 3D gene expression dataset BDTNP16 to test spatial reconstruction accuracy. 
As only the expression data of 84 Drosophila embryo development regulating TFs (41 
overlap with DST gene homologs in fly) are measured, D-CE of all these genes (and 
not exclusively DST genes as before) were used for network reconstruction with the 
normalization method optimized for the Geo-seq data. Here we found that, instead of 
PD (as before), its local-threshold-variation named PCC-CSI (which is a distance 
obtained by local threshold of Pearson correlation using CSI) performs the best for 
spatial reconstruction among all 5 distance options (Supplementary Fig. 8a, b and c). 
This difference in comparison to the Geo-seq data might be attributed to the large 
number of nodes in this network (3039 in BDTNP versus <100 in Geo-seq datasets). 
A gradient down-sampling of the BDTNP to data indeed shows that PD performs better 
than PCC-CSI when the sample number is <150, beyond that PCC-CSI performs 
better as shown by ASI and AAI (Supplementary Fig. 8d and e). OI is not evaluated 
because in the down-sampling, samples are randomly selected and hence rarely from 
a straight line along the x, y or z axis, and this disrupts the original distribution of the 
samples on 3 axes, making the OI inapplicable to the random sampled networks for 
evaluating the spatial reconstruction of down-sampled samples.  

D-CE reconstructed spatial order is highly similar to the original 3D coordinates 
on the embryos structure (Fig. 4). For novoSpaRC, using the dot product of the optimal 
sample and location probabilistic coupling matrix 𝑇 ×  inferred by novoSpaRC and 
the original location 𝐿 ×  (position template) as the reconstructed locations for each 
sample (Methods), we visualized its spatial reconstructions based on 0, 1 or 2 marker 
genes used. Marker genes are those having all expressions at all locations revealed 
to the algorithm, instead of de novo assigned or learned by the algorithm, so that other 
genes expression patterns can be compared to these genes for reference. In other 
words, with marker locations revealed, the novoSpaRC reconstruction is not de novo, 
but rather reference based, therefore it should offer the best performance possible for 
this algorithm. Judging from the ASI, AAI and OI, the de novo D-CE reconstruction 
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aligns better with the original spatial positions (without any predefined spatial marker 
genes) than using no marker, and even at least as good as the result of novoSpaRC 
using 1 marker gene (Fig. 4). These results are further confirmed by the expression 
patterns of 4 spatially distributed TF genes, sna, Kr, eve and ken (Supplementary Fig. 
9). D-CE completely reconstructed the ventral expression pattern of the sna gene and 
the vertical bi-stripe pattern of Kr, recovered 6 out of 7 strips of eve and both stripes 
of ken with non-perfect placement. Whereas the de novo novoSpaRC without any 
marker gene only partially reconstructed the pattern of ken, but completely failed to 
recover the sna expression pattern, wrongly aggregated 7 stripes of eve into one broad 
stripe and recovered one of the two stripes of Kr (Supplementary Fig. 9). Notably, 
radius of the D-CE embedded structure which is designed to reconstruct the 
topological hierarchy among the single cells also reconstructed the ellipsoidal shape 
of the fly embryo together with larger curvature at the tips compared to the middle of 
the embryo (Fig. 4). A more recent de novo pseudospace reconstruction algorithm 
CSOmap17 was developed based on ligand-receptor interaction pairs, which obviously 
is not applicable to the fly embryo developmental TF only dataset. Although the 
algorithm can be applied to the Geo-seq data, it apparently failed to reconstruct the 
spatial structure of the samples (Supplementary Fig. 10). It should be noted that 
novoSpaRC by default only provides 2D-grid template, thus only 2D reconstruction 
can be performed; CSOmap accepts only human or mouse data as input, hence it is 
not applicable to datasets of other species. 
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Figure 4. Comparison of spatial reconstruction of BDTNP dataset using D-CE and novoSpaRC. 
a, Illustration of Drosophila embryo segmentation for ASI, AAI and OI calculation. The embryo was 
divided into 4 groups along the x and z coordinates (a, middle) by spatial locations for ASI and AAI 
calculation. Each coordinate was sorted and divided into 10 groups (a, right) and OI was calculated 
based on the gold standard original spatial coordinate. b, Original spatial positions in Drosophila embryo 
examined by the BDTNP dataset, which is colored by spatial coordinates on x (b, left), y (b, middle) and 
z-axis (b, right), respectively. Reference coordinates of x, y and z axis are labeled in ascending order 
with a color gradient from blue to red, which is also used to paint the samples in the reconstructed 
structures to visualize their 3D orders in the following panels. c, D-CE spatial reconstruction of BDTNP 
dataset visualized by sample color code designated by the gold standards (panel b) for x, y and z axis, 
respectively. d, e and f, Same as panel b, except that the reconstruction was done by novoSpaRC with 
0 marker (d), 1 marker (e) and 2 markers (f). Indexes of spatial reconstruction evaluation are shown 
next to each reconstructed embryo. 

 
To further test whether D-CE can reconstruct spatial gene expression patterns 

of different cell types directly using scRNA-seq data, we applied it to a Drosophila 
embryo scRNA-seq dataset11 (Supplementary Fig.11) and a zebrafish embryo 
blastoderm cap scRNA-seq dataset9 (Supplementary Fig.12). In the reconstructed 
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Drosophila embryo, the expression pattern of dorsal/ventral specific gene (such as 
ush, twi and sna) are highly correlated with the FISH images downloaded from BDGP18 
dataset, with OI > 0.5. For anterior/posterior specific genes (such as ImpE2 and Adgf-
1), the pattern is not as good as dorsal/ventral pattern. For zebrafish embryo 
blastoderm cap, the gene expression pattern of 9 spatial specific gene shows high 
correlation (OI > 0.5) with the FISH images (downloaded from the ZFIN database19 
Compare to novoSpaRC, D-CE reconstructed gene expression patterns have 
significantly higher OI to the FISH images (Wilcoxon signed rank test p = 0.03 and 
0.04 for the 6 and 9 spatially expressed Drosophila and zebrafish genes previously 
tested11).  

For a more comprehensive comparison of D-CE with novoSpaRC and 
CSOmap, we applied them to 6 additional transcriptome datasets with annotated 
spatial ordering of samples or cell types and 8 additional transcriptome datasets16,20-

26 with annotated spatial coordinates for spatial reconstruction using the provided 
coordinates as evaluation gold standards. These included the human thymus27 
scRNA-seq (Fig.5a to d), zebrafish tail Geo-seq28 (Fig. 5e,f and g), the head and neck 
cancer (HNC) scRNA-seq29 (Supplementary Fig.13), human embryonic cerebral 
cortex scRNA-seq30 (Supplementary Fig.14), mouse embryonic brain digitized ISH 
image derived gene expression data31 (Supplementary Fig.15) and mouse neocortical 
layers RNA-seq32 (Supplementary Fig.16), the mouse olfactory bulb and human breast 
cancer24, the cancerous prostate21, the melanoma lymph node22 (Supplementary Fig. 
17) and the postmortem lumbar and cervical spinal cord tissue barcoded microarray-
based spatially resolved transcriptome datasets23 (Supplementary Fig. 18), the mouse 
hippocampus20 and the mouse brain25 seqFISH datasets, a mouse medial ganglionic 
eminence LCM-seq dataset26 and the mouse hypothalamic preoptic region MERFISH 
dataset16 (Supplementary Fig. 19). Together with the datasets tested above (Fig. 1-4), 
in total 16 datasets (Table 1), and 681 reconstructions (one dataset my contain multiple 
experiments, e.g., barcoded-microarray based spatial transcriptomic dataset contains 
more than 400 arrays (Table S1)) were tested using D-CE, novoSpaRC and when 
applicable CSOmap. The OI, ASI and AAI indexes of the D-CE reconstructions were 
compared with those by novoSpaRC and CSOmap using log2 fold change and 
Wilcoxon signed rank test. For all 3 methods, we tested using all genes, DST or LR 
genes for reconstruction. Across all of the reconstructed structure, D-CE is significantly 
superior to the other methods in ASI and AAI (Supplementary Fig. 20a), and when 
focusing only on the well reconstructed structure by at least 1 method (OI or ASI p 
value < 0.05, Fig. 5h and Supplementary Fig. 20b). As mouse spinal cord dataset has 
407 arrays, more than half of the total number of all reconstructions, we also made the 
comparisons without this dataset (Supplementary Fig. 20c), and found a similar 
superior performance of D-CE. Across all the reconstructions, all expressed genes 
perform better than LR and DST, suggesting that the latter are not sufficient to capture 
all spatial information for all types of tissues.  
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Table 1. Spatially labeled transcriptome datasets tested for spatial reconstruction and number of 
reconstructions per dataset 

Dataset  Number of reconstructions 
Mouse embryo Geo-seq14 10 
BDTNP16 1 
Zebrafish tail Geo-seq28 1 
Human thymus scRNA-seq27 1 
Mouse cerebral cortex scRNA-seq 2 
Mouse embryo brain ISH31 1 
Mouse neocortical layer microsurgical 
RNA-seq32 

1 

Mouse olfactory bulb and human breast24 16 (arrays) 
Head and neck cancer scRNA-seq30 1 
Cancerous prostate21 12 (arrays) 
Melanoma lymph node22 8 (arrays) 
Postmortem lumbar and cervical spinal 
cord tissue23 

407 (arrays) 

Mouse hippocampus20 21 (arrays) 
Mouse brain25 14 (arrays) 
Mouse medial ganglionic eminence26 4 (arrays) 
MERFISH16 
Total 

181 (arrays) 
681 

 
 
  In conclusion, we developed D-CE which is an effective landmark free and 
model free de novo 3D reconstruction method for single cell analysis. We 
demonstrated - through comprehensive analysis of currently available spatial 
transcriptomes - the superior performance of D-CE over the existing reconstruction 
methods on nearly 700 reconstructions. We also found developmental signaling 
transcription factor genes (not necessarily only the current DST gene set, as not all 
developmental genes have been uncovered) can often serve as a spatial signature for 
network embedding (in particular for embryo structures). However, when not all 
developmental genes are known for the tissue or process, using all genes can more 
reliably reconstruct all tissues and developmental structures. On one side, this enables 
designing an effective strategy to implement de novo 3D reconstruction by D-CE. We 
find that filtering PCC using CSI performs better than directly using PD network for 
large datasets (more than 150 samples) as indicated by gradient down-sampling of 
the BDTNP dataset (Supplementary Fig. 8), which indicates that when using D-CE de 
novo spatial reconstruction method, both PD and PCC-CSI need to be tested and, in 
particular, for a dataset with more than 150 samples, CSI filtering should be 
implemented.  
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Figure 5. Spatial reconstruction of human thymus and zebrafish caudal tissue samples. a, 
Illustration of spatial structure of Fb1 (fibroblasts cell type1), Fb2 (fibroblasts cell type2) and EC 
(endothelial cells) in human thymus. b, D-CE reconstructed structure using all genes (left), LR (middle) 
and DST genes (right). For each index, the best performing values among all three methods and three 
gene lists are highlighted by bold font. c, novoSpaRC reconstructed structure using the same gene list 
as c, d and e. d CSOmap reconstructed structure of thymus. e, Positions of Geo-seq of laser capture 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 March 2021                   doi:10.20944/preprints202103.0196.v1

https://doi.org/10.20944/preprints202103.0196.v1


14 
 

microdissection (LCM) zebrafish caudal hematopoietic tissue (CHT) samples. CHT region at 55 hpf was 
embedded for cryo-section, and subsequently six regions, including neuro (N), left muscle (L), right 
muscle (R), caudal artery (CA), caudal vein (CV), and caudal vein plexus (CVP). f, D-CE reconstructed 
structure using all genes (left), LR (middle) and DST genes (right). The top rows were colored by Geo-
seq layer orders from 1 (blue) to 6 (red), the second row were colored by cell types. g, The same 
reconstructions as in f but by NovaSpaRC. h, Pairwise comparisons of 681 reconstructions from 16 
datasets. We filtered out the un-reconstructable datasets with no method’s reconstruction getting a OI 

p-value < 0.05 by the “cor.test” function in R. The left panel is the distribution of 𝐥𝐨𝐠𝟐
𝑶𝑰𝟏 𝟏

𝑶𝑰𝟐 𝟏
 . 𝑂𝐼  

means 𝑂𝐼 . 𝑂𝐼  means 𝑂𝐼  (red line) or 𝑂𝐼 (blue line). The AUC represents the area 

under curve of density plot with 𝐥𝐨𝐠𝟐
𝑶𝑰𝟏 𝟏

𝑶𝑰𝟐 𝟏
 > 0, that is when D-CE performs better than the other 

method. For each comparison, pairwise Wilcoxon signed rank test p-values are labeled on the plot. The 
distributions for ASI and AAI are similarly shown in the middle and right panels. CSOmap is only 
applicable to 14 datasets and 679 reconstructions due to its limit to human and mouse data and LR 
genes only. 
 
Methods 
Datasets for gene set selection  
186 Geo-seq samples with known positions in mouse embryo E6.5, E7.0 and E7.5 
and 69 scRNA-seq datasets (GSE120963) in E7.0 mouse embryo with A and P spatial 
labels were used to develop the 3D reconstruction method. For better comparison with 
novoSpaRC, the same expression matrix as novoSpaRC is used, which  is 
downloaded from https://github.com/rajewsky-lab/novoSpaRC11.  

Genes for cell-cell network construction were selected based on 3 gene lists: 
4512 developmental genes based on GO database33,34, which are genes with GO 
terms containing keywords of ‘differentiation’, ‘development’ and ‘morphogenesis’, 
2302 transcription factors obtained from the AnimalTFs35 and RIKEN databases36, and 
4895 signaling genes obtained from our previous curation37. All samples are first 
subjected to batch effect correction by ComBat. Then the batch effect corrected 
RPKMs (Reads Per Kilobase of exon model per Million mapped reads) are used for 
further analysis. All expressed genes are defined as RPKM>1 in at least 2 samples. 
Among them, there are 3795 developmental genes, 1646 transcription factors and 
3470 signaling genes for downstream analysis. The union, intersection and difference 
of each pair of datasets or among the 3 datasets, all expressed genes and all 
expressed genes minus the developmental genes were used to generate a total of 19 
gene lists for spatial reconstruction, gene expression levels are transformed by 
log (𝐹𝑃𝐾𝑀 + 1). For each dataset, 12 different normalization methods were applied 
to each gene set (Supplementary Table 1), which give rise to a final of 228 datasets 
for network construction using D-CE. In order to embed the scRNA-seq and Geo-seq 
data together, ComBat was first used to eliminate batch effects.  

The top PC loading genes are selected using function ‘dimdesc’ R package 
‘FactoMineR’38 , the genes with p value <10  are selected as top PC loading genes 
which result in 5731, 898 and 585 genes for PC1, 2 and 3, respectively. These 3 gene 
sets, individually and combined, were compared to DST genes on the performance of 
D-CE. DST genes were also compared to Scialdone et al’s pseudospace genes6, 
which is a set of genes displaying a gradient along pseudospace axis, 334 assigned 
to anterior and 87 to posterior, the union of these genes are used for spatial 
reconstruction.  
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Developmental Coalescence Embedding (D-CE) 
We propose a new algorithm that we name D-CE and is designed under the framework 
of CE methodology12, according to which the network nodes in the embedded space 
are ordered preserving hidden relations of: i) homophily (similarity) on the angular 
coordinates and ii) hierarchy on the radial coordinates12. In this study, our main 
hypothesis is that, according to CE rationale, the embedding of a developmental 
network of transcriptomic topological similarity between cells (an association network 
derived from their gene expression) should produce an angular coalescent cell 
ordering that recapitulates the original single cell samples’ 3D spatial tissue 
distribution. While the cell hierarchy on the radial coordinates is obtained via a 
measure of node centrality in the network topology. The details of how to implement 
angular and radial inference is in the network embedding sub-section below. Indeed, 
any CE algorithm such as D-CE consists of two steps (see Fig. 1b): 1) network 
construction; 2) network embedding. In the next two sub-sections we will describe 
respectively the specific design of each of these two steps for our proposed D-CE. 
The Matlab code of D-CE for de novo 3D reconstruction is an open access tool 
downloadable at https://github.com/JackieHanLab/D-CE. 
 
Step 1: network construction  
In this section we describe how to build a weighted association network between Geo-
seq or cell samples in order to perform the first step of D-CE. The final weighted 
association network is represented as a distance adjacency matrix that is obtained 
from the conversion of node similarities in node distances. This association network is 
used in step 2 in order to perform the network embedding which provides the angular 
coordinates that allow the 3D spatial reconstruction. We propose two different 
strategies that can be used to build the distance matrix. 
The first strategy is the following. For each normalized gene set (normalization is first 
done within the gene set) the pairwise distance matrix between samples is generated 
by using Spearman distance (SD): 

SD=1-RCC, 
where RCC is the Spearman correlation coefficient, or Pearson distance (PD): 

PD=1-PCC, 
where PCC is the Pearson correlation coefficient, or directly the Euclidean distance 
(ED) between each pair of samples.  
In addition, we also considered a second strategy that is designed to apply a soft-
threshold that penalizes non-topological-specific low correlations and rewards local 
connectivity similarities that are associated to high correlations. This second strategy 
can be applied only to adjust correlation networks, hence we will apply it only to RCC 
and PCC. The first step is based on computing the Connectivity Specificity Index 
(CSI)15. For instance, in the case of the Pearson correlation PCC, CSI sparsifies 
(removing negligible links that are put to zero) the PCC similarity network according to 
this formula: 

𝑃𝐶𝐶_𝐶𝑆𝐼 , =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑖 𝑎𝑛𝑑 𝑗 𝑤𝑖𝑡ℎ 𝑃𝐶𝐶 < 𝑃𝐶𝐶 , − 0.05

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
 

 
where i and j are two samples (nodes in the correlation network). The same formula 
can be used to compute 𝑅𝐶𝐶_𝐶𝑆𝐼 , . 
The result of this first step is a similarity matrix where a zero element indicates that 
the similarity between two samples is negligible according to CSI.  Then, the nonzero 
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elements (𝑥  ) of this similarity matrix are ‘reversed’ to obtain a distance matrix 
according to this reverse function: 

 𝑓(𝑥 ) = 𝑎𝑏𝑠(𝑥 − 𝑚𝑖𝑛(𝑥 ) − 𝑚𝑎𝑥(𝑥 )) 
where abs is the absolute value and min and max are respectively the minimum and 
maximum. Finally, after this distance matrix is created, in order to assign a distance 
also to nonadjacent node pairs (which are the zero elements), the shortest path 
between each pair of nonadjacent nodes is computed and its value is stored as their 
distance. This generate a PCC-CSI distance matrix. Applying the same strategy, we 
can generate also the RCC-CSI by substituting PCC with RCC in the procedure above.  

In summary, we propose 5 different distance matrices which represent 5 
different network construction options for D-CE: Pearson distance (PD), Spearman 
distance (SD), Euclidean distance (ED), PCC-CSI distance and RCC-CSI distance.   
  
Step 2: network embedding 
After getting the sample-sample distance matrix (network) according to one of the 5 
different options described above, the network embedding step of the D-CE algorithm 
consists of two routines.  
(2.1) The first routine is associated with inferring the 3D angular coordinates of the 
samples and consists of two subroutines. The first subroutine is the n-by-n distance 
matrix doubly-centering operation given by the formula: 

𝑋 = 𝑋 −
1

𝑛
∙ 𝑂 ⋅ 𝑋 −

1

𝑛
⋅ 𝑋 ⋅ 𝑂 −

1

𝑛
∙ 𝑂 ∙ 𝑋 ∙ 𝑂 

where O is an n-by-n matrix of all 1's.  
The second subroutine is the spectral decomposition of the doubly-centered distance 
matrix by means of the singular value decomposition (SVD): 

𝑋 = 𝑈 ⋅ 𝑆 ⋅ 𝑉  
𝐷 , = 𝑠𝑞𝑟𝑡(𝑆 , ) ⋅  (𝑉 , ) ′ 

where S is an n-by-n diagonal matrix with singular values of 𝑋 on its diagonal and sqrt 
is the square root operation. U and V are two unitary matrices, the columns of which 
are singular vectors of 𝑋. V' is the Hermitian transpose (the complex conjugate of the 
transpose) of V. 𝐷 ,  is the score matrix where each row is a node of the network and 
each column is a different dimension of embedding that can be used to assign to each 
network node respectively the x, y, z coordinate of the 3D embedding. Then, the 
coordinates are transformed into polar coordinates and the angular coordinates are 
kept. 
(2.2) The second routine is associated with inferring the radial coordinates as a 
function of the node strength, which is the sum of the edge similarities incident on a 
node. A node with high strength is very similar to many other nodes in the network12, 
therefore it is high in the topological hierarchy12. Indeed, being similar to many nodes 
means that many nodes consider you at the center of the connectivity structure. 
Hence, according to the CE methodology12, nodes with higher strength should be 
located towards the center of the embedding and therefore have lower radial 
coordinates; whereas nodes with lower strength should be located towards the 
periphery of the embedding and therefore have higher radial coordinates. On the basis 
of this rationale we design a procedure to infer the radial coordinates that is described 
step by step below. For a certain node i, its similarity is defined as:  

𝑆 = 𝑠 ,  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 March 2021                   doi:10.20944/preprints202103.0196.v1

https://doi.org/10.20944/preprints202103.0196.v1


17 
 

where 𝑠 ,   is the similarity metric between node i and j, and N denotes all nodes 
connected to i. For Spearman, Pearson and Euclidean distance network, 𝑠 , = 1 −

𝑑 , / max
,

𝑑 , , where 𝑑 ,  is the distance between node i and j, and for CSI network, 

𝑠 , = 𝐶𝑆𝐼 , .  
Nodes are first sorted in descending order by strength with nodes with highest 

strength ranked first. Then, the radial coordinate of the i-th node is determined by the 
following formula that we term heterogeneity-adaptive radius (HAr) and is specifically 
designed for D-CE embedding in order to capture the node hierarchy and according 
to the rationale that we clarify below: 

𝐻𝐴𝑟 = 1 −
𝛽

ln(𝑜 ) + 1
 

𝑜  is the ranking value of i-th node, and the logarithm adjustment ln(𝑜 ) of the ranking 
value is introduced to mitigate the growth of the denominator when the strength of a 
node is low and, possibly, many nodes with similarly low strength are arbitrarily 
ordered in the high value zone of the ranking. The adjustment coefficient 𝛽 =  , 

where 𝑅𝑆𝐷 =
( )

( )
  is the relative standard deviation of the strength among all 

nodes, is a measure of heterogeneity of the node strength distribution.  
 𝐻𝐴𝑟  is confined to the interval ]0,1[. The reversed square brackets indicate that 
the value 0 and 1 are respectively the inferior and superior limits of the interval, but in 
practice they cannot be reached. For a networked system with high hierarchical 
organization, the node strength will have large heterogeneity because the distribution 
of the node strength will have high RSD and, as a consequence, 𝛽 → 1. Hence, 𝛽 →
1 means that the network has very high hierarchical organization and, to reflect this 
feature in the embedding visualization, the node with highest strength (for which 𝑜 =
1) takes 𝑟 → 0 and is located more towards the center of the embedding, then all the 
other nodes following it will assume larger radial values in the range ]0,1[. In contrast, 
if the network hierarchical organization is lower than the previous case, for example, 
we assume that 𝛽 = 1/2, then the node with the highest strength (for which 𝑜 = 1) 
takes 𝑟 = 1/2, and the radial coordinates space available for the representation will 
be squeezed to the radial interval [0.5,1[. In conclusion, the proposed formula to infer 
radial node coordinates in D-CE will visually represent networked systems with very 
high hierarchical organization as a 3D distribution of points occupying all the radial 
space from the periphery to the center of the radial coordinates. Instead, in case of 
networked systems with very low hierarchical organization, all the nodes will be 
compressed and equally distributed towards the periphery of the polar coordinate 
representation, and occupy only a reduced and peripheral portion of the radial space.  

Note that some networked systems might have a hierarchical organization that 
changes across the angular coordinates with a certain pattern. In this case, the 3D 
embedding might result in not spherical and assume other shapes, for instance an 
ellipsoidal shape.     
 
Optimizing gene list, normalization and edge weight for reconstruction  
The 3D coordinates of each sample from each of the 1140 possible strategies of D-
CE (we considered each possible combination of 19 gene meta-sets, 12 normalization 
methods and 5 edge weighting distances) were obtained to evaluate the performance 
of each of them in spatial reconstruction as follows. 

For spatial reconstruction, the anterior and posterior samples are further 
divided into 4 groups according the spatial locations: dA, dP, pA and pP, which means 
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the distal/proximal part of anterior/posterior, the four groups are colored with red, green 
purple and yellow, respectively, in Fig. 3, Supplementary Fig. 2 and 3. For each germ 
layer in each stage, only the angular coordinates of the samples (with the radius all 
set to 1) are used to calculate the following three indexes. 1) The angular separability 
index (ASI) of each part from the rest of the samples is defined and implemented by 
Muscoloni et al.12; 2) The angular alignment index (AAI) is the minimum of two cosine 
values between two pairs of vectors AAI = min (𝑐𝑜𝑠 𝐶 𝐶 ⃑ ∙ 𝐶 𝐶 ⃑ , 𝑐𝑜𝑠(𝐶 𝐶 ⃑ ∙

𝐶 𝐶 ⃑)) to measure the parallelness of A to P orientations in p and d samples and p 
to d orientation in A and P samples, the AAI ranges from -1 to 1, with 1 indicating the 
two vectors perfectly parallel, and -1 perfectly anti-parallel. 𝐶  , 𝐶  , 𝐶   and 𝐶  
denote the geometric center of pA, pP, dA and dP samples. For each group of samples, 
the coordinates of the geometric center of the group is defined as 

(
∑

,
∑

,
∑

), where N is the total number of samples in this group and(𝑥 , 𝑦 , 𝑧 ) 

is the 3D coordinate of the i-th sample in the group. With the coordinates of the 4 
centers 𝐶 = 𝑥 , 𝑦 , 𝑧  𝑖 = 1, 2, 3 𝑎𝑛𝑑 4  determined, the cosine value between 

𝐶 𝐶 ⃑ and ∙ 𝐶 𝐶 ⃑ is calculated as  

𝑐𝑜𝑠(𝐶 𝐶 ⃑ ∙ 𝐶 𝐶 ⃑) =  
( )∙( ) ( )∙( ) ( )∙( )

( ) ( ) ( ) ∙ ( ) ( ) ( )
   

3)  The ordering index (OI) is used to compare the order of samples to the known 
order of samples. The OI of A, P, L or R samples was calculated in each reconstruction 
between their original proximal to distal orders and their orders in reconstructed 
coordinates. The original order is determined by the labels of samples, and the 
rank/order of samples in the reconstructed spatial structures are determined by: 

a) We first calculate OI for the Geo-seq samples in each spatial domain, A, P, L or 
R, separately. For each domain, the reconstructed spatial positions of samples from 
each layer were obtained, if there are more than one sample in the same layer, the 
geometric center of all the samples in this layer is used as the spatial position;  

b) The center of the first layer samples is designated as the reconstructed position 
of the first layer, then rank the sequential layers by the shortest spatial distance to the 
last layer.  

c) The RCC of the original and reconstructed ranks are calculated as OI.  
d) The minimal OI in A, P, L and R is taken as the overall OI of the reconstruction. 
Giving the 1140 possible embedding strategies, we use the 3 indexes to evaluate 

each of the 1140 spatial reconstruction of samples in different developmental stages 
and germ layers to select the best embedding as follows: 

a) For each dataset, the strategies are ranked in the descending order of each 
of the 3 indexes to put the first to be the best performance, and the index are 
substituted with the ranking value, in which 1 is the highest and 1140 the lowest. 

b) For each strategy, the maximum rank of each index of reconstruction of all 
the different stages and germ layers are calculated, and the 3 maximum ranks form 
an array with 3 values. For instance, Strategy12 = [45,4,115] means it perform top in 
AAI, well on ASI, and so-so on OI, in this way, the best method would have a good 
performance for each stages and germ layers. 

c) A max of each vector is taken for each strategy as a measure of robustness 
of spatial reconstruction. For instance, in the case above, Strategy 201 = 115, in this 
way the best method should be robust and have a good performance for all indexes. 
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d) The minimum of those 1140 values (each value is the maximum rank of each 
strategy) is considered as the best strategy for 3D spatial reconstruction, because it 
ranks towards the first positions according to the three indexes.  

For the BDTNP dataset, the embryo is cut into 4 groups according to the x and 
z coordinates in original locations, then the angular coordinates are used to calculate 
ASI and AAI as described above. Same as the mouse embryo, the fly embryo is 
bilaterally symmetric along y axis, therefore only half of the embryo is used as 
novoSpaRC did. As the order of cells on y axis was not considered by novoSpaRC11, 
we also evaluate the reconstructed spatial order in x and z axes using the ASI and AAI 
of the 4 groups according to x and z axes. For OI, the x, y or z coordinate is sorted 
from high to low and divided into 10 groups, the original order of other groups is 
determined by the ascending order of coordinate, the geometric center of each groups 
in the reconstructed structure is calculated as the spatial location of this group. The 
group with lowest mean coordinate is designated as the first group, then the rest are 
calculated as described above for Geo-seq data. 

 
Comparing dimensionality reduction methods in spatial reconstruction 
Besides D-CE, 5 other dimensionality reduction methods, PCA, t-SNE and UMAP-corr, 
UMAP-cos, UMAP-euc are also tested for spatial reconstruction in Cartesian 
coordinates, and then they are compared with D-CE using ASI, AAI and OI. The 3 
indexes of all the results using D-CE, PCA, t-SNE and UMAP are ranked in 
descending order, and the maximum ranks are calculated as described above.  
 
Comparison to the existing de novo spatial reconstruction method 
For CSOmap, the TPM of all LR genes were used for spatial reconstruction. Only 
human and mouse LR interaction were provided. 

As novoSpaRC method is developed specifically for 
Berkeley Drosophila Transcription Network Project (BDTNP) dataset, which only 
contains the expression level of 84 TFs. For comparison to novoSpaRC, the D-CE of 
the BDTNP data used all 84 TFs’ profiles with the same normalization method and 
distance metric as for to the 3D reconstruction of the Geo-seq data.  

To determine the coordinates of samples reconstructed by novoSpaRC, the 
probabilistic coupling matrix 𝑇 ×  between m samples and n locations is calculated 
using novoSpaRC, then the dot product 𝑇 × ∙ 𝐿 ×  , where 𝐿 ×  is the original 3D 
coordinates of the locations, is used to determine the reconstructed sample locations. 
Specifically, 𝑇 ,   is the probability of sample i mapping to location j, and as the 
distribution of ∑ 𝑇 ,  follow a uniform distribution, the weighted sum coordinates of all 
the locations for sample i(∑ 𝑇 , ∙ 𝑥  , ∑ 𝑇 , ∙ 𝑦  , ∑ 𝑇 , ∙ 𝑧 )  is is used to as 
novoSpaRC reconstructed location (with x, y and z coordinates) of sample i, 
where(𝑥 , 𝑦 , 𝑧 ) is the coordinate of the location j.  

 
Down-sampling of the BDTNP dataset and comparison of PCC versus PCC-CSI 
network 
The samples in the BDTNP dataset are randomly selected to 1/n, with n=2 to 100, of 
the total number of samples. The sampling is repeated 20 times at each sampling rate. 
For each down-sampled BDTNP sample set, the PD network and PCC-CSI networks 
are used for D-CE. ASI and AAI are calculated and the mean ASI and AAI of the 20 
repeats at each sampling rate are plotted to compare the performance PD network 
and PCC-CSI network, on samples of different sizes. 
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Reconstruction of gene expression pattern using scRNA-seq data 
The Drosophila and zebrafish embryo scRNA-seq data were downloaded from GEO 
(GSE95025, GSE66688). DST genes were converted to the homologenes of 
Drosophila and zebrafish with DAVID and R package ‘Homologene’. The union of 
these 2 gene sets is used for downstream 3D reconstruction. 

To evaluate the reconstructed structure, the matching FISH image is first 
converted to gray scale, and then cut into 10 layers along either anterior-posterior or 
dorsal-ventral axis. The gray-scale density of each layer was used as the gold 
standard expression level in each layer. The direction of the reconstructed structure is 
corrected by rotating around x and y axis with different angles (with π/30 as step size, 
sampled from 0 to 2π) and cut into 10 layers according to the x and z axis. Then the 
RCC between FISH order and each rotated reconstructed structure layer order were 
calculated. The orientation with max RCC is defined as the optimal orientation, whose 
OI is used as the final OI.  
 
Reconstruction of transcriptome data with spatial coordinates  
For 8 transcriptome data with spatial coordinates, such as barcoded microarray-based 
spatially resolved transcriptome, LCM-seq, seqFISH and MERFISH data, we use the 
spatial order or coordinates as gold standard to evaluate the reconstructed structure 
of each method. These 8 datasets are the mouse olfactory bulb and human breast 
cancer dataset24, the cancerous prostate dataset21 and the melanoma lymph node 
dataset22 downloaded from www.spatialtranscriptomicsresearch.com; the postmortem 
lumbar and cervical spinal cord tissue dataset23 downloaded from https://als-
st.nygenome.org; the mouse hippocampus dataset20 downloaded from the 
supplementary information of their article, the mouse brain dataset25 downloaded from 
GEO with accession number GSE98674, mouse medial ganglionic eminence 
dataset26 downloaded from GEO with accession number GSE60402 and the 
MERFISH dataset16 downloaded from 
https://science.sciencemag.org/content/suppl/2018/10/31/science.aau5324.DC1. The 
log2 transformed gene expression values were used for reconstruction.  

For each experiment, samples are labeled by their x and y coordinates and used 
as gold standards to compute OI, ASI and AAI after the embedding of the samples.   

 
 
Reconstruction of transcriptome data with known spatial orders 
We also use 6 transcriptome data with known spatial order to test different method. 
The human thymus atlas dataset27 was downloaded from Zenodo repository (DOI: 
10.5281/zenodo.3572422) and only the structural cells (excluding immune cells) in 7 
weeks thymus tissue were used for reconstruction. The mouse embryonic brain RNA-
seq dataset31 was downloaded from the supplementary information of the paper. The 
zebrafish tail Geo-seq dataset28 was downloaded from GEO with accession numbers 
GSE120581. The HNC scRNA-seq dataset was downloaded with accession numbers 
GSE103322. The mouse neocortical layer RNA-seq dataset32 was downloaded with 
the accession number of GSE27243. The human embryonic cerebral cortex scRNA-
seq dataset30 was downloaded from GEO with the accession numbers GSE103723. 
3D reconstruction and OI and ASI calculation were as same as the HNC dataset.  

Log2 transformed FPKM (Fragments Per Kilobase of exon model per Million 
mapped fragments) was used for D-CE and novoSpaRC. TPM (Transcripts Per 
Kilobase of exon model per Million mapped reads) was used for CSOmap 
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reconstruction as required. The spatial order of the samples is reconstructed using D-
CE, novoSpaRC and when applicable CSOmap (only applicable to human and mouse 
LR-including gene sets) and the OI of the reconstructed structure is defined as the 
RCC between the original order of the samples and the reconstructed order of the 
samples. Since AAI needs 4 samples to calculate, it is not applicable to the HNC 
dataset, which contains only 3 cell types. 
 
Suppl. Algorithmic procedure for spatial reconstruction, and AAI and OI calculations 
INPUT: 𝑥 ,  (expression matrix of n samples and g genes) 
OUTPUT: 𝐷 , (the cartesian coordinate of each sample) 
 
(1) Network construction 
A normalized expression matrix 𝑥𝑛 ,  in which each element is the square 
root of each element in the 𝑥 ,  is first calculated, and a PCC network 𝑃 ,  
is built as follow: 
For i=1...n 

For j=1...n 
    𝑃 ,  is the Pearson correlation coefficient of row i and j 

    𝑃 , = ,∙ , ( ,) ( ,)

, ( ,) , ( ,)
 

Then, the distance adjacency network 𝑑𝑖𝑠𝑡 ,  is calculated: 
if CSI matrix is used 
   CSI matrix is calculated as:  

for i=1..n 
    for j=1...n 

𝐶𝑆𝐼 , =
𝑠𝑢𝑚(𝑃 , < 𝑃 , − 0.05 &𝑃, < 𝑃 , − 0.05

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
 

    The nonzero elements (𝐶𝑆𝐼 ) of this similarity matrix are ‘reversed’ to 
obtain a distance matrix: 
for i=1...n 
    for j=1...n 

if 𝐶𝑆𝐼 , =0 
𝑑𝑖𝑠𝑡 , =0 

else 
𝑑𝑖𝑠𝑡 , =|𝐶𝑆𝐼 , − max(𝐶𝑆𝐼 ) − min (𝐶𝑆𝐼 )| 

   The distance between nonadjacent nodes is set as the shortest path: 
for i=1..n 
    for j=1...n 

If 𝐶𝑆𝐼 , ==0 
𝑑𝑖𝑠𝑡 , =shortest path between node i and j 

else 
    Just use Pearson distance as the weight directly: 
    𝑑𝑖𝑠𝑡 , = 1 − 𝑃 ,  
 
(2) Network embedding 
(2.1) Then, centered distance matrix 𝑑𝚤𝑠𝑡 ,  is built: 

𝑑𝚤𝑠𝑡 , =  𝑑𝑖𝑠𝑡 , −
1

𝑛
∙ 𝑂 ⋅ 𝑑𝑖𝑠𝑡 , −

1

𝑛
⋅ 𝑑𝑖𝑠𝑡 , ⋅ 𝑂 −

1

𝑛
∙ 𝑂 ∙ 𝑑𝑖𝑠𝑡 , ∙ 𝑂 
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where O is an n-by-n matrix of all 1's; 
 
%Then, apply SVD on the centered distance matrix and get the 3D 
coordinate: 
𝑋 = 𝑈 ⋅ 𝑆 ⋅ 𝑉  
𝐷 , = 𝑠𝑞𝑟𝑡(𝑆 , ) ⋅  (𝑉 , ) ′ 
 
(2.2) Radial coordinate adjustment: 
if CSI matrix is used 

for i = 1...n 
    𝑆 = ∑ 𝐶𝑆𝐼 ,  

else 
for i = 1...n 
    𝑆 = ∑ (1 − 𝑑𝑖𝑠𝑡 , / max

,
𝑑𝑖𝑠𝑡 , ) 

𝑅𝑆𝐷 =
𝑠𝑡𝑑(𝑆 )

𝑚𝑒𝑎𝑛(𝑆 )
 

𝛽 =
𝑅𝑆𝐷

1 + 𝑅𝑆𝐷
 

 
The final Cartesian coordinate 𝐷 ,  is calculated: 
Sort the nodes according to 𝑆  in descending order to ranks 𝑟 … ; 
for i = 1...n 

for j in x, y, z 
   Compute the original radius 𝑅 = (𝐷 , ) + (𝐷 , ) + (𝐷 , )  
   Compute the final Cartesian coordinates:  

                  𝐷 , =
,

∗ (1 −
( )

) 

 
INPUT: 𝐷 , , 𝐿 (the Cartesian coordinate and the spatial location (dA, dP, 
pA, pP) of each sample) 
OUTPUT: AAI (angular alignment index) 
 
First, the Cartesian coordinates of the geometric center of each spatial part 
is calculated: 
for i in dA, dP, pA, pP 
    D1 , = 𝐷 , 

𝐶 = (
∑ 𝐷1 ,

𝑛𝑖
,
∑ 𝐷1 ,

𝑛𝑖
,
∑ 𝐷1 ,

𝑛𝑖
) 

The cosine value below is calculated to measure the parallelness of A to P 
orientations in p and d samples: 

 𝑐𝑜𝑠(𝐶 𝐶 ⃑ ∙ 𝐶 𝐶 ⃑) =

 
( )∙( ) ( )∙( ) ( )∙( )

( ) ( ) ( ) ∙ ( ) ( ) ( )
   

The cosine value below is calculated to measure the parallelness of p to 
d orientations in A and P samples: 
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𝑐𝑜𝑠(𝐶 𝐶 ⃑ ∙ 𝐶 𝐶 ⃑) =

 
( )∙( ) ( )∙( ) ( )∙( )

( ) ( ) ( ) ∙ ( ) ( ) ( )
   

Then the final AAI is calculated as the minimum of the 2 cosine values: 
AAI = min (𝑐𝑜𝑠 𝐶 𝐶 ⃑ ∙ 𝐶 𝐶 ⃑ , 𝑐𝑜𝑠(𝐶 𝐶 ⃑ ∙ 𝐶 𝐶 ⃑)) 
INPUT:  𝐶 ,  , 𝐷  , 𝐿   (the cartesian coordinate, the spatial domain each 
sample belonged to and the known spatial layer each sample belonged to) 
OUTPUT: OI (order index) 
 
for each domain d in 𝐷  

C1 , = 𝐶 ,  
L1 = 𝐿   
for i = 1… (max 𝐿1 − min 𝐿1 + 1) 

        𝐶2 , = 𝐶1 ( ), 

        𝐶𝑒𝑛 = (
∑ ,

,
∑ ,

,
∑ ,

) 

The rank of reconstructed spatial order 𝑅𝑟 is calculated as: 
for i =  1 … (max 𝐿1 − min L1 + 1) 

    𝑅𝑟 = 0 
𝑅𝑟 = 1  
While min(𝑟 )=0 

        Cmax = 𝐶𝑒𝑛  ( ) 
    for each i that 𝑅𝑟 = 0 
        d =

(𝐶𝑒𝑛 − Cmax ) + (𝐶𝑒𝑛 − Cmax ) + (𝐶𝑒𝑛 − Cmax )  

    Rr = max(𝑅𝑟) + 1 

The rank of original spatial order 𝑅𝑜 = 1 … (max 𝐿1 − min 𝐿1 + 1) 

The OI is defined as the rank correlation of  𝑅𝑟 and 𝑅𝑜 

OI𝑎=
( ∙ ) ( ) ( )

(𝑅𝑟2) ( ) (𝑅𝑜2) ( )
 

Finally, the overall OI is defined as the minimal OI in all of the domains 
𝑂𝐼𝑓𝑖𝑛𝑎𝑙 = min

𝑑
𝑂𝐼𝑑 
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