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Abstract: Here are given tight probabilistic inequalities that provide nearly best estimates for the
Csiszar’s f -divergence. These use the right and left ψ-Hilfer fractional derivatives of the directing
function f . Csiszar’s f -divergence or the so called Csiszar’s discrimination is used as a measure of
dependence between two random variables which is a very essential aspect of stochastics, we apply
our results there. The Csiszar’s discrimination is the most important and general measure for the
comparison between two probability measures. We give also other applications.
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1. Background - I

Throughout this work we use the following.
Let f be a convex function from (0,+∞) into R that is strictly convex at 1 with

f (1) = 0. Let (X,A, λ) be a measure space, where λ is a finite or a σ-finite measure on
(X,A). And let µ1, µ2 be two probability measures on (X,A) such that µ1 � λ, µ2 � λ

(absolutely continuous); for example, λ = µ1 + µ2. Denote by p = dµ1
dλ , q = dµ2

dλ (densities)
Radon-Nikodym derivatives of µ1, µ2 with respect to λ. Here we assume that

0 < a ≤ p
q
≤ b, a.e. on X

and a ≤ 1 ≤ b.
The quantity

Γ f (µ1, µ2) =
∫

X
q(x) f

(
p(x)
q(x)

)
dλ(x), (1)

was introduced by I. Csiszar in 1967 (see [5]), and is called f -divergence of the probability
measures µ1 and µ2. By Lemma 1.1 of [5], the integral (1) is well defined and Γ f (µ1, µ2) ≥ 0
with equality only when µ1 = µ2. In [5] the author without proof mentions that Γ f (µ1, µ2)
does not depend on the choice of λ.

For a proof of the last see [2], Lemma 1.1.
The concept of f -divergence was introduced first in [4] as a generalization of Kull-

back’s "information for discrimination" or I-divergence (generalized entropy) [8,9] and of
Rényi’s "information gain" (I-divergence of order α) [11]. In fact the I-divergence of order 1
equals

Γu log2 u(µ1, µ2).

The choice f (u) = (u− 1)2 again produces a known measure of difference of distribu-
tions called χ2-divergence; of course the total variation distance |µ1 − µ2| =

∫
X |p(x)− q(x)|dλ(x)

equals Γ|u−1|(µ1, µ2).
Here by assuming f (1) = 0 we can consider Γ f (µ1, µ2) as a measure of the difference

between the probability measures µ1, µ2. The f -divergence is in general asymmetric in µ1
and µ2. But because f is convex and strictly convex at 1 (see Lemma 2, [2]) so is

f ∗(u) = u f
(

1
u

)
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and as in [5] we get
Γ f (µ2, µ1) = Γ f ∗(µ1, µ2).

In information theory and statistics many other concrete divergences are used that
are special cases of the above general Csiszar f -divergence, such as Hellinger distance DH ,
α-divergence Dα, Bhattacharyya distance DB, harmonic distance DHα , Jeffrey’s distance
DJ , and triangular discrimination D∆; for all these, see, for example [3], [6]. The problem
of finding and estimating the proper distance (or difference or discrimination) of two
probability distributions is one of the major questions in probability theory.

The above f -divergence measures in their various forms have also been applied to
anthropology, genetics, finance, economics, political science, biology, approximation of
probability distributions, signal processing, and pattern recognition. A great inspiration
for this article has been the very important monograph on the topic by S. Dragomir [6].

2. Background - II

Let −∞ < a < b < ∞, the left and right Riemann-Liouville fractional integrals of
order α ∈ C (R(α) > 0) are defined by

(Iα
a+ f )(x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, (2)

x > a; where Γ stands for the gamma function,
and (

Iα
b− f

)
(x) =

1
Γ(α)

∫ b

x
(t− x)α−1 f (t)dt, (3)

x < b.
The Riemann-Liouville left and right fractional derivatives of order α ∈ C (R(α) ≥ 0)

are defined by

(∆α
a+y)(x) =

(
d

dx

)n(
In−α
a+ y

)
(x) =

1
Γ(n− α)

(
d

dx

)n ∫ x

a
(x− t)n−α−1y(t)dt (4)

(n = dR(α)e, d·emeans ceiling of the number; x > a)

(
∆α

b−y
)
(x) = (−1)n

(
d

dx

)n(
In−α
b− y

)
(x) =

(−1)n

Γ(n− α)

(
d

dx

)n ∫ b

x
(t− x)n−α−1y(t)dt (5)

(n = dR(α)e; x < b), respectively, whereR(α) is the real part of α.
In particular, when α = n ∈ Z+, then(

∆0
a+y
)
(x) =

(
∆0

b−y
)
(x) = y(x);

(∆n
a+y)(x) = y(n)(x), and

(
∆n

b−y
)
(x) = (−1)ny(n)(x), n ∈ N,

see [12].
Let α > 0, I = [a, b] ⊂ R, f an integrable function defined on I and ψ ∈ C1(I) an

increasing function such that ψ′(x) 6= 0, for all x ∈ I. Left fractional integrals and left
Riemann-Liouville fractional derivatives of a function f with respect to another function ψ
are defined as ([7], [12])

Iα,ψ
a+ f (x) =

1
Γ(α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))α−1 f (t)dt, (6)
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and

∆α,ψ
a+ f (x) =

(
1

ψ′(x)
d

dx

)n
In−α,ψ
a+ f (x) = (7)

1
Γ(n− α)

(
1

ψ′(x)
d

dx

)n ∫ x

a
ψ′(t)(ψ(x)− ψ(t))n−α−1 f (t)dt,

respectively, where n = dαe.
Similarly, we define the right ones:

Iα,ψ
b− f (x) =

1
Γ(α)

∫ b

x
ψ′(t)(ψ(t)− ψ(x))α−1 f (t)dt, (8)

and

∆α,ψ
b− f (x) =

(
− 1

ψ′(x)
d

dx

)n
In−α,ψ
b− f (x) =

1
Γ(n− α)

(
− 1

ψ′(x)
d

dx

)n ∫ b

x
ψ′(t)(ψ(t)− ψ(x))n−α−1 f (t)dt. (9)

The following semigroup property holds; if α, β > 0, f ∈ C(I), then

Iα,ψ
a+ Iβ,ψ

a+ f = Iα+β,ψ
a+ f and Iα,ψ

b− Iβ,ψ
b− f = Iα+β,ψ

b− f .

Next let again α > 0, n = dαe, I = [a, b], f , ψ ∈ Cn(I) : ψ is increasing and ψ′(x) 6= 0, for
all x ∈ I. The left ψ-Caputo fractional derivative of f of order α is given by ([1])

CDα,ψ
a+ f (x) = In−α,ψ

a+

(
1

ψ′(x)
d

dx

)n
f (x), (10)

and the right ψ-Caputo fractional derivative ([1])

CDα,ψ
b− f (x) = In−α,ψ

b−

(
− 1

ψ′(x)
d

dx

)n
f (x). (11)

We set

f [n]ψ (x) := f (n)ψ f (x) :=
(

1
ψ′(x)

d
dx

)n
f (x). (12)

Clearly, when α = m ∈ N we have

CDα,ψ
a+ f (x) = f [m]

ψ (x) and CDα,ψ
b− f (x) = (−1)m f [m]

ψ (x),

and if α /∈ N, then

CDα,ψ
a+ f (x) =

1
Γ(n− α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))n−α−1 f [n]ψ (t)dt, (13)

and
CDα,ψ

b− f (x) =
(−1)n

Γ(n− α)

∫ b

x
ψ′(t)(ψ(t)− ψ(x))n−α−1 f [n]ψ (t)dt. (14)

If ψ(x) = x, then we get the usual left and right Caputo fractional derivatives

CDm
a+ f (x) = f (m)(x), CDm

b− f (x) = (−1)m f (m)(x),

for m ∈ N, and (α /∈ N)

Dα
∗a f (x) = CDα

a+ f (x) =
1

Γ(n− α)

∫ x

a
(x− t)n−α−1 f (n)(t)dt, (15)
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Dα
b−(x) = CDα

b− f (x) =
(−1)n

Γ(n− α)

∫ b

x
(t− x)n−α−1 f (n)(t)dt. (16)

Also we set
CD0,ψ

a+ f (x) = CD0,ψ
b− f (x) = f (x).

Next we will deal with the ψ-Hilfer fractional derivative.

Definition 1. ([14]) Let n − 1 < α < n, n ∈ N, I = [a, b] ⊂ R and f , ψ ∈ Cn([a, b]), ψ
is increasing and ψ′(x) 6= 0, for all x ∈ I. The ψ-Hilfer fractional derivative (left-sided and
right-sided) HDα,β;ψ

a+(b−) f of order α and type 0 ≤ β ≤ 1, respectively, are defined by

HDα,β;ψ
a+ f (x) = Iβ(n−α);ψ

a+

(
1

ψ′(x)
d

dx

)n
I(1−β)(n−α);ψ
a+ f (x), (17)

and
HDα,β;ψ

b− f (x) = Iβ(n−α);ψ
b−

(
− 1

ψ′(x)
d

dx

)n
I(1−β)(n−α);ψ
b− f (x), x ∈ [a, b]. (18)

The original Hilfer fractional derivatives ([13]) come from ψ(x) = x, and are denoted by HDα,β
a+ f (x)

and HDα,β
b− f (x).

When β = 0, we get Riemann-Liouville fractional derivatives, while when β = 1 we have
Caputo type fractional derivatives.

We define γ = α + β(n− α). We notice that n− 1 < α ≤ α + β(n− α) ≤ α + n− α = n,
hence dγe = n. We can easily write that ([14])

HDα,β;ψ
a+ f (x) = Iγ−α;ψ

a+ ∆γ;ψ
a+ f (x), (19)

and
HDα,β;ψ

b− f (x) = Iγ−α;ψ
b− ∆γ;ψ

b− f (x), x ∈ [a, b]. (20)

We have that ([14])

∆γ,ψ
a+ f (x) =

(
1

ψ′(x)
d

dx

)n
I(1−β)(n−α);ψ
a+ f (x), (21)

and

∆γ,ψ
b− f (x) =

(
− 1

ψ′(x)
d

dx

)n
I(1−β)(n−α);ψ
b− f (x). (22)

In particular, when 0 < α < 1 and 0 ≤ β ≤ 1; γ = α + β(1− α), we have that

HDα,β;ψ
a+ f (x) =

1
Γ(γ− α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))γ−α−1∆γ;ψ

a+ f (t)dt, (23)

and
HDα,β;ψ

b− f (x) =
1

Γ(γ− α)

∫ b

x
ψ′(t)(ψ(t)− ψ(x))γ−α−1∆γ;ψ

b− f (t)dt, (24)

x ∈ [a, b].

Remark 1. ( [14]) Let µ = n(1− β) + βα, then dµe = n.
Assume that g(x) = I(1−β)(n−α);ψ

a+ f (x) ∈ Cn([a, b]), we have that

HDα,β;ψ
a+ f (x) = In−µ;ψ

a+

(
1

ψ′(x)
d

dx

)n
g(x). (25)

Thus
HDα,β;ψ

a+ f = CDµ;ψ
a+ g(x) = CDµ;ψ

a+

[
I(1−β)(n−α);ψ
a+ f (x)

]
. (26)
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Assume that w(x) = I(1−β)(n−α);ψ
b− f (x) ∈ Cn([a, b]). Hence

HDα,β;ψ
b− f (x) = Iβ(n−α);ψ

b−

(
− 1

ψ′(x)
d

dx

)n
w(x) = In−µ;ψ

b−

(
− 1

ψ′(x)
d

dx

)n
w(x). (27)

Thus
HDα,β;ψ

b− f = CDµ;ψ
b− w(x) = CDµ;ψ

b−

(
I(1−β)(n−α);ψ
b− f (x)

)
. (28)

We mention the simplified ψ-Hilfer fractional Taylor formulae:

Theorem 1. (see also [14]) Let ψ, f ∈ Cn([a, b]), with ψ being increasing such that ψ′(x) 6= 0
over [a, b], where n− 1 < α < n, 0 ≤ β ≤ 1, and γ = α + β(n− α), x ∈ [a, b]. Then

f (x)−
n−1

∑
k=1

(ψ(x)− ψ(a))γ−k

Γ(γ− k + 1)
f [n−k]
ψ

(
I(1−β)(n−α);ψ
a+ f

)
(a) =

1
Γ(α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))α−1 HDα,β;ψ

a+ f (t)dt, (29)

and

f (x)−
n−1

∑
k=1

(−1)k(ψ(b)− ψ(x))γ−k

Γ(γ− k + 1)
f [n−k]
ψ

(
I(1−β)(n−α);ψ
b− f

)
(b) =

1
Γ(α)

∫ b

x
ψ′(t)(ψ(t)− ψ(x))α−1 HDα,β;ψ

b− f (t)dt. (30)

Here notice that
(

I(1−β)(n−α);ψ
a+ f

)
(a) =

(
I(1−β)(n−α);ψ
b− f

)
(b) = 0.

3. Main Results - I

Here f and the whole setting is as in section 1 the Background - I. Additionally, we
assume that ψ, f ∈ Cn([a, b]), with ψ being increasing such that ψ′(x) 6= 0 over [a, b],
where n − 1 < α < n, 0 ≤ β ≤ 1, and γ = α + β(n− α). Furthermore we stress that
0 < a ≤ p(x)

q(x) ≤ b, a.e. on X.
Next we present estimations for Γ f (µ1, µ2).
We give first left side results:

Theorem 2. Additionally assume that f [n−k]
ψ

(
I(1−β)(n−α);ψ
a+ f

)
(a) = 0, k = 1, ..., n− 1. Then

Γ f (µ1, µ2) ≤

∥∥∥HDα,β;ψ
a+ f

∥∥∥
∞,[a,b]

Γ(α + 1)

∫
X

q(x)
(

ψ

(
p(x)
q(x)

)
− ψ(a)

)α

dλ. (31)

Proof. We have that (by (29))

f (x) =
1

Γ(α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))α−1 HDα,β;ψ

a+ f (t)dt, (32)

∀ x ∈ [a, b].
Hence it holds

| f (x)| ≤ 1
Γ(α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))α−1

∣∣∣HDα,β;ψ
a+ f (t)

∣∣∣dt ≤

∥∥∥HDα,β;ψ
a+ f

∥∥∥
∞,[a,b]

Γ(α + 1)
(ψ(x)− ψ(a))α, ∀ x ∈ [a, b]. (33)
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Consequently we obtain

Γ f (µ1, µ2) =
∫

X
q(x) f

(
p(x)
q(x)

)
dλ ≤

∫
X

q(x)
∣∣∣∣ f( p(x)

q(x)

)∣∣∣∣dλ
(33)
≤

∥∥∥HDα,β;ψ
a+ f

∥∥∥
∞,[a,b]

Γ(α + 1)

∫
X

q(x)
(

ψ

(
p(x)
q(x)

)
− ψ(a)

)α

dλ, (34)

proving (31).

We continue with the L1-analog:

Theorem 3. All as in Theorem 2, with α > 1. Then

Γ f (µ1, µ2) ≤

∥∥∥HDα,β;ψ
a+ f

∥∥∥
L1([a,b],ψ)

Γ(α)

∫
X

q(x)
(

ψ

(
p(x)
q(x)

)
− ψ(a)

)α−1
dλ. (35)

Proof. Since α > 1, by (33), we have

| f (x)| ≤ (ψ(x)− ψ(a))α−1

Γ(α)

∫ x

a

∣∣∣HDα,β;ψ
a+ f (t)

∣∣∣dψ(t) ≤

∥∥∥HDα,β;ψ
a+ f

∥∥∥
L1([a,b],ψ)

Γ(α)
(ψ(x)− ψ(a))α−1, ∀ x ∈ [a, b]. (36)

Hence it holds

Γ f (µ1, µ2) ≤
∫

X
q(x)

∣∣∣∣ f( p(x)
q(x)

)∣∣∣∣dλ
(36)
≤∥∥∥HDα,β;ψ

a+ f
∥∥∥

L1([a,b],ψ)

Γ(α)

∫
X

q(x)
(

ψ

(
p(x)
q(x)

)
− ψ(a)

)α−1
dλ, (37)

proving (35).

Next comes to Lq-analog:

Theorem 4. All as in Theorem 2. Let also p, q > 1 : 1
p + 1

q = 1, with α > 1
q . Then

Γ f (µ1, µ2) ≤

∥∥∥HDα,β;ψ
a+ f

∥∥∥
Lq([a,b],ψ)

Γ(α)(p(α− 1) + 1)
1
p

∫
X

q(x)
(

ψ

(
p(x)
q(x)

)
− ψ(a)

)α− 1
q
dλ. (38)

Proof. By Hölder’s inequality we have

| f (x)|
(33)
≤ 1

Γ(α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))α−1

∣∣∣HDα,β;ψ
a+ f (t)

∣∣∣dt =

1
Γ(α)

∫ x

a
(ψ(x)− ψ(t))α−1

∣∣∣HDα,β;ψ
a+ f (t)

∣∣∣dψ(t) ≤

1
Γ(α)

(ψ(x)− ψ(a))
p(α−1)+1

p

(p(α− 1) + 1)
1
p

∥∥∥HDα,β;ψ
a+ f

∥∥∥
Lq([a,b],ψ)

=

∥∥∥HDα,β;ψ
a+ f

∥∥∥
Lq([a,b],ψ)

Γ(α)(p(α− 1) + 1)
1
p
(ψ(x)− ψ(a))α− 1

q , ∀ x ∈ [a, b], (39)
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and α > 1
q .

Consequently we derive

Γ f (µ1, µ2) ≤
∫

X
q(x)

∣∣∣∣ f( p(x)
q(x)

)∣∣∣∣dλ
(39)
≤

∥∥∥HDα,β;ψ
a+ f

∥∥∥
Lq([a,b],ψ)

Γ(α)(p(α− 1) + 1)
1
p

∫
X

q(x)
(

ψ

(
p(x)
q(x)

)
− ψ(a)

)α− 1
q
dλ, (40)

where α > 1
q , proving (38).

We continue with right side results:

Theorem 5. Additionally assume that f [n−k]
ψ

(
I(1−β)(n−α);ψ
b− f

)
(b) = 0, k = 1, ..., n− 1. Then

Γ f (µ1, µ2) ≤

∥∥∥HDα,β;ψ
b− f

∥∥∥
∞,[a,b]

Γ(α + 1)

∫
X

q(x)
(

ψ(b)− ψ

(
p(x)
q(x)

))α

dλ. (41)

Proof. We have that (by (30))

f (x) =
1

Γ(α)

∫ b

x
ψ′(t)(ψ(t)− ψ(x))α−1 HDα,β;ψ

b− f (t)dt, (42)

∀ x ∈ [a, b].
Hence it holds

| f (x)| ≤ 1
Γ(α)

∫ b

x
ψ′(t)(ψ(t)− ψ(x))α−1

∣∣∣HDα,β;ψ
b− f (t)

∣∣∣dt ≤

∥∥∥HDα,β;ψ
b− f

∥∥∥
∞,[a,b]

Γ(α + 1)
(ψ(b)− ψ(x))α, ∀ x ∈ [a, b]. (43)

Therefore we derive

Γ f (µ1, µ2) ≤
∫

X
q(x)

∣∣∣∣ f( p(x)
q(x)

)∣∣∣∣dλ
(43)
≤∥∥∥HDα,β;ψ

b− f
∥∥∥

∞,[a,b]

Γ(α + 1)

∫
X

q(x)
(

ψ(b)− ψ

(
p(x)
q(x)

))α

dλ, (44)

proving (41).

It follows the L1-analog:

Theorem 6. All as in Theorem 5, α > 1. Then

Γ f (µ1, µ2) ≤

∥∥∥HDα,β;ψ
b− f

∥∥∥
L1([a,b],ψ)

Γ(α)

∫
X

q(x)
(

ψ(b)− ψ

(
p(x)
q(x)

))α−1
dλ. (45)

Proof. Since α > 1, by (43), we have

| f (x)| ≤ (ψ(b)− ψ(x))α−1

Γ(α)

∫ b

x

∣∣∣HDα,β;ψ
b− f (t)

∣∣∣dψ(t) ≤
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∥∥∥HDα,β;ψ
b− f

∥∥∥
L1([a,b],ψ)

Γ(α)
(ψ(b)− ψ(x))α−1, ∀ x ∈ [a, b]. (46)

Hence it holds

Γ f (µ1, µ2) ≤
∫

X
q(x)

∣∣∣∣ f( p(x)
q(x)

)∣∣∣∣dλ
(46)
≤∥∥∥HDα,β;ψ

b− f
∥∥∥

L1([a,b],ψ)

Γ(α)

∫
X

q(x)
(

ψ(b)− ψ

(
p(x)
q(x)

))α−1
dλ, (47)

proving (45).

Next comes the Lq-analog from the right side.

Theorem 7. All as in Theorem 5. Let also p, q > 1 : 1
p + 1

q = 1, with α > 1
q . Then

Γ f (µ1, µ2) ≤

∥∥∥HDα,β;ψ
b− f

∥∥∥
Lq([a,b],ψ)

Γ(α)(p(α− 1) + 1)
1
p

∫
X

q(x)
(

ψ(b)− ψ

(
p(x)
q(x)

))α− 1
q
dλ. (48)

Proof. We apply Hölder’s inequality to (43) to get

| f (x)| ≤ 1
Γ(α)

∫ b

x
(ψ(t)− ψ(x))α−1

∣∣∣HDα,β;ψ
b− f (t)

∣∣∣dψ(t) ≤

1
Γ(α)

(ψ(b)− ψ(x))
p(α−1)+1

p

(p(α− 1) + 1)
1
p

∥∥∥HDα,β;ψ
b− f

∥∥∥
Lq([a,b],ψ)

=

∥∥∥HDα,β;ψ
b− f

∥∥∥
Lq([a,b],ψ)

Γ(α)(p(α− 1) + 1)
1
p
(ψ(b)− ψ(x))α− 1

q , ∀ x ∈ [a, b], α >
1
q

. (49)

Consequently we derive

Γ f (µ1, µ2) ≤
∫

X
q(x)

∣∣∣∣ f( p(x)
q(x)

)∣∣∣∣dλ
(49)
≤

∥∥∥HDα,β;ψ
b− f

∥∥∥
Lq([a,b],ψ)

Γ(α)(p(α− 1) + 1)
1
p

∫
X

q(x)
(

ψ(b)− ψ

(
p(x)
q(x)

))α− 1
q
dλ, (50)

where α > 1
q , proving (48).

We continue with

Remark 2. I) Assume that HDα,β;ψ
a+ f ≥

(≤0)
0 over [a, b], then

f (x) ≥
(≤)

n−1

∑
k=1

(ψ(x)− ψ(a))γ−k

Γ(γ− k + 1)
f [n−k]
ψ

(
I(1−β)(n−α);ψ
a+ f

)
(a), (51)

∀ x ∈ [a, b].
Hence

q f
(

p
q

)
≥
(≤)

n−1

∑
k=1

q

(
ψ
(

p
q

)
− ψ(a)

)γ−k

Γ(γ− k + 1)
f [n−k]
ψ

(
I(1−β)(n−α);ψ
a+ f

)
(a). (52)
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Consequently we derive

Γ f (µ1, µ2)
(52)
≥
(≤)

n−1

∑
k=1

f [n−k]
ψ

(
I(1−β)(n−α);ψ
a+ f

)
(a)

Γ(γ− k + 1)

∫
X

q
(

ψ

(
p
q

)
− ψ(a)

)γ−k
dλ. (53)

II) Assume that HDα,β;ψ
b− f ≥

(≤0)
0 over [a, b], then

f (x)
(30)
≥
(≤)

n−1

∑
k=1

(−1)k(ψ(b)− ψ(x))γ−k

Γ(γ− k + 1)
f [n−k]
ψ

(
I(1−β)(n−α);ψ
b− f

)
(b), (54)

∀ x ∈ [a, b].
Hence

q f
(

p
q

)
≥
(≤)

n−1

∑
k=1

(−1)kq
(

ψ(b)− ψ
(

p
q

))γ−k

Γ(γ− k + 1)
f [n−k]
ψ

(
I(1−β)(n−α);ψ
b− f

)
(b). (55)

Consequently we derive

Γ f (µ1, µ2)
(55)
≥
(≤)

n−1

∑
k=1

(−1)k f [n−k]
ψ

(
I(1−β)(n−α);ψ
b− f

)
(b)

Γ(γ− k + 1)

∫
X

q
(

ψ(b)− ψ

(
p
q

))γ−k
dλ. (56)

We state

Corollary 1. (to Theorem 2) Case of ψ(x) = x. So, additionally assume that
(

I(1−β)(n−α)
a+ f

)(n−k)
(a) =

0, k = 1, ..., n− 1. Then

Γ f (µ1, µ2) ≤

∥∥∥HDα,β
a+ f

∥∥∥
∞,[a,b]

Γ(α + 1)

∫
X

q(x)1−α(p(x)− aq(x))αdλ. (57)

It follows

Corollary 2. (to Theorem 2) Case of ψ(x) = ex. So, additionally assume that f [n−k]
ex

(
I(1−β)(n−α);ex

a+ f
)
(a) =

0, k = 1, ..., n− 1. Then

Γ f (µ1, µ2) ≤

∥∥∥HDα,β;ex

a+ f
∥∥∥

∞,[a,b]

Γ(α + 1)

∫
X

q(x)
(

e
p(x)
q(x) − ea

)α

dλ. (58)

4. Background - III

Next we use the following. Let f by a convex function from (0,+∞) into R which
is strictly convex at 1 with f (1) = 0. Let

(
R2,B2, λ

)
be the measure space, where λ

is the product Lebesgue measure on
(
R2,B2) with B being the Borel σ-field. And let

X, Y : Ω→ R be random variables on the probability space (Ω, P). Consider the probability
distributions µXY and µX × µY on R2, where µXY, µX × µY stand for the joint distribution
of X and Y and their marginal distributions, respectively.

Here we assume as existing the following probability density functions, the joint pdf
of µXY to be t(x, y), x, y ∈ R, the pdf of µX to be p(x) and pdf of µY to be q(y). Clearly
µX × µY has pdf p(x)q(y). Here we further assume that 0 < a ≤ t

pq ≤ b, a.e. on R2 and
a ≤ 1 ≤ b.
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The quantity

Γ f (µXY, µX × µY) =
∫
R2

p(x)q(y) f
(

t(x, y)
p(x)q(y)

)
dλ(x, y), (59)

is the Csiszar’s distance or f -divergence between µXY and µX × µY.
Here X, Y are less dependent the closer the distributions µXY and µX × µY are, thus

Γ f (µXY, µX × µY) can be considered as a measure of dependence of X and Y. For f (u) =
u log2 u we obtain the mutual information of X, and Y,

I(X, Y) = I(µXY||µX × µY) = Γu log2 u(µXY, µX × µY),

see [5]. For f (u) = (u− 1)2 we get the mean square contingency:

ϕ2(X, Y) = Γ
(u−1)2(µXY, µX × µY),

see [10]. In the last we need µXY � µX × µY, where� denotes absolute continuity, but to
cover the case of µXY 6� µX × µY we set ϕ2(X, Y) = +∞, then the last formula is always
valid.

Clearly here µXY, µX × µY � λ, also Γ f (µXY, µX × µY) > 0 with equality only when
µXY = µX × µY, i.e. when X, Y are independent r.v.’s.

5. Main Results - II

Here f and the whole setting is as in section 4, the Background - III. Additionally,
we assume that ψ, f ∈ Cn([a, b]), with ψ being increasing such that ψ′(x) 6= 0 over [a, b],
where n − 1 < α < n, 0 ≤ β ≤ 1, and γ = α + β(n− α). Furthermore we stress that
0 < a ≤ t

pq ≤ b, a.e. on R2.
Next we present estimations for Γ f (µXY, µX × µY). We apply our results of section 3,

the Main Results-I.
We give first left side results:

Theorem 8. Additionally assume that f [n−k]
ψ

(
I(1−β)(n−α);ψ
a+ f

)
(a) = 0, k = 1, ..., n− 1. Then

Γ f (µXY, µX × µY) ≤

∥∥∥HDα,β;ψ
a+ f

∥∥∥
∞,[a,b]

Γ(α + 1)

∫
R2
(p(x)q(y))

(
ψ

(
t(x, y)

p(x)q(y)

)
− ψ(a)

)α

dλ(x, y). (60)

Proof. By Theorem 2.

We give the L1-analog:

Theorem 9. All as in Theorem 8, with α > 1. Then

Γ f (µXY, µX × µY) ≤

∥∥∥HDα,β;ψ
a+ f

∥∥∥
L1([a,b],ψ)

Γ(α)

∫
R2
(p(x)q(y))

(
ψ

(
t(x, y)

p(x)q(y)

)
− ψ(a)

)α−1
dλ(x, y). (61)

Proof. By Theorem 3.

The Lq-analog follows:
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Theorem 10. All as in Theorem 8. Let also p, q > 1 : 1
p + 1

q = 1, with α > 1
q . Then

Γ f (µXY, µX × µY) ≤

∥∥∥HDα,β;ψ
a+ f

∥∥∥
Lq([a,b],ψ)

Γ(α)(p(α− 1) + 1)
1
p

∫
R2
(p(x)q(y))

(
ψ

(
t(x, y)

p(x)q(y)

)
− ψ(a)

)α− 1
q
dλ(x, y). (62)

Proof. By Theorem 4.

We continue with right side results:

Theorem 11. Additionally assume that f [n−k]
ψ

(
I(1−β)(n−α);ψ
b− f

)
(b) = 0, k = 1, ..., n− 1. Then

Γ f (µXY, µX × µY) ≤

∥∥∥HDα,β;ψ
b− f

∥∥∥
∞,[a,b]

Γ(α + 1)

∫
R2
(p(x)q(y))

(
ψ(b)− ψ

(
t(x, y)

p(x)q(y)

))α

dλ(x, y). (63)

Proof. By Theorem 5.

It follows the L1-analog:

Theorem 12. All as in Theorem 11, α > 1. Then

Γ f (µXY, µX × µY) ≤

∥∥∥HDα,β;ψ
b− f

∥∥∥
L1([a,b],ψ)

Γ(α)

∫
R2
(p(x)q(y))

(
ψ(b)− ψ

(
t(x, y)

p(x)q(y)

))α−1
dλ(x, y). (64)

Proof. By Theorem 6.

The Lq-analog comes next from the right side.

Theorem 13. All as in Theorem 11. Let also p, q > 1 : 1
p + 1

q = 1, with α > 1
q . Then

Γ f (µXY, µX × µY) ≤

∥∥∥HDα,β;ψ
b− f

∥∥∥
Lq([a,b],ψ)

Γ(α)(p(α− 1) + 1)
1
p

∫
R2
(p(x)q(y))

(
ψ(b)− ψ

(
t(x, y)

p(x)q(y)

))α− 1
q
dλ(x, y). (65)

Proof. By Theorem 7.

We make

Remark 3. (see Remark 2) I) Assume that HDα,β;ψ
a+ f ≥

(≤0)
0 over [a, b], then
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Γ f (µXY, µX × µY) ≥
(≤)

n−1

∑
k=1

f [n−k]
ψ

(
I(1−β)(n−α);ψ
a+ f

)
(a)

Γ(γ− k + 1)
(66)

∫
R2
(p(x)q(y))

(
ψ

(
t(x, y)

p(x)q(y)

)
− ψ(a)

)γ−k
dλ(x, y).

II) Assume that HDα,β;ψ
b− f ≥

(≤0)
0 over [a, b], then

Γ f (µXY, µX × µY) ≥
(≤)

n−1

∑
k=1

(−1)k f [n−k]
ψ

(
I(1−β)(n−α);ψ
b− f

)
(b)

Γ(γ− k + 1)
(67)

∫
R2
(p(x)q(y))

(
ψ(b)− ψ

(
t(x, y)

p(x)q(y)

))γ−k
dλ(x, y).

We state

Corollary 3. (to Theorem 8) Case of ψ(x) = x. So, additionally assume that
(

I(1−β)(n−α)
a+ f

)(n−k)
(a) =

0, k = 1, ..., n− 1. Then

Γ f (µXY, µX × µY) ≤

∥∥∥HDα,β
a+ f

∥∥∥
∞,[a,b]

Γ(α + 1)
(68)

∫
R2
(p(x)q(y))1−α(t(x, y)− ap(x)q(y))αdλ(x, y).

It follows

Corollary 4. (to Theorem 8) Case of ψ(x) = ex. So, additionally assume that f [n−k]
ex

(
I(1−β)(n−α);ex

a+ f
)
(a) =

0, k = 1, ..., n− 1. Then

Γ f (µXY, µX × µY) ≤

∥∥∥HDα,β;ex

a+ f
∥∥∥

∞,[a,b]

Γ(α + 1)
(69)

∫
R2
(p(x)q(y))

(
e

t(x,y)
p(x)q(y) − ea

)α

dλ(x, y).
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