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Abstract: Here are given tight probabilistic inequalities that provide nearly best estimates for the
Csiszar’s f-divergence. These use the right and left y-Hilfer fractional derivatives of the directing
function f. Csiszar’s f-divergence or the so called Csiszar’s discrimination is used as a measure of
dependence between two random variables which is a very essential aspect of stochastics, we apply
our results there. The Csiszar’s discrimination is the most important and general measure for the
comparison between two probability measures. We give also other applications.

Keywords: Csiszar’s discrimination, Csiszar’s distance, fractional calculus, -Hilfer fractional deriva-
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1. Background - I

Throughout this work we use the following.

Let f be a convex function from (0, +o0) into R that is strictly convex at 1 with
f(1) = 0. Let (X, A, A) be a measure space, where A is a finite or a o-finite measure on
(X, A). And let uj, up be two probability measures on (X, A) such that jy < A, yp < A
(absolutely continuous); for example, A = y1 + pp. Denote by p = %, q= % (densities)
Radon-Nikodym derivatives of ji1, ji; with respect to A. Here we assume that

0<a§§§b, a.e.on X

anda <1<hb.
The quantity
pma) = [ atos (2 )ire), <n
X q(x)

was introduced by I. Csiszar in 1967 (see [5]), and is called f-divergence of the probability
measures #1 and pp. By Lemma 1.1 of [5], the integral (1) is well defined and T (y1, p2) > 0
with equality only when pq = pp. In [5] the author without proof mentions that I's(p1, p12)
does not depend on the choice of A.

For a proof of the last see [2], Lemma 1.1.

The concept of f-divergence was introduced first in [4] as a generalization of Kull-
back’s "information for discrimination” or I-divergence (generalized entropy) [8,9] and of
Rényi’s "information gain" (I-divergence of order &) [11]. In fact the I-divergence of order 1
equals

Iy log, u (11, 42)-

The choice f(u) = (u — 1)? again produces a known measure of difference of distribu-
tions called y*-divergence; of course the total variation distance [j11 — pio| = [y |p(x) — q(x)|dA(x)
equals ', _q(p1, pi2)-

Here by assuming f(1) = 0 we can consider I'¢(p1, i2) as a measure of the difference
between the probability measures 1, yp. The f-divergence is in general asymmetric in p4
and y». But because f is convex and strictly convex at 1 (see Lemma 2, [2]) so is

£ =uf(3)
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and as in [5] we get
Tr(pa, 1) = Tpe(p1, p2)-

In information theory and statistics many other concrete divergences are used that
are special cases of the above general Csiszar f-divergence, such as Hellinger distance Dy,
a-divergence Dy, Bhattacharyya distance Dp, harmonic distance Dy, Jeffrey’s distance
Dj, and triangular discrimination D,; for all these, see, for example [3], [6]. The problem
of finding and estimating the proper distance (or difference or discrimination) of two
probability distributions is one of the major questions in probability theory.

The above f-divergence measures in their various forms have also been applied to
anthropology, genetics, finance, economics, political science, biology, approximation of
probability distributions, signal processing, and pattern recognition. A great inspiration
for this article has been the very important monograph on the topic by S. Dragomir [6].

2. Background - II

Let —oo < a < b < oo, the left and right Riemann-Liouville fractional integrals of
order « € C (R(«) > 0) are defined by

1 X
o _ _ pa—1
(16 = 53 [, =0 0, @
x > a; where I stands for the gamma function,
and . )
o _ o a—1
(BN = g [, (=0 o ©)
x <b.
The Riemann-Liouville left and right fractional derivatives of order « € C (R(a) > 0)
are defined by

e = () W@ = e () [0 ne @

n—u)

(n = [R(«)], [-] means ceiling of the number; x > a)

@-0)@ =" () ()@ -

(n = [R(a)]; x < b), respectively, where R («) is the real part of .
In particular, when o« = n € Z, then

(A2+y> (x) = (Ag,y) (x) =y(x);

(87:y)(x) =y (x), and (Af_y) (x) = (=1)"y" (x), n €N,

see [12].

Leta > 0,1 = [a,b] C R, f an integrable function defined on I and ¢ € C!(I) an
increasing function such that ¢’ (x) # 0, for all x € I. Left fractional integrals and left
Riemann-Liouville fractional derivatives of a function f with respect to another function ¢
are defined as ([7], [12])

BYF) = s YO0 - v o) o, ©
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and o ) L4 .
150 = () 170 = )
1 1 d " X / n—o—
o () [ rOwEm -y o,
respectively, where n = [a].
Similarly, we define the right ones:
LY f(x) () ()t ®)
and y ) L . o
N f(x) = <—¢f<x>dx) Flx) =
1 1 d\" b, o
o (o) [ #Own -y o o

The following semigroup property holds; if «, § > 0, f € C(I), then

LEIRYf = 0P f and VLY F = 1PV

Next letagaina > 0, n = [a], [ = [a,]], f,9 € C*(I) : ¢ is increasing and ¢’ (x) # 0, for
all x € I. The left ¢-Caputo fractional derivative of f of order « is given by ([1])

« n—a 1 4\
D) = 1 () £ 10
and the right -Caputo fractional derivative ([1])
o, n—au, 1 d "
O f) = 1= (< g ) 0 1)
We set Lo
=150 = (s ) (12)

Clearly, when « = m € N we have
DS f(x) = £ (x) and CDRYF(x) = (-1)"f" (x),
and if « ¢ N, then

DY F) = gy [, ¥ O@0) —p ) e (13)

and
CD“ lpf

L [ 0w -y v (14

If p(x) = x, then we get the usual left and right Caputo fractional derivatives

Dy f(x) = f"(x), Dy f(x) = (—1)"f")(x),
form € N,and (« ¢ N)

Tl—lX

De,f(x) = D f(x) =

(nl_ ) / O (15)


https://doi.org/10.20944/preprints202103.0166.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2021 d0i:10.20944/preprints202103.0166.v1

50f 14

a _ Cpua _ (71)71 /b _ a1 g(n)
Dy (x) = D} f(x) = s [, (00" (16)
Also we set 0 0
DY f(x) = DY f(x) = f(x)
Next we will deal with the yp-Hilfer fractional derivative.
Definition 1. ([14]) Let n —1 < o« < n,n € N, I = [a,b] C Rand f,¢ € C"([a,b]), ¢

is increasing and ¢'(x) # 0, for all x € 1. The -Hilfer fractional derivative (left-sided and
right-sided) 1 ID)'X b 1p f of order o and type 0 < B < 1, respectively, are defined by

HDSBY £(x) = [P0 (¢ t{) ddx) [P = (17)
and .,
HOBY £ (x) = [Plr=e) (_w’%x) ;;) [(P0=9% £(x), x € [a,b]. (18)
The original Hilfer fractional derivatives ([13]) come from (x) = x, and are denoted by 1 DZf f(x)
and H]D’fo(x)

When B = 0, we get Riemann-Liouville fractional derivatives, while when f = 1 we have
Caputo type fractional derivatives.

We define v = a + B(n — a). Wenotice thatn —1 <a <a+pn—a) <a+n—a=mn,
hence [«y| = n. We can easily write that ([14])

MDY F(x) = AT (o), 19)
and
DR ) = AT ), x € [ b) (20)
We have that ([14])
Wi = (L 4\ 0-p) )y
870 = (e ) WP ) @
and Loan
8710 = (~ ) P ) @)
In particular, when 0 < &« < 1and 0 < B <1, v = a + B(1 — ), we have that
DY) = o [ O ) e e
and
e N 4 P ) A (b, @)
€ [a,b].

Remark 1. ([14]) Let p = n(1 — B) + Pu, then [u] = n.
Assume that g(x) = Iﬁr_ﬁ)("_“);wf(x) € C"([a, b)), we have that

H]D)Z"ﬁwf( ): :erp(lp’}x) ddx> g(x). (25)

Thus .
MDY = CDpg(v) = D (1P f (). 26)
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Assume that w(x) = Ilgl:ﬁ)(n*a)"lpf(x) € C"([a,b]). Hence

B _ Bn—a);yp 1 d\" ) 1 d\"
MDY f(x) = 1 <_1/)’(x)dx> w(x) =1, " ( 1P’(x)dx> w(x). (27)

Thus
TP = CDPYw(x) = SO (P (). (28)

We mention the simplified ip-Hilfer fractional Taylor formulae:

Theorem 1. (see also [14]) Let , f € C"([a, b]), with  being increasing such that ¢'(x) # 0
over [a,b], wheren —1 <a <n,0< B <1, andy=wa+p(n—un),x € [a,b]. Then

; 7 li(j_)i) f&n k(a}rﬁnawf)()
W) - g D p(na 29)
and - -
}_: 7(b) I:f%c)) f[n (1P £ () =
w7 [ VOO e D s (30)

Herenoticethat((1 B)(n— “lpf)() <(1 A n= alpf)()

3. Main Results - I

Here f and the whole setting is as in section 1 the Background - I. Additionally, we
assume that ¢, f € C"([a, b]), with ¢ being increasing such that ¢’'(x) # 0 over [a,]],
wheren—1 < a <n,0< B <1,and v = o + B(n — ). Furthermore we stress that
O0<a< % < b,a.e.on X.

Next we present estimations for I'¢ (1, p2)-

We give first left side results:

Theorem 2. Additionally assume that f nk ( ﬁ:ﬁ)("w)npf> (a) =0,k=1,..,n—1.Then

HHD“M}CHWW p(x) a
Cpmne) < e g (v( B2 v ) an G1)
Proof. We have that (by (29))
= a7 | Y OWE - w0 Do, @)
Vx € lab].
Hence it holds

1 o, a— ,B;
PO < g [, /O = ()" DR (o |ar <

e

/[a,b] o
) (@), Vrefab) 3)



https://doi.org/10.20944/preprints202103.0166.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2021 d0i:10.20944/preprints202103.0166.v1

7 of 14
Consequently we obtain
) = [0 (28 )an< [ qeols( 28 jan 'S
[oe2]..p, :

proving (31). O
We continue with the Li-analog:

Theorem 3. All as in Theorem 2, with « > 1. Then

r HH “ﬁl#fH ([a,b] ) p(x) ol
) < I [ (p(2E) —y) a6

Proof. Since « > 1, by (33), we have

|f(x)| < (l/J(X) —l[)( )) / )HD‘X.Ble t)‘dl[)(t) <

I(a)
I e () - gl Ve bl 36)
Hence it holds -
Tr(p1,p2) < /Xq(x) f(Zéx;NdA <

HH aﬁlﬁ

Ll([ab zp)/ ( ( J’; >_¢(a)>“1d;\, (37)

Next comes to Lg-analog:

proving (35). O

Theorem 4. All as in Theorem 2. Let also p,q > 1: % + % =1, witha > % Then
|z2%] 1
Ly([ab] x g
T i) < B0 [ (e(B5) —v@) a9
F(a)(p(a—1)+1)7

Proof. By Holder’s inequality we have

IS s [ V00 =) o] -

w5 L 0 = vy D (0] <

pla—1)+1

1 (p(x) —9(a) 7 HH txﬁwa

H®) (pa—1)+1)7 Ly(letly
HH “ﬁlpf”L ([a,b],9) 1

12 (p(x) — ()" 1, Vx € [ab], (39)
() (p(a—1) +1)7
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and « > %
Consequently we derive
s Lo ()2
”H "‘ﬁleHLq ([a.]9) / a(x) (¢<p(x)) _‘/J(a)>“}7d/\, “
I(@)(p(a— 1) +1)7 /X 2(%)

where a > 1 g+ proving (38). O

We continue with right side results:

Theorem 5. Additionally assume thutf ' k]( [P ne lpf)( )=0,k=1,..,n—1.Then

r HHD“ﬁlproo[ab PV
) < i Lot (v —w( 25 ) ) 4

Proof. We have that (by (30))

£0) = iy [ ¥ OO -y HDY

Vx € [ab].
Hence it holds

FO1 < g [ WO — 90 [0 ) o <

21,

S0 (y(6) — p(x)", Vx € [t
Tr(p, p2) < /Xq(x) f(Z(z))Nd)‘ (4§3)
HHD“ﬁwaw N

o (v (55) )

It follows the Li-analog:

Ia+1

Therefore we derive

proving (41). O

Theorem 6. All as in Theorem 5, & > 1. Then

I

g o -+((5))

Proof. Since « > 1, by (43), we have

a—1
o) < WL g ) ) <

(41)

(42)

(43)

(44)

(45)
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i
A (o) — (), Ve fat] (46)
Hence it holds w0
) < [La|f (55 )| '<
HYy aﬁtﬁ
|2 fHL (60) | g ( (r’(ﬂ)y‘lm (47)
q(x) '
proving (45). O
Next comes the L;-analog from the right side.
Theorem 7. All as in Theorem 5. Let also p,q > 1: % + % =1, witha > % Then
H IX/SIIJ
i e s
Ty (i1, i) < Ll (w (p é;‘;)) A (49)
I'(a)(pla —1)+1)7 q
Proof. We apply Holder’s inequality to (43) to get
1 b n— o0,
FI< Ty [ 00 =9 Dy (0)|ay(e) <
(a—1)+1
L (p(h) = p(x)" 7 mgeee], -
M@ (pa—-1)+1)7 Ly(labl9)
D iad
HH fH q([a.b]) a—1 1
T (p(b) —(x))" 1, Vx € [a,b], a > —. (49)
F()(ple—1) +1)7 7
Consequently we derive
(49)
rne) < [a)r (55 )| '<
Hp aﬁw
(i
B [ (v -e(B5)) e 50
T(@)(p(a —1) +1)7 I
where o > %, proving (48). [
We continue with
Remark 2. I) Assume that 11 ]D)Z‘f’”p f > 0over [a,b], then
(<0)
n—1 e
() —9(a) " " cintl ([ 0-B) (-2
OIS M ey i (nh f)@), 1)
Vx € [a,b]
Hence
. P\ _ vk
P £ (1l7(q) lp(ﬂ)) [n—k] ( 1(1=B) (n—a);y 52
i#(8) 2 Tt AP e
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Consequently we derive

ooy et FIR (AR ) B
£ (11, 12) § Zf g(ykﬂ)f)( )/Xq<tl)(p> —t/J(a))7 i, (53)

II) Assume that HID)g’f a4 f > 0over [a,b], then
(<0)

S 50 g wy(b)z:f%)) f[" IR o), (54)

Vx € lab].
Hence

et (DR (p) —w(2))" v
UoE E(v—kﬂ()q)) pEET o

Consequently we derive

5) n— (n—k] (7(1=p)(n—a);yp B
i 2 8 T o -o(2)) oo

We state

_ ti (1-p)n—a) \ ()
Corollary 1. (to Theorem 2) Case of P(x) = x. So, additionally assume that (Iu v f ) (a) =
0,k=1,..,n—1. Then

H
T, pa) < "ot i Jf L[ 900" (p(x) - aq(x))an. (57)

It follows

Corollary 2. (to Theorem 2) Case of p(x) = e*. So, additionally assume that f . k]( é}:ﬁ J(n—aet f) (a) =
0,k=1,..,n—1. Then

w,B;e*
HHD ‘oo,[a,b] p - NE
T, p2) < CERY /Xq(x) <eq<x —e> da. (58)

4. Background - III

Next we use the following. Let f by a convex function from (0, +c0) into R which
is strictly convex at 1 with f(1) = 0. Let (Rz, B2, /\) be the measure space, where A
is the product Lebesgue measure on (R?, 5%) with B being the Borel o-field. And let
X,Y : OO — Rberandom variables on the probability space (Q), P). Consider the probability
distributions pxy and px X py on R2, where uxy, yx X py stand for the joint distribution
of X and Y and their marginal distributions, respectively.

Here we assume as existing the following probability density functions, the joint pdf
of uxy tobe t(x,y), x,y € R, the pdf of ux to be p(x) and pdf of yy to be q(y). Clearly
ux X py has pdf p(x)q(y). Here we further assume that 0 < a < ﬁ < b,a.e. on R? and
a<1<b.
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The quantity

tx, y)
U (uxy, px X py 2/ (x)q(y) <)dAxr , (59)
flixrrpx i) = o PEAWF Sogay )M Y)
is the Csiszar’s distance or f-divergence between pxy and px x py.
Here X, Y are less dependent the closer the distributions pxy and pux X uy are, thus
T (pxy, px X py) can be considered as a measure of dependence of X and Y. For f(u) =
ulog, u we obtain the mutual information of X, and Y,

I(X,Y) = I(pxyllpx % py) = Tutogy u(Hxy, ix X py),
see [5]. For f(u) = (u —1)* we get the mean square contingency:

P*(X,Y) = T2 (Hxy, px X ),
see [10]. In the last we need yxy < px X py, where < denotes absolute continuity, but to
cover the case of jxy & px X py we set ¢?(X,Y) = +oo, then the last formula is always
valid.

Clearly here pxy, px % py < A, also I'¢(puxy, px X py) > 0 with equality only when
Uxy = Hx X My,i.e. when X, Y are independent r.v.’s.

5. Main Results - II

Here f and the whole setting is as in section 4, the Background - III. Additionally,
we assume that ¢, f € C"([a, b]), with ¢ being increasing such that ¢’(x) # 0 over [a, b],
where n — 1 <a<n0<B<1 and v = a+ p(n—a). Furthermore we stress that
0<a<y<baeon R2.

Next we present estimations for I'r(pxy, px X py). We apply our results of section 3,
the Main Results-1.
We give first left side results:

Theorem 8. Additionally assume thatf n—k] ( [P lpf)( )=0,k=1,..,n—1.Then

i "
F'(a+1)

[0@a) (522 - yia) ) aran), )

Tr(pxy, px X py) <

Proof. By Theorem 2. [

We give the Li-analog;:

Theorem 9. All as in Theorem 8, with « > 1. Then

H "‘.Bl!’f
Tr(pxy, px X py) < H (‘U) ([ab]y)
[awawn (w50 ) - lp(a))“cm(x, " o

Proof. By Theorem 3. [

The L;-analog follows:
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Theorem 10. All as in Theorem 8. Let also p,q > 1: % + % =1, witha > . Then
HpP¥
H o Ly([a,b]y

Fr(pxy, px x py) <

/Rz(z?(x)q(y»(w(m) — zp(a))a_}’m(x y).

Proof. By Theorem 4. [

We continue with right side results:

d0i:10.20944/preprints202103.0166.v1

Theorem 11. Additionally assume that f[" g < - ﬁ)("fa);‘pf) (b)=0,k=1,..,n—1.Then

|72l

F'(a+1)

[ r@a (ve) o (ED) Y i),

Proof. By Theorem 5. [

a,b]
Tr(pxy, px X py) < 2

It follows the L;-analog:

Theorem 12. All as in Theorem 11, x > 1. Then

|

([ab
Te(pxy, px % py) < 1(2A¥)

F(f’é)

[ o) (v - o (N dre,

Proof. By Theorem 6. [

The Ls-analog comes next from the right side.
Theorem 13. All as in Theorem 11. Let also p,q > 1 : %

o],

+

Ly ([a,b],)
T
P

Cr(pxy, px X py) <

T(@)(p(a—1)+1)

[ (wee) - IIJ(;m»a;dA(x,y).

Proof. By Theorem 7. O
We make

Remark 3. (see Remark 2) I) Assume that 1 ]D)Z‘f”p f > 0over [a,b], then
<0)

% =1, witha > %. Then
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- 1f[n k( (1-B)(n— tX,llJf)(a)
Tr(pxy, px X py) é) kzi Ty —k+1) (66)
X Hxy) ) a T X
Lawaw (o5 ) v ) aac).
II) Assume that HDgf;lpf(z)Oover [a,b], then
<0
ot (DI (BT ) )
Ty (pxy, px X py) é ; (’E—k+1) ) (67)
ol ) YT
Lo (v0) - v (5 525)) T dr)

We state

C _ ‘i (1-p)(n—a) (\("F) )
orollary 3. (to Theorem 8) Case of (x) = x. So, additionally assume that (Ia + f ) (a) =
0,k=1,..,n—1. Then

H ,la,b]

Lr(pxy, px X py) < W (68)

/RZ(P(x)q(y))l“"(t(x,y) —ap(x)q(y))*dA(x,y).

It follows
Corollary 4. (to Theorem 8) Case of P(x) = e*. So, additionally assume thatf . k]( (1Pl f) (a) =
0,k=1,..,n—1. Then
|221]
T (pxv, ix X py) < et (69)
FAEXY = T(a+1)

t(x

/Rz(p(xM(y))( s ) dA(x,y).
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