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Abstract:  

Heparins, Unfractionated or Low Molecular Weight, are permanently at the spotlight of both clin-

ical indications and laboratory monitoring. An accurate drug dosage is necessary for an efficient 

and safe therapy. The one-stage anti-FXa kinetics’ assays are the most widely and universally used 

with full automation for large series, without needing exogenous Antithrombin. WHO interna-

tional standards are available for UFH and LMWH, but external quality assessment surveys still 

report a high inter-assay variability. This heterogeneity results from: assay formulation, designed 

without or with dextran sulfate to measure all heparin in blood circulation; calibrators for testing 

UFH or LMWH with the same curve; and automation parameters. The various factors which im-

pact heparin measurements are reviewed, and we share our experience to optimize assays for 

completely testing plasma heparin. Evidence is provided on the usefulness of low molecular 

weight dextran sulfate to mobilize all drug present in blood circulation. Other key factors concern 

adjustment of assay conditions to obtain fully superimposable calibration curves for UFH and 

LMWH, and automation parameters. The study is illustrated by the performances of the various 

anti-FXa assays used for testing heparin on UFH or LMWH treated patients’ plasmas and obtained 

using citrate or CTAD anticoagulants. Comparable results are obtained only when CTAD antico-

agulant is used. Using citrate UFH is underestimated in the absence of dextran sulfate. Heparin 

calibrators, adjustment of automation parameters and data treatment contribute to other smaller 

differences. 

Keywords: heparins; anti-FXa assays; automation; calibration curves superimposition; dextran 

sulfate  

1. Background 

Heparin therapy and its monitoring: Heparin and its derivatives, including Unfraction-

ated Heparin (UFH), Low Molecular Weight Heparin (LMWH) and Fondaparinux, re-

main a major group of anticoagulants with multiple indications in various clinical situa-

tions associated with thrombosis or its risk of occurrence [1-3]. Since its discovery, more 

than 1 century ago [4, 5], and its introduction, heparin is used for preventing or managing 

thrombotic diseases, and the prognosis of these complications has been totally reversed 

in many pathological contexts like traumatology, hip or knee replacement, post-surgery, 

or cardiology [6-9]. A close monitoring is required for therapy adjustment, especially for 

UFH, to obtain an efficient anticoagulant effect and avoiding bleeding risk [10, 11]. Blood 

heparin concentration is not always predictable as some patients can present an impaired 

clearance, especially when there is a deficient kidney function [12, 13], or they can face 

heparin resistance, in presence of netosis, high circulating histone concentrations or am-

yloidosis [14-17].  In addition, rare and severe side effects can develop with heparin in-

duced thrombocytopenia, a life-threatening antibody-dependent complication, which 

requires an immediate heparin withdrawal and use of a different anticoagulant [18, 19].  

Heparin remains however the anticoagulant of choice in many critical circumstances, due 
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to its rapid anticoagulant response and efficacy, but also to its other beneficial activities, 

anti-inflammatory and antiproliferative [1, 8, 20-22]. Furthermore, heparin can produce 

blood anticoagulation through additional mechanisms than inhibition of coagulation 

serine esterases, especially through the release of Tissue Factor Pathway Inhibitor (TFPI) 

from endothelium, process which is more effective at the onset of therapy, and depend-

ent on heparin sulfation grade and molecular weight [23-2].  

The UFH and LMWH drug-dosage needs to be accurately adjusted for each treated pa-

tient according to the clinical pattern and physiological status, which can impact drug 

clearance [2, 6, 13, 26, 27]. If drug concentration is not enough in blood circulation, 

thrombotic diseases is not correctly controlled, and conversely, if it is too high, due to 

overdosage or an impaired clearance, patient can bleed. Both situations can lead to a fatal 

outcome, highlighting the criticism of drug monitoring. Many assays have been devel-

oped over time for testing heparin in blood circulation, during open heart surgery, or in 

plasma [11, 28, 29]. The first assays proposed for evaluating its anticoagulant potential 

were based on the prolongation of clotting time, and later the activated clotting time 

(ACT) was introduced for testing high concentrations in cardiology patients, especially in 

intensive care units [28-30]. However, in clinical settings most of the heparin treated pa-

tients have been monitored with the Activated Partial Thromboplastin Time (APTT), 

performed on citrated plasma, for a long time [31,32]. This clotting method is still the first 

line laboratory assay in many countries, despite its limitations [33, 34]. The availability of 

chromogenic assays, introduced about 40 years ago, has permitted the progressive de-

velopment of more specific methods for testing heparin concentrations in plasma [10, 30, 

33, 35-38]. Specific thrombin or FXa chromogenic substrates are used for enzyme inhibi-

tion methods. This lead to develop first 2-stage assays, then anti-FXa kinetics assays, fully 

automated. These latter are now the most widely used with the various available coagu-

lation instruments. Heparin measurements are much more accurate when monitored 

with chromogenic assays than when tested with APTT or ACT [33, 35, 38], as these clot-

ting methods present many interferences, especially in severely ill patients. They can 

result from high Factor VIII concentration [31], inappropriate citrate content in blood 

samples obtained in insufficiently filled tubes, blood activation during collection, or low 

hematocrit.  

Mode of action of heparin: Heparin is an indirect catalytic inhibitor and requires An-

ti-Thrombine (AT) for inhibiting coagulation serine esterases, mainly thrombin, also 

named activated Factor II (FIIa), and FXa, and in a lesser extend FIXa, FXIa and FVIIa [39, 

40]. In the absence of heparin, AT is a progressive inhibitor of thrombin and FXa. When 

present, heparin binds to AT through an irregular pentasaccharide sequence, in a mole-

cule-to-molecule complex. AT becomes then a fast-acting inhibitor of thrombin and FXa 

and forms finally a stable irreversible complex with these serine esterases, whilst heparin 

is released from the complex and becomes available for activating a new AT molecule [41, 

42]. The limiting factor for the anticoagulant action of heparin, in addition to its concen-

tration, is then the concentration of AT, and the drug turn-over for inhibiting serine es-

terases. The turn-over of heparin for AT activation, and therefore its anticoagulant po-

tential, depends on its characteristics, especially the pentasaccharide sequences’ density 

and its molecular weight (MW) or polysaccharide length [4, 5, 43]. In body or in the assay 

system, heparin anticoagulant activity is dependent on AT concentration only if that one 

is too low. When AT is present at an enough concentration, anticoagulant activity is then 

heparin dose dependent. Other characteristics of heparin, like the global electronegative 

charge and the sulfate groups density, affect better its non-anticoagulant biological effects 

[8, 9, 21, 2]. Heparin is an electronegatively charged molecule which can interact with 

many blood proteins and bind to various blood cells through exposed surface proteins, 

especially to endothelial cells and platelets [44, 45]. UFH has a higher affinity for blood 

proteins and cells than LMWH. Proteins which can impact heparin activity in blood or 
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plasma are first platelet factor 4 (PF4), a protein released from platelet α-granules and 

which has the highest affinity and can neutralize this drug at stoichiometric concentra-

tions [4], then Histidine-Rich-Glyco-Protein (HRGP), a protein involved in fibrinolysis for 

the regulation of plasminogen binding to fibrin [47, 48]. But other proteins can also bind 

to heparin with a lower affinity, like vitronectin, β2-Glycoprotein, but their incidence on 

heparin activity is negligible.  

Chromogenic assays for heparin monitoring: The first heparin chromogenic assays in-

troduced were the 2-stage assays, based on the inhibition of a constant amount of FIIa or 

FXa. Diluted tested specimen is mixed with a constant concentration of purified AT and 

FIIa or FXa for a fixed time, in a first step, followed by the addition of the chromogenic 

substrate, which reacts with the non-inhibited FIIa or FXa, in the second step [49, 50].  

An inverse dose-response curve is obtained between heparin concentrations and ab-

sorbance, measured at 405 nM. The assays must be calibrated with the same type of 

heparin measured, in a like-to-like manner. Calibrators are prepared by spiking the as-

sayed drug in normal citrated plasma or in the assay buffer for obtaining the reference 

range. Performing these laboratory methods requires a high level of technical expertise, 

and the assay conditions need to be strictly adhered to. Each stage is critical, and the 

timing must be respected exactly. High quality biochemicals, including AT, FIIa or FXa, 

and chromogenic substrates, are required. These assays are extremely sensitive, with 

ranges from ≤ 0.10 IU/mL for anti-FXa or ≤ 0.05 IU/ml for anti-FIIa methods. Samples 

containing heparin must be highly diluted before testing. When heparin is assayed in 

plasma, a platelet depleted plasma with a low PF4 content (< 10 ng/mL) is required for 

preparing calibrators. For the value assignment of heparin drugs, a reference range is 

prepared in the assay buffer containing Bovine Serum Albumin (BSA) or 

Poly-Ethylene-Glycol (PEG 6000) as carrier substances.  The exact conditions for per-

forming these assays are documented in Pharmacopeias (EP, USP, JP). These assays’ 

constraints have limited the use and automation for these methods, especially since the 

introduction of automated instruments, which face limitations for managing exactly the 2 

exact incubation times required. The 2-stage assays however remain the reference 

methods for testing heparin and its derivatives by pharmaceutical industry in association 

with like-to-like drug reference materials [51]. 

 Automated one-stage anti-FXa kinetics methods have been developed for the current 

laboratory monitoring of heparin therapy, along with plasma calibrators for UFH, 

LMWH or Fondaparinux.  These assays can be automated on any of the coagulation in-

struments now available in laboratories and an assay precalibration is currently used [30, 

52]. A new calibration is only required from time to time, the permanence of measure-

ment performances being verified daily with control plasmas. No exogenous AT is 

needed for kinetics anti-FXa assays, and endogenous assayed plasma AT is enough in 

when ≥ 50%. Cautions are required for testing plasmas from pediatric patients, or from 

patients with a low AT (< 50%). For performing the assay, the tested plasma, undiluted or 

slightly diluted with physiological saline or assay buffer, is automatically pipetted into 

the instrument reactive cuvette, and is mixed at 37°C with the FXa specific chromogenic 

substrate at an optimized concentration; when the temperature is equilibrated at 37°C, 1 

to 2 minutes later, a constant and in excess concentration of FXa, prewarmed at 37°C, is 

added and the reaction starts. There is a competition of FXa for the AT-heparin com-

plexes and its chromogenic substrate. Higher is the heparin concentration and lesser FXa 

is available for cleaving the substrate. The change in absorbance, measured at 405 nm, is 

an indirect relationship of heparin concentration. The assay calibrator is obtained with 

heparin spiked in plasma at various concentrations, covering the dynamic range. WHO 

International Standards (IS) are available for UFH and LMWH and allow standardization 

and traceability of calibrators proposed by each heparin diagnostic device manufacturer 

[53, 54]. As each heparin type has a specific inhibition kinetics for FXa, plasma calibrators 
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prepared with the same heparin tested must be used. However, there is a strong market 

request to use a single heparin calibration for all heparin types, whether UFH or LMWH. 

Most manufacturers now propose a single heparin calibration curve, hybrid, for testing 

all heparins. This goal is achieved correctly fully superimposable UFH and LMWH cali-

bration are obtained. Today, the current practice for monitoring any type of heparin 

therapy is to use the one-stage anti-FXa chromogenic kinetics assay, fully automated, 

with only one precalibrated curve, associated with UFH or LMWH control plasmas. 

Variability of heparin measurements: Although important efforts have been performed 

to standardize, automate, and optimize heparin testing, with availability of ISs and of 

guidelines issued by scientific societies or regulatory bodies, many differences in meas-

ured plasma heparin concentrations are still observed when the various branded heparin 

anti-FXa chromogenic assays are used [55-58]. This is illustrated by the external quality 

assessment programs, like ECAT, which show a remaining significant reagent to reagent 

and laboratory to laboratory variability, more especially for UFH in the low range [57). 

The debate on which anti-FXa method generates the right results has been recently open 

again, with the extended indications of heparin treatments, using either UFH or LMWH, 

in Covid-19 patients, as thrombosis is a frequent disease complication [55, 59-61].  

Indeed, heparin measurement is an assay which concerns a catalytic indirect inhibitor, 

and many parameters impact its kinetics. The design of assay conditions is essential for 

its performances. With the same assay principle, the presence of multiple proteins bind-

ing to heparin in plasma produce significant differences depending on the reagent con-

cept, its formulation and the calibration used. Many years ago, the use of low molecular 

weight dextran sulfate (DS) was introduced for improving the heparin anti-FXa assays. It 

was claimed that presence of this component allowed measuring the full heparin activity 

in plasma, by limiting the impact of ex-vivo neutralization, especially by platelet released 

products [62-64). Now, many heparin diagnostic device manufacturers use this compo-

nent, which is indicated on the instructions for use, whilst others do not yet [57,61].  

Another important incidence on measured heparin concentrations results from the cali-

bration used. Heparin can be often tested in emergency conditions. Clinical laboratories 

do not always know which heparin brand or type is used for patients’ treatments. There 

is then a high expectation to use a single heparin calibration for any heparin type to be 

measured. Attempts have been done for reaching this objective. One approach is to de-

velop assay conditions, which permit obtaining the same dose-response curve for UFH 

and LMWH [62, 63]. Calibration curves for UFH and LMWH are then fully superim-

posable. Another approach is to build a hybrid curve by mixing or combining UFH and 

LMWH for plasma calibrators to get a median curve, between that of UFH and that of 

LMWH [65]. In this report we show the impact of DS for measuring the various heparin 

types, and its contribution to the exactness and accuracy of heparin measurement on 

plasma. Reagents and reference material from the various manufacturers are compared 

for the measurement of UFH or LMWH on citrate or CTAD anticoagulated plasmas from 

heparin treated patients [66]. Assays are calibrated with the manufacturers’ proposed 

heparin calibrators comparatively to the WHO UFH or LMWH International Standards. 

We then discuss the factors which are responsible for the variations of measured heparin 

concentrations and the assays’ biases. 

 

2. Materials and Methods 

Patients and normal plasmas: citrated normal plasmas and plasma pool were supplied 

frozen by Precision Biologic Inc. (Halifax, Canada), and stored at < -70°C until use. 
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Plasmas from hospitalized patients with heparin therapy for post-surgery thrombosis 

prevention, using either UFH or LMWH, were obtained from Beaujon University Hos-

pital (Clichy, France), as the left-over residual plasma, and obtained according to CLSI. 

Blood was collected either on 0.109 citrate or CTAD (Cit-

rate-Theophylline-Adenosine-Dipyridamole) anticoagulant from heparin treated patients 

(UFH or LMWH), and plasma was decanted following 20 minutes centrifugation at 2,000 

g, at Room Temperature (RT), then stored frozen at <-70°C until use. Plasmas were 

thawed for 5 min in a water bath at 37°C just before use. 

Heparin anti-FXa kinetics chromogenic assays were obtained from various manufac-

turers: STA-Liquid Anti-Xa (reagent A), and STA-Multi-Hep Calibrator , STA-Quality 

HNF/UFH and STA-Quality HBPM/LMWH from Diagnostica Stago (Asnières, France); 

HemosIL Liquid Anti-Xa (reagent B), HemosIL Heparin Calibrators , HemosIL UF Hep-

arin Controls and HemosIL LMW Heparin Controls from IL-Werfen (Le Pré Saint Ger-

vais, France); INNOVANCE Heparin (reagent C), INNOVANCE Heparin Calibrator, 

INNOVANCE Heparin UF Controls and INNOVANCE Heparin LMW Controls from 

Siemens (Aubervilliers, France); BIOPHEN Heparin LRT (reagent D), the 2-stage assays, 

BIOPHEN Heparin Anti-Xa-2-stages and BIOPHEN Heparin Anti-IIa-2-stages, BIO-

PHEN UFH calibrator and controls, and BIOPHEN LMWH calibrator and controls, were 

from HYPHEN BioMed (Neuville sur Oise, France). IL-Werfen and Diagnostica Stago 

propose plasma calibrators prepared by mixing or combining UFH and LMWH with 

traceability to International Standards and claim a hybrid calibration curve which can be 

used irrelevantly for UFH or LMWH. Siemens propose plasma calibrators prepared with 

LMWH only, and Hyphen BioMed propose a full superimposition of UFH and LMWH 

calibration curves, whether UFH or LMWH plasma calibrator is used; in practice plasma 

calibrators are prepared with LMWH. Siemens, IL-Werfen and HYPHEN BioMed anti-Xa 

reagents (B, C and D) contain dextran sulfate (DS), whilst the Diagnostica Stago one (A) 

does not. 

Reference materials used for UFH or LMWH were the WHO International Standards (IS), 

obtained from the National Institute for Biological Standards and Controls (NIBSC, Pot-

ters Bar, UK): IS 11/176 for LMWH (1068 anti-FXa and 342 anti-FIIa IU per ampoule) and 

IS 07/328 for UFH (2,145 IU per ampoule). These ISs were restored as indicated on the 

product instructions for use, and a stock solution was prepared at exactly 100 Interna-

tional Units (IU)/mL using a 0.05 M Tris, 0.15 M NaCl, 1% BSA buffer at pH 7.40 (TBSA). 

This stock solution was used for preparing UFH or LMWH concentration ranges in the 

Cryocheck plasma pool, from 0 to 1.8 IU/mL: first a twenty-fold concentrated range was 

prepared in TBSA (0 to 36 IU/ml); then 50 µl of each stock solution was spiked in 950 µL 

of cryocheck citrate plasma pool to obtain an UFH or LMWH concentration in plasma 

ranging from 0.00 to 1.80 IU/ml. All spiked plasmas had the same matrix, i.e. 95% cry-

ocheck plasma pool and 5% TBSA. 

Laboratory coagulation automated instruments: each heparin anti-FXa assay was used 

with the manufacturer’s proposed instrument: Diagnostica Stago reagent A with STA-R 

Max (Diagnostica Stago, Asnières, France); IL-Werfen reagent B with ACL-Top 550 (IL 

Werfen, Le Pré St Gervais, France); Siemens reagent C with CS-5100 (an automated in-

strument from Sysmex, Kobe, Japan, and distributed by Siemens Healthineers, Aubervil-

liers, France); HYPHEN BioMed reagent D with the Sysmex CS-5100 instrument (Sysmex, 

Kobe, Japan); the BIOPHEN 2-stage anti-FIIa and anti-Xa assays were used with the 

CS-2400 instrument (Sysmex, Kobe, Japan). Reagents were used respecting strictly the 

manufacturers’ protocols recommended. HYPHEN BioMed reagents, which are multi-

platform, were used with the CE marked protocols developed and validated for CS-5100. 

All tested plasmas were used undiluted (reagent B) or diluted as claimed in the instruc-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 March 2021                   doi:10.20944/preprints202103.0171.v1

https://doi.org/10.20944/preprints202103.0171.v1


 6 of 17 
 

tions for use for each assay, and plasma diluent was either Owren Veronal Buffer (rea-

gents A and C), or 0.15 M sodium chloride (reagents C and D). 

Verification of dose-response curves for UFH and LMWH: the citrate plasma pool sup-

plemented with either UFH or LMWH ISs was assayed for each reagent-instrument 

combination (A, B, C and D), parallelly with the manufacturers’ calibrators.  

Correlation studies: all plasmas, from UFH or LMWH treated patients, and whether cit-

rate or CTAD anticoagulated, were tested with the 4 anti-FXa assay combinations and 

correlation diagrams were established. Sub-analysis was then performed for the various 

groups, plasmas from UFH or LMWH treated patients, obtained using citrate or CTAD 

anticoagulant. 

Heparin characteristics of plasma calibrators: heparin calibrators from the various 

manufacturers were tested with the 2-stage anti-FXa or anti-FIIa assays with the CS-2400 

instrument and calibrated with the UFH or LMWH WHO-ISs spiked in plasma. This 

measurement allowed analyzing the content of each plasma calibrator by establishing the 

anti-FXa/Anti-FIIa ratios: UFH has a ratio of 1.00, whilst depending on the branded ma-

terial LMWH has a ratio from 1.6 to 9.7 [4, 43]. 

Calibration curves analysis: Heparin calibrators proposed by each manufacturer for its 

anti-FXa kinetics assay were evaluated comparatively to UFH and LMWH WHO-ISs. 

Each proposed manufacturer’s heparin calibrator and the UFH or LMWH WHO-ISs 

spiked in plasma, with a concentration range from 0.00 to 1.80 IU/ml, as described before, 

were tested with each anti-FXa reagent-instrument combination, as described here above 

(A, B, C and D). For each combination, the 3 calibration curves obtained (heparin assay 

manufacturer’s calibrator, UFH IS and LMWH IS) are compared. 

Statistics were performed using the analyse-it software. 

 

3. Results 

Calibration curves for the various assays: 

The various calibration curves obtained with each anti-FXa combination for the manu-

facturer’s calibrator and the UFH or LMWH WHO-ISs are shown on figure 1. Superim-

position between the manufacturer calibration curve and those obtained with the WHO 

International UFH or LMWH Standards is globally good, although some slight deviation 

can be seen depending on the system used. In combination A, UFH-IS calibration lacks 

linearity, especially in the low range, and absorbances measured are above the manufac-

turers’ calibration, which can result in underestimation of UFH concentrations, especially 

for low heparin concentrations. Superimposition is better in the high range. In combina-

tion B, UFH and LMWH ISs calibrations have an acceptable superimposition, and manu-

facturer’s calibration appears to deviate below ISs curves, which can underestimate UFH 

or LMWH concentrations. In combination C, superimposition is also acceptable, with the 

assay calibration like that of UFH-IS but slightly above that of LMWH-IS, which can tend 

to slightly underestimate LMWH; superimposition for all the curves is also obtained for 

combination D. 

Deviations are higher for UFH, especially for low concentrations, when DS is not used in 

the assay system. A better accuracy and exactness are also obtained when heparin plasma 

calibrator concentrations are regularly distributed over the dynamic range, than concen-

trated in the lower part, as for combination B. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 March 2021                   doi:10.20944/preprints202103.0171.v1

https://doi.org/10.20944/preprints202103.0171.v1


 7 of 17 
 

 

 

  

Figure 1. Comparison of calibration curves for each anti-FXa assay used with the manufacturer’s coagulation instrument 

as compared to the International Standards for UFH or LMWH. Heparin concentrations are on abscissae and change in 

absorbance per minute (OD/min) on ordinates. 

 

Correlation studies: 

Correlation studies are performed on the global patients’ plasma group, obtained 

from blood samples from UFH or LMWH treated patients and collected on citrate or 

CTAD anticoagulants. Figure 2 shows the various correlation diagrams, for each manu-

facturer’s device compared to the others: B vs D; C vs D; C vs B; D vs A; C vs A; B vs A. 

The reagents containing DS (B, C and D) present acceptable correlations between them, 

whilst there is a higher dispersion when these reagents are compared with reagent A, 

designed without DS. 

The differences are higher for UFH samples than for LMWH. The correlation line 

tendency for A and B is to underestimate heparin concentrations as compared to C and D, 

as expected from the calibration curve analysis.  

 

The mean values for the various subgroups of plasmas tested (UFH or LMWH with 

citrate anticoagulant or with CTAD anticoagulant) are shown on table 1. Mean heparin 

concentrations are lower when measured with reagents A and B than with reagents C and 

D. Differences are partly due to the use of dextran sulfate for the assay formulation, and 

partly to the calibration used. 
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Figure 2. shows the global crossed correlations between the 4 different branded anti-FXa assays for all the tested 

plasma samples from heparin treated patients (either with UFH or LMWH), and anticoagulated with citrate or 

CTAD. Assays B, C and D contain dextran sulfate, whilst assay A does not. The global correlation is better when 

assays containing dextran sulfate are compared between them. 

 

 

Table 1: Mean heparin concentrations measured on the 68 plasmas from UFH or LMWH treated patients, using 

the 4 various anti-FXa kinetics assays (Stago, Werfen-IL, Siemens and HYPHEN BioMed); blood was collected 

either on citrate or CTAD anticoagulant, and plasma decanted following centrifugation. 

 

N=68 Mean SD Minimum Median Maximum 

STA® - Liquid Anti-Xa (A) 0.376 0.282 0.10 0.315 1.34 

HemosIL® Liquid Anti-Xa (B) 0.383 0.235 0.04 0.355 1.12 

INNOVANCE® Heparin (C) 0.466 0.278 0.10 0.410 1.37 

BIOPHEN™ Heparin LRT (D) 0.479 0.266 0.05 0.452 1.24 

 

 

 

 

Impact of anticoagulant: 
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To understand and illustrate which factors are responsible for heparin concentration 

differences between assays, the various correlation diagrams were drawn by identifying 

each patients’ plasma group. Figure 3 shows for each combination the correlation dia-

grams with the separate identification of each subgroup: UFH-Citrate; LMWH-Citrate; 

UFH-CTAD; LMWH-CTAD. This diagram shows obviously that the differences are 

mainly due to citrate plasma samples containing UFH, and in a lesser extend to citrate 

samples containing LMWH. When CTAD is used as anticoagulant, a much better co-

herence of heparin concentrations measured is obtained between all assays. 

 

 

Figure 3. Crossed correlations for the comparison of the various tested subgroups (UFH-Citrate: blue triangles; 

LMWH-Citrate: green squares; UFH-CTAD: orange dots; LMWH-citrate: orange diamonds) with the various re-

agent-instrument combinations A, B, C and D. The highest differences are observed for UFH-citrate, and in a 

lesser extend for LMWH-citrate, plasma samples, especially when anti-FXa reagents with (B, C and D) or without 

(A) dextran sulfate are compared. 

To confirm the factors explaining the heparin concentration differences measured with 

the various reagents, especially when designed with or without DS, correlations were 

analyzed separately for each group of plasma samples, obtained from blood collected on 

citrate or CTAD anticoagulant as shown on the correlation diagrams presented on figure 

4. Results are shown for UFH or LMWH plasmas with the 2 anticoagulants, citrate or 

CTAD, only for the comparison between reagents A and D. However, similar correlations 

are obtained for A when compared to reagents B or C (data not shown). 

The highest dispersion of results between reagents A and D concerns UFH samples 

collected on citrate anticoagulant. When the same samples are collected on CTAD anti-

coagulant a much better correlation is obtained. The same comments can be done when 

comparison is made between reagent A and reagents B or C, whilst correlations are ac-
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ceptable when reagents B, C and D are compared between whether on UFH and LMWH 

plasmas, anticoagulated with citrate or CTAD.  

These data suggest that UFH is partially inhibited ex-vivo and its concentration is 

underestimated when reagent A is used. Presence of DS prevents from this inhibition. 

 

Figure 4. correlation diagrams between the anti-FXa reagent designed without dextran sulfate (A) and another one 

with (D) for the various subgroups of tested samples: citrate-UFH; citrate-LMWH; CTAD-UFH; CTAD-LMWH. The 

correlation is poor for citrate anticoagulated samples, especially for UFH, whilst it is acceptable for CTAD antico-

agulated plasmas, containing either UFH or LMWH. 

The mean heparin concentrations measured with the 4 anti-FXa assays combinations 

were analyzed for each of the subgroups treated with either UFH or LMWH, and antico-

agulated with citrate or CTAD.  Table 2 shows the values obtained for each subgroup, 

underlining the important impact of the anticoagulant used and assay design without DS, 

on the heparin concentrations measured especially for the low concentration range. Other 

differences observed with the various assays and the various groups can be explained by 

the calibration curves biases, when compared with the UFH or LMWH reference curves 

obtained with the ISs. This has an additional impact on reagent B in the low UFH range, 

and in a lesser extent on reagent C. 

Table 2: mean heparin concentrations, in IU/mL, measured with the 4 different anti-FXa reagents on the various 

subgroups: Citrate-UFH; Citrate-LMWH; CTAD-UFH and CTAD-LMWH). 
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Composition of the various heparin calibrators:  

As heparin anti-FXa reagents are indicated for testing all heparin types, manufacturers 

proposed superimposed curves or hybrid curves which can be used irrelevantly for test-

ing UFH or LMWH with the same heparin calibrator. We evaluated the specific antico-

agulant activity of each heparin plasma calibrator to FXa and FIIa, with the 2-stages as-

says. The specific anti-FXa to anti-FIIa ratios were calculated for each calibrator. Results 

are presented on table 1.  

UFH has an anti-FXa/Anti-FIIa ratio of 1.00 and the various LMWH have ratios rang-

ing from 1.6 to 9.7, partly dependent on the MW size distribution, and on the pentasac-

charide density. From these data it can be deduced that Stago heparin calibrator set con-

tains 2 calibrators (calibrators 2 and 4) obtained by supplementing plasma with UFH and 

2 with LMWH (calibrators 3 and 5), whilst all the IL HemosIL heparin calibrators contain 

a mixture of UFH with some LMWH. Siemens and HYPHEN BioMed heparin calibrators 

are homogenous and prepared with only LMWH added to plasma. The anti-FXa to An-

ti-FIIa ratios show that different LMWH are used:  this ratio (mean of 2.10) is lower for 

the Siemens calibrators, like that of certoparin, and higher for HYPHEN BioMed (mean of 

4.02), like that of enoxaparin. The WHO International Standard for LMWH 11/176 has an 

Anti-FXa/FIIa ratio of 3.12 (1068 IU for anti-FXa and 342 IU for anti-FIIa). 

The appropriateness for the use of a single heparin calibration curve for measuring 

UFH or LMWH depends first on the accuracy of the superimposition of both curves ob-

tained with the corresponding ISs. Both WHO standards were proposed as each heparin 

type, UFH or LMWH, present different characteristics for inhibition kinetics.  

 

 

 

 

 

 
 

 

STA® LIQUID 

ANTI-XA  

HEMOSIL® 

LIQUID ANTI-XA  

INNOVANCE® 

HEPARIN  

BIOPHEN™ 

HEPARIN LRT  

UFH 

(IU/ML) 

Citrate 

N=17 

Mean 0.25 0.31 0.37 0.43 

Min-Max 0.10-0.65 0.13-0.60 0.17-0.69 0.14-0.79 

CTAD 

N=11 

Mean 0.33 0.43 0.46 0.55 

Min-Max 0.10-0.87 0.19-0.93 0.24-1.01 0.31-1.15 

LMWH 

(IU/ML) 

 

Citrate 

N=25 

Mean 0.40 0.38 0.48 0.46 

Min-Max 0.10-1.14 0.04-1.01 0.10-1.23 0.05-1.17 

CTAD 

N=15 

Mean 0.51 0.44 0.55 0.51 

Min-Max 0.10-1.34 0.11-1.12 0.15-1.37 0.12-1.24 
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Table3: Analysis of the various heparin calibrators from the different manufacturers by testing their anti-FXa 

and anti-FIIa activities (IU/mL) as compared with the manufacturers’ claimed concentrations for the used heparin 

calibrator from the lots used, and anti-FXa/anti-FIIa ratios.  

Brand
Heparin 

Calibrators
Anti-IIa IU/ml Anti-FXa IU/ml

Anti-FXa/Anti-IIa 

ratio

Manufacturer's Target 

Value IU/ml

1 0.00 0.02 0.00 0.00

2 0.59 0.77 1.32 0.80

3 1.68 2.32 1.38 2.00

1 0.00 0.02 0.00 0.00

2 0.59 0.57 0.98 0.40

3 0.38 0.82 2.08 0.68

4 1.12 1.08 0.95 0.98

5 1.06 2.18 2.06 1.79

1 0.00 0.00 0.00 0.00

2 0.18 0.37 2.06 0.43

3 0.38 0.79 2.08 0.85

4 0.56 1.19 2.13 1.27

5 0.74 1.58 2.14 1.67

1 0.00 0.00 0.00 0.00

2 0.11 0.44 4.00 0.45

3 0.23 0.92 4.00 0.92

4 0.33 1.35 4.09 1.36

5 0.48 1.92 4.00 1.80

Diagnostica Stago

Siemens

HYPHEN BioMed

IL

 

 

4. Discussion 

Recent articles have pointed out the variability of heparin measurements using the var-

ious commercially available Anti-FXa assays. This debate has been reactivated with the 

extended use of heparin therapy in Covid-19 patients, and the detection in some patients 

of high sensitivity, when drug clearance is decreased, or resistance, when strong in-

flammation, Nets and histones are present (14, 15, 67, 68). Some recent studies suggest 

that there is an overestimation of measured heparin concentrations, especially for UFH, 

when DS is used for the anti-FXa assay formulation, whilst other reports support this 

technical choice as providing the most accurate estimation of circulating heparin antico-

agulant activity [55, 59, 60]. Especially, this debate questions which is the right residual 

heparin concentration following neutralization with protamine sulfate at the end of ex-

tra-corporeal circulation, and when the rebound effect is observed [59, 69-71]. Studies 

using heparinase or heparinase showed that the measured residual heparin does not al-

ways match with the anticoagulant activity measured [72-74], and presence of DS can 

provide a better estimation. As a developer of heparin testing reagents, we analyzed 

these different reports and anti-FXa assays’ performances through our experience. 

In this study we have evaluated various factors impacting the measurement of heparin 

concentrations on plasma from UFH or LMWH treated patients using the 4 major com-

mercially available anti-FXa assays. We have investigated the incidence of assays’ for-

mulations, and of the manufacturers’ calibration curves proposed. Heparin calibrators 

have been tested by comparison with the UFH or LMWH WHO International Standards, 

spiked in a normal platelet poor plasma pool. Three of the anti-FXa assays (reagents 

B/IL-Werfen, C/Siemens-Innovance and D/ HYPHEN BioMed-Biophen) are designed 

with dextran sulfate, a component which was reported to make available for testing all 

mobilizable heparin with anticoagulant activity, as present in the sample [62, 63], whilst 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 March 2021                   doi:10.20944/preprints202103.0171.v1

https://doi.org/10.20944/preprints202103.0171.v1


 13 of 17 
 

one (reagent A/Stago-STA Liquid Anti-Xa) does not contain this component. Tested 

plasma samples were provided by Beaujon University’ Hospital (Clichy, France) and 

were obtained from UFH or LMWH treated patients, collected on citrate or on CTAD 

anticoagulant. CTAD tends to be less and less used nowadays, as laboratories wish to use 

only 1 anticoagulant tube type for standardizing hemostasis testing. CTAD was devel-

oped to increase blood and plasma stability, especially for heparin testing [66, 75]. This 

anticoagulant formulation prevents from platelet activation and release of heparin neu-

tralization proteins. The assay-to-assay comparison was performed on the global group 

including 68 plasmas and analyzed for each subgroup concerning the heparin type and 

the anticoagulant used. Four groups were then obtained: UFH-citrate (N=17); 

LMWH-citrate (N=25); UFH-CTAD (N=11); LMWH-CTAD (N=15). Globally, on the total 

group, correlations were acceptable between reagents B, C and D, and there was a higher 

dispersion of values and a poorer correlation between reagent A and the 3 others, espe-

cially in the low range. When subgroups were analyzed separately, it was obvious that 

major deviations were observed for plasmas from UFH treated patients and anticoagu-

lated with citrate. A better homogeneity was obtained when samples were collected us-

ing CTAD anticoagulant, thus preventing from heparin neutralization ex-vivo. Correla-

tions between assays are much better when plasma samples are collected on CTAD. 

These results strongly suggest that UFH is partly neutralized ex-vivo by platelet released 

proteins, and that this inhibition is prevented using CTAD anticoagulant. When reagents 

contain DS, this inhibition is prevented, and heparin concentrations measured are ex-

pected to match better with those present in blood circulation, and this observation is 

supported by various studies [60, 62, 63, 74].  

When comparing the mean heparin concentrations and standard deviations, the lowest 

values were obtained with reagent A, then B, especially for UFH, and the highest ones 

with reagents C, then D. Despite reagents B, C and D all contain DS in their formulation, 

some differences were observed between the mean concentrations measured, especially 

for reagent B as compared to reagents C and D. However, SDs are similar between rea-

gents. The choice of the calibration curve for measuring irrelevantly plasma samples 

containing UFH or LMWH contributes to explain these differences. Clinical laboratories 

need a 24/24 h and 7/7 d available anti-FXa assay for measuring heparin and monitoring 

treated patients, and some of the analysis are requested in emergency. The type of hepa-

rin used is not always known, and therefore using a single calibration curve is necessary. 

This approach needs to be carefully established and validated to give accurate results for 

all types of heparin used. WHO proposes nevertheless 2 separate International Standards 

for UFH or LMWH, and assay manufacturers need to establish anti-FXa assay conditions 

to obtain fully superimposable calibration curves for all heparin types. When the right 

conditions are fulfilled, calibration curves obtained with UFH or LMWH in plasma can 

be used without any difference. The heparin calibrations proposed by the various man-

ufacturers differ significantly, and this can have an important impact on exactness and 

accuracy of measured heparin concentrations. Reagents C and D use a calibration curve 

prepared with only LMWH spiked in a platelet depleted plasma pool. However, LMWH 

used by both manufacturers C and D are not the same as demonstrated by the different 

anti-FXa/Anti-FIIa ratios. LMWH is like certoparin for reagent C and like enoxaparin for 

reagent D. Conversely, reagents A and B propose a hybrid calibration curve obtained by 

mixing or combining UFH and LMWH in plasma. The anti-FXa/anti-FIIa ratios suggest 

that calibrators used for reagent B are obtained using a mixture of UFH and LMWH, the 

UFH concentration being predominant as shown by the low ratio obtained. In contrast, 

reagent A uses an alternate combination of plasmas containing UFH (calibrators 2 and 4) 

or LMWH (calibrators 3 and 5), with an anti-FXa/anti-FIIa ratio like that of certoparin. If 

UFH and LMWH calibration curves are not strictly superimposable, then the hybrid 

calibration curve is an intermediate curve which introduces some biases for both UFH 
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and LMWH samples. UFH concentrations tend then to be underestimated, as observed 

with reagents A and B, especially in the low range. 

Lastly, the various anti-FXa reagents were used along with each manufacturer proposed 

instrument for reagents A, B and C, and have been used by adhering strictly to the in-

structions for use. Reagent D is proposed as a multiplatform reagent, with applications 

specifically developed for all the major instruments available. In this study, reagent D 

was combined with the Sysmex CS-5100 instrument.  

When using homogenous (same manufacturer) reagent-instrument systems, reagent 

weaknesses can be masked by the assay software adaptation, or by introducing algo-

rithms for optimizing the assay apparent performances. This approach is used for ad-

justing the intrinsic low anti-FXa activity present in all plasma samples, and which can be 

variable from plasma to plasma. In the absence of heparin, this intrinsic anti-FXa activity 

can account for 0 to 0.05 IU/ml in normal plasmas, and more rarely up to 0.10 IU. This 

background activity is likely due to the anti-FXa activity of TFPI, Protein S or the β-AT 

form. The anti-FXa heparin assay is an inverse relationship between absorbance change 

measured at 405 nM, and heparin concentration. Therefore, normal plasmas, whilst they 

are expected to have all the same basic absorbance in the absence of heparin, do not al-

ways show a zero anti-FXa activity. Assay systems can manage this variability by mask-

ing that effect and “starting to measure” the change in absorbance only from a threshold 

value, corresponding to plasmas with the highest anti-FXa intrinsic activity. The apparent 

heparin concentrations in all plasmas are then of 0 in the absence of heparin, but low 

concentrations of heparin, in the range 0 to 0.10 IU/mL, or even up to 0.15 IU/ml, can be 

missed, which contributes to the underestimation in the low range. This approach is of 

course not possible when the reagent is a multiplatform one, and no adjustment assay 

software can be used. Heparin concentrations measured in plasma are then obtained 

without any data treatment. 

5. Conclusions 

In this report we provide evidence on the usefulness of dextran sulfate for the an-

ti-FXa assays used for measuring plasma concentrations of UFH or LMWH, as shown by 

the good correlation between all assays, designed with or without dextran sulfate, when 

plasma is obtained from CTAD collected blood, thus preventing from platelet activation 

and release of heparin neutralizing proteins, but not when blood is collected on citrate. 

Assay variability can also result from the heparin calibration type used, the exactness of 

UFH and LMWH superimposition of calibration curves and the assay software for 

treatment of assay raw data. Analyzing these factors can help for a better understanding 

of differences reported in many studies on heparin concentrations when measured with 

the various anti-FXa reagents. 
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