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Abstract: System-of-systems (SoS) approach is often used for simulating disruptions to business and
infrastructure system networks allowing for integration of several models into one simulation.
However, the integration is frequently challenging as each system is designed individually with
different characteristics, such as time granularity. Understanding the impact of time granularity on
propagation of disruptions between businesses and infrastructure systems and finding the
appropriate granularity for the SoS simulation remain as major challenges. To tackle these, we
explore how time granularity, recovery time, and disruption size affect the propagation of
disruptions between constituent systems of an SoS simulation. To address this issue, we developed
a High Level Architecture (HLA) simulation of 3 networks and performed a series of simulation
experiments. Our results revealed that time granularity and especially recovery time have huge
impact on propagation of disruptions. Consequently, we developed a model for selecting an
appropriate time granularity for an SoS simulation based on expected recovery time. Our simulation
experiments show that time granularity should be less than 1.13 of expected recovery time. We
identified some areas for future research centered around extending the experimental factors space.

Keywords: system-of-systems; High Level Architecture (HLA); infrastructure modelling;
infrastructure resilience; time granularity; complex networks; synchronization.

1. Introduction

Development of new technologies results in infrastructure systems becoming more
interdependent thus introducing additional complexities. These systems require and produce inputs
and outputs not only for internal use by the systems themselves, but also for other infrastructure
systems and businesses. Often, those businesses also provide infrastructure resources that are then
delivered over a systems network. Along with these heightened interdependencies, systems
disruptions are increasing in both magnitude and frequency. This is especially visible within the
context of urban settings, where various interdependent systems are vital to the survival and normal
operation of a society [1]. As a result, the design and development of infrastructure systems must be
done in a way that ensures they are resilient and can sustain a large variety of disruptions. While a
major concern of designers is the proper response to disruptions, planners and policymakers must
recognize how disruptions emerging in one system can affect other systems, and how disruptions
propagate from one system to another.

Currently, however, there is insufficient understanding about how such propagation of
disruptions between systems occurs [2-6]. To understand this, simulations and models of
infrastructure systems are often run to predict how systems behave under a disruption [6]. Similar
issues appear in many other fields such as evolutionary dynamics of social economy [7-9]. Although
the effect of a propagated disruption on a simulation is affected by many factors, the extent to which
modeled environments are influenced has not been adequately studied [3] [10-12]. These streams of
research focus on supply chain propagation of disruptions and their adequate modeling, however,
they seldom incorporate infrastructure systems into these models. It is interesting to see how
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infrastructure systems simulations are affected by factors that influence disruption propagation.
Moreover, these authors focus primarily on outlining various methods of representing disruption
propagation, however, they do not consider factors, such as time granularity, that might affect
disruption propagation. For example, time granularity of a simulation is expected to affect the
propagation of disruptions. While time granularity of a simulation is expected to be a crucial factor,
no comprehensive research has been conducted on how it might affect a propagation of disruptions
between infrastructure systems and businesses within a system-of-systems (50S) framework.
Therefore, the practical value of such simulations is diminished due to their limited correspondence
with real-world scenarios. Consequently, we focus on understanding the impact of time granularity
on propagation of disruptions, which is vital if we are to determine how disruptions to infrastructure
systems and businesses affect societies.

Although models have been designed to examine interdependencies among infrastructure
systems [13-17], they have not considered the issue of time granularity and how it influences the
propagation of disruptions between systems under an SoS simulation. Current investigations include
separate analyses of individual systems, e.g., traffic simulation [18], water supplies [19], or power
grids [20]. However, only single systems have been involved there, thus constraining those analyses
that might address propagation of disruptions to several infrastructure systems. Similarly,
propagation issues between systems have been studied in signal processing literature [21-24].
However, these do not look at propagation of disruptions between infrastructure systems, especially
in the context of SoS simulations. Another stream of research, utilizing SoS simulations of
infrastructures [25-27], does not focus on modeling disruptions or ensure the accurate capture of their
propagation. In contrast, Dubaniowski and Heinimann [6] have examined the impact of time
granularity on infrastructure systems. However, their study has not considered businesses or the
impacts of disruption size and recovery time on the propagation of disruptions. Our study remedied
this gap by including businesses in the simulation and considering the impacts of more factors such
as disruption size and recovery time. Furthermore, an SoS model of infrastructure systems within an
urban ecosystem, where disruptions are introduced [27-28], has limited applicability because it does
not account for the propagation of those disruptions, and does not provide for many variations based
on time granularity of the simulation and different types of disruptions. In this study, we tackle the
challenge of understanding propagation of disruptions and its dependence on different time
granularities as well as other factors such as disruption size and recovery time.

The objectives of our study were to develop a distributed system-of-systems model of
infrastructure systems and businesses to: (1) study the effects of different disruption characteristics
on propagation of disruptions between constituent systems; (2) investigate how time granularity of
distributed model can affect propagation of disruptions in the model; and (3) develop a framework
model for selecting the most appropriate time granularity of an SoS distributed model based on
expected, estimated disruption parameters. In particular, our goal was to investigate how time
granularity of a simulation, as well as the recovery time and size of a disruption to a theoretical
constituent network — water supply — might propagate and affect the outcome for businesses that are
networked within the simulation. In this study, we also present a general framework for performing
such analysis on any SoS simulation of several constituent network systems.

This study aims to improve the accuracy of SoS simulations of infrastructure systems and
businesses, and so the correspondence of those simulations with the real-world. Particularly, this
study addresses the issues arising from combining various infrastructure system models operating
at different time granularities. Inclusion of such systems in an SoS framework poses many challenges
and often presents inadequate results due to disparity of time granularities between constituent SoS
systems. While the choice of the overarching SoS time granularity is vital to representing disruptions
propagation in the SoS model adequately, this is not addressed adequately in the current research
streams as shown in the review above. Currently, disruptions represented in an SoS simulation often
do not propagate properly between SoS components due to inadequate overarching time granularity
of the SoS simulation. This leads to repeated simulations, which waste simulation budgets, or results
in inadequate outcomes. Results of such simulations do not bring as much value because of having
significant disparities with the real-world results and not representing the actual disruption events
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accurately. Obtaining the suitable time granularity for such simulations would bring results of these
SoS simulations closer to the real-world values, what this study attempts to achieve. Consequently,
as a result of this study, practitioners, as well as decision-makers, of risk and disaster management
will benefit from better simulations and decision support tools, which in turn would contribute to
better responses to disruptions. In particular, the gap addressed in this study is the accurate selection
of the time granularity parameter in an SoS simulation. Closing this gap will lead to more accurate
simulations, and thus better decisions by the users of these simulations such as infrastructure
planners, policy makers, or risk managers.

Our expectation in the analysis part of this study was that time granularity would have the most
significant impact on the propagation of disruptions, because coarse time granularity can completely
bar disruptions of very short periods from cascading to other systems in the simulation. For this
study, we did not consider a variety of networks or how their topology might affect the propagation
of disruptions. The cause of the initial disruption was also outside the scope of this study.

The main contributions of our study were: 1) the development of a framework to select the
appropriate time granularity for an SoS simulation of disruption propagation; 2) application of this
framework to infrastructure and business networks resulting in a recommendation regarding the
choice of the optimal time granularity, which according to our findings should not exceed 1.13 of the
expected recovery time of the disrupted system. The findings can be further extended to other fields
such as finance, biology, evolutionary dynamics of social economy.

This study takes up the challenge of investigating the impact of time granularity on propagation
of disruptions in SoS simulation of infrastructures and businesses. The rest of this paper is organized
as follows. Section 2 describes in detail the model specification, particularly the conceptual
framework that we use to model infrastructures and businesses. In Section 3, we outline the set up
that we use in the application of the framework for the simulation experiment, and the
implementation of the systems. In Section 4, we present the results of the simulation experiments
with regards to different metrics, as well as model and recommendation as to time granularity in SoS
simulations of infrastructures and businesses. Finally, in Section 5, we present the conclusions of this
study, particularly the key findings and implications of our study and an overview of future work
that could be conducted on this subject.

2. Conceptual framework — system-of-systems of infrastructure systems

Frameworks and methodologies have been established to model individual infrastructure
systems and businesses, e.g., power [20] or water supplies [19], transportation [29], emergency
services [30], or financial systems [31]. Those models correspond only to individual infrastructure
systems, and are independent and autonomous in the way they represent each separate system.
However, in reality, these systems are interconnected due to various interdependencies among
infrastructure systems and the businesses to which they deliver. For example, water supply systems
are heavily dependent on a power supply to operate their pumps, and emergency services rely upon
both power and water to run hospitals that treat sick people. Those people must also be moved to
and from hospital over transportation networks. Similarly, a business such as a restaurant is
dependent on access to power to operate its machinery and kitchen equipment, and on water supply
to cook and serve meals and clean the equipment.

The interdependencies between infrastructure systems and businesses can be modelled in an
overarching framework. The SoS approach models individual systems as being autonomous in their
internal operations, but at the same time connected with and affected by other systems [25][27][32].
Therefore, this approach considers both inter- and intra-system interdependencies. In such a
framework, infrastructure systems and businesses are standalone models, while the
interdependencies between them are simulated as lifeline connections (Figure 1). Those lifelines
provide vital infrastructures and businesses with access to network systems, thereby mimicking their
interdependencies.
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Figure 1. Conceptual model of infrastructure system-of-systems, where complexity is two-fold, i.e.,
within and between specific systems.

The conceptual model shown on Figure 1 represents good duality under real-life conditions,
with individual systems also linked through roads, power lines, water and gas pipes, and similar
infrastructure networks. Services are delivered to provide access to and distribution of actual
infrastructure systems and the resources produced by businesses. On the Figure, the
interdependencies are exhibited through lifeline infrastructure connections between various
constituent systems. A system depends on lifelines that it is connected to for performing this system’s
critical functions.

In this study, time granularity is defined as the frequency of performing synchronization
between constituent systems — federates — of an SoS simulation, expressed as a number of timesteps
between two consecutive synchronizations of all federates. The concept of time granularity is of great
importance in a simulated SoS setting [6] because the impact and propagation of disruptions between
constituent systems can vary significantly depending on the time granularity of that simulation.
Therefore, we developed SoS simulation experiments of infrastructure systems and business
networks combined with a disruption generator. These experiments allowed us to understand how
time granularity affects propagation of disruptions in the SoS.

To perform the analysis of how time granularity and other factors affect propagation of
disruptions between systems within a context of an SoS simulation, and consequently to choose an
appropriate time granularity, we have developed the following general framework (Figure 2):

1. Select number and types of individual systems to be modeled, define their performance metrics,
and experimental factors to be tested.

2. Identify interdependencies between selected systems and define these interdependencies.

Implement individual systems’ networks into an SoS HLA simulation.

®

4. Implement disruption introduction mechanism, include this mechanism in the SoS HLA
simulation.

5. Fix the time available for the simulation experiment, hence determine the number of experiments
that will be executed and the experiment layout e.g. full-factorial layout or less dense layout.

6. Run the simulation experiment and record the data.

7. Perform ANCOVA analysis on the data to find factors affecting disruption propagation the most,
and to determine the relationship of these factors to time granularity.

8. Draw conclusions as to how time granularity of the SoS simulation should be selected for this
type of simulation with regards to simulation parameters and desired accuracy.
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1. Select number and types of individual systems to be modeled, define their performance metrics, and experimental factors to be tested.

2. Identify interdependencies between selected systems and define these interdependencies.

3. Implement individual systems’ networks into an SoS HLA simulation.

4. Implement disruption introduction mechanism, include this mechanism in the SoS HLA simulation.

5. Fix the time available for the simulation experiment, hence determine the number of experiments that will be executed and the experiment layout e.g. full-factorial layout
or less dense layout.

6. Run the simulation experiment simulation and record the data.

7. Perform ANCOVA analysis on the data to find factors affecting disruption propagation the most, and to determine the relationship of these factors to time granularity.

8. Draw conclusions as to how time granularity of the SoS simulation should be selected for this type of simulation with regards to simulation parameters and desired
accuracy.

Figure 2: Framework for the analysis of time granularity effects on propagation of disruption in an
SoS simulation.

The above steps show a general procedure to follow in order to analyze how propagation of
disruptions between constituent systems of an SoS simulation is affected by different factors. This
procedure allows to gather information on how to select an appropriate time granularity for the
simulation. Furthermore, interactions of factors with time granularity can be tested too to understand
their impact on propagation of disruptions. As a result, valuable information on how to select crucial
parameters for the simulation can be obtained. This is of tremendous value when designing large
scale SoS simulations. Small-scale prototype simulations such as presented in this study can be used
to establish the range of values that time granularity should take for large-scale simulations of similar
networks, and what factors should affect the selection of time granularity.

In this section, we described the specification of the model used in the simulation, we outlined
the framework to follow to derive an optimal time granularity for SoS simulation. In the next section,
we focus on the experiment that we performed by applying the above framework.

3. Methodology - experimental setup

In the previous section, we described the model in detail and we described the conceptual
framework that we used to derive the experimental simulation described in this section. In this
section, we focus on describing the experimental setup i.e. layout, metrics, and implementation in
detail.

3.1. Experimental layout

We designed an experimental model system to examine the change in disruption patterns for
constituent systems as a function of time granularity (Figure 3). When combined with a disruption
generator, we could introduce system disruptions in accordance with prescribed patterns. Our
observer module was then used to visualize results in real time as the simulation progressed so that
we could determine how the impact of the disruption was propagated within the system over time.
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Figure 3. Experimental model system setup for 3 networks and disruption generator.

The three networks were abstractly generated based on their unique characteristics, as well as
on their interdependencies and corresponding connections to each other. This process is described in
more detail in Section 3.1.2 below. Synchronization between networks occurred at a predetermined
frequency, i.e., federates performed simulations internally in timesteps without any wait times
between subsequent timesteps. However, at the synchronization points, the federates had to halt and
wait for all other federates to catch up so that their data could be exchanged.

The three networks included water supply network, power grid network and businesses
network. All these networks have unique characteristics. Water supply and power grid networks
tend to have branch network topology. Their reaction time is different with water network reacting
to disruption within minutes and power grid within milliseconds, On the other hand, a businesses
network has a branch topology too, however, with many links that connect to others without going
through the common root i.e. with hints of mesh topology. This is complemented by a lot of
interdependencies to both water supply and electric grid network. The propagation of disruption
within the network happens in matter of minutes to hours, and this is reflected in the model by
appropriate delays. Hence, the propagation of disruptions from other networks if these appeared
could be captured in the businesses network.

After disruptions were introduced into the water supply network, their propagation through
the SoS was assessed according to the impact they had on the business network. As shown in Figure
3, three experimental factors were varied: time granularity, recovery time after the disruption, and
the disruption size. For our purposes, the disruption generator followed Poisson processes, which
adequately represent real-world disruption occurrences [33-34]. The two parameters used in defining
our original disruption included (1) actual disruption size (DS), i.e., the number of affected nodes in
water supply network; and (2) actual recovery time (RT), which indicated how long the disruption
remained effective in the water supply network. For the actual disruption size, we randomly
generated a particular pattern of affected nodes for each disruption size parameter level based on
random number generator. We have used this generated pattern throughout all experiment
configurations. This allowed us to shape the disruption curve and compare the size of a disruption
and its propagation and recovery pattern depending on different simulation parameters and
experimental factors’ values.

The electric grid network was introduced into the simulation to show how independent
simulation that itself does not introduce disruption to the SoS can affect the propagation of
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disruptions between two other networks. The electric grid showed how a system that is not disrupted
initially can become affected by a disruption originating in another system, and subsequently also
additionally impact the observed businesses network. The main objective of the study was to
understand time granularity effects on disruption propagation characteristics. Hence, electric grid
was not measured itself because it would not bring significant additional value to this study,
however, the process could be similarly repeated for the electric grid network as the target network
of our observations.

We also determined how time granularity might affect simulation speed. Because
synchronization of the system required time, increasing the frequency of synchronizations, i.e.,
decreasing time granularity, would decrease the speed of simulation. Our goal was to understand
the trade-off between accuracy and speed so that we could choose the most appropriate time
granularity parameter for the SoS simulation and, hence, estimate the runtime of the simulation
under such granularity.

To sum up, the experimental process was as follows:

1. Develop 3 networks with interdependencies between those: water supply, power supply,
businesses; described in Section 3.1.2.
2. Introduce a disruption to water supply simulation. Disruption and experimental configurations

are described in more detail in Section 3.1.1.

3. Register performance metrics (described in Section 3.2) of the businesses network simulation.
4. Repeat the above for each experimental configuration described in Section 3.1.1 (Table 1).

The implementation of the above is described in Section 3.3. While conducting the above
experiment, we were interested in recording propagation of disruptions from one infrastructure
system — water supply network — to businesses network. Hence, we focused on recording metrics
related to the propagated disruption i.e. propagated disruption size and propagated recovery time.
These were analyzed in relation to time granularity in order to see the impact that time granularity
of the SoS had on propagation of disruptions between constituent networks. We developed a model
for deriving an adequate time granularity for the SoS simulation such that the propagation of
disruptions would register. Finally, we looked at the trade-off between simulation time and time
granularity. This emphasized the importance of selecting an appropriate time granularity under
limited simulation budgets.

In this study, we present an application of the above procedure to an SoS consisting of 3 systems
and we test impact of 3 experimental factors on propagation of disruptions between constituent
systems of an SoS simulation. The rest of this study describes this scenario in more detail and outlines
the application of the above procedure to the scenario, including the analysis of results with
inferences on how to select an appropriate time granularity for an SoS simulation. However, the
general framework in principle can be applied to any combination of infrastructure systems and other
network systems in order to determine the impact of various factors on propagation of disruptions
between constituent systems of an SoS simulation.

3.1.1. Factorial layout

We applied a full-factorial experimental layout to study the impact of time granularity (TG),
actual recovery time (RT), and disruption size (DS) on simulation results (Table 1). Those three
factors were assigned values based on Latin Hypercube Sampling (LHS) [35]. Because the overall
water supply network size was 22 nodes, sampling for disruption size was performed in the space
between 7 and 21 nodes disrupted. Time granularity and recovery time were both assessed on the
space of between 1 and 30 to provide us with a good overview of real-life simulations. The full
factorial experimental layout consisted of 125 parameter configurations. This allowed us to identify
solid conclusions by which we could determine the impact of individual factors on the accuracy and
outcome of the simulation.
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Table 1. 5 x 5 x 5 hypercube full-factorial layout achieved via LHS. Experimental factors included time granularity (TG), recovery time (RT), and disruption size (DS).

Disruption size (DS)

8 12 14 18 21
Time granularity (TG) Time granularity (TG) Time granularity (TG) Time granularity (TG) Time granularity (TG)
2 2 12 | 14 |21 |27 2 12 |14 |21 |27 2 12 | 14 |21 |27 2 12 |14 |21 |27 2 12 | 14 | 21 |27
Time granularity (TG) Time granularity (TG) Time granularity (TG) Time granularity (TG) Time granularity (TG)
e 9 2 12 | 14 |21 |27 2 12 |14 |21 |27 2 12 | 14 |21 |27 2 12 |14 |21 |27 2 12 | 14 | 21 |27
<)
E Time granularity (TG) Time granularity (TG) Time granularity (TG) Time granularity (TG) Time granularity (TG)
E 13 2 12 |14 |21 |27 2 12 | 14 |21 |27 2 12 |14 |21 |27 2 12 (14 |21 |27 2 12 | 14 |21 |27
z
é Time granularity (TG) Time granularity (TG) Time granularity (TG) Time granularity (TG) Time granularity (TG)
17 2 12 | 14 |21 |27 2 12 |14 |21 |27 2 12 | 14 |21 |27 2 12 |14 |21 |27 2 12 | 14 | 21 |27
Time granularity (TG) Time granularity (TG) Time granularity (TG) Time granularity (TG) Time granularity (TG)
22 2 12 | 14 |21 |27 2 12 |14 |21 |27 2 12 | 14 |21 |27 2 12 |14 |21 |27 2 12 | 14 | 21 |27
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3.1.2. Specification of topologies for infrastructure systems

Networks used in this simulation experiment were abstract, and were randomly generated via
the Erdds-Renyi model [36-37]. The use of real-world networks would improve the significance of
the study and is intended to be included in the future. However, at the moment we lack access to
data representing accurate networks in the same area with the relevant time granularity.
Furthermore, the development of a real-world case study for this project would far exceed the time
and resources available. The primary purpose of our manuscript is to highlight the issue of time
granularity in developing SoS dynamic simulations, and to present a basis and framework for the
selection of an appropriate time granularity in these simulations. In the future, we do hope to expand
on the issues mentioned in our manuscript and eventually to deliver a real case study. The networks
included in our study represented water supply, power grid, and businesses. They were represented
as graphs in which direction signified the way in which interactions would occur between subsequent
nodes, such as those associated with normal transportation of a resource over various links.
Disruptions were introduced at nodes, which were then removed from the network and their
connection links abandoned. Recovery was simulated by returning those nodes to the network and
re-establishing their connections with subsequent and preceding nodes.

In each network, nodes corresponded to units that performed operations and interacted with
other nodes in the same network as well as with corresponding nodes in other federates. Edges
corresponded to transfer links between operational units within each network. Although the
mechanics of each network were similar, they were also distinct and abstract. Each node had its own
intrinsic, internal performance, but also took inputs from the incoming edges of its network and from
its corresponding nodes in the other two networks. These internal and external performances were
then combined and transformed to determine the total performance of that particular node.
Performance was then propagated to the following nodes through the outgoing edges. Similarly,
performance was propagated through inter-network connections and a synchronization mechanism
to the corresponding nodes of the other two networks. Interaction between different federates could
take place only through synchronization. In doing so, we designed a working process for each
constituent federate to simulate an individual infrastructure system or business network within the
SoS simulation environment. Each network had similar but slightly different mechanics for
calculating the performance of its own nodes.

A section of network topologies is shown in Figure 4. The Figure shows selection of nodes and
their connections for the networks used in the simulation experiment. Each network consisted of a
certain number of nodes with a certain number of edges between them. A selection of these nodes
and edges is shown on Figure 4. The nodes also had corresponding interdependent nodes in other
networks of the SoS simulation with which they communicated at a given frequency by exchanging
information at synchronization points. These interconnections between networks are represented on
Figure 4 with the dashed lines. We set the following specifications for the networks used in the
experiment: 22 nodes and 77 edges for the water supply network, 21 nodes/77 edges for the power
grid network, and 20 nodes/75 edges for the business network.
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Figure 4. Section of topologies of 3 simulation experiment networks.

3.2. Performance metrics

We collected data that described how a disruption to the water supply might influence
performance of the business network. The collected data included simulated, propagated recovery
time (SPRT) and simulated, propagated disruption size (SPDS) of the business network (Table 2).
These metrics were chosen as the most representative due to showing the most important features of
a disruption. Our aim was to derive an independent framework for choosing time granularity for an
SoS simulation of infrastructure systems and business networks that would result in the most
accurate simulation while simultaneously preserving the efficiency of that simulation. We used a
Measure of Performance (MoP) to compare the results from experimental configurations, based on
sum of all individual performances of nodes in a network. We expressed MoP as a percentage of its
default, optimal conditions performance before the disruption strikes, which was set at 100%. MoP
can be understood as the overall performance of the system and can be compared across different
instances of time in order to see how performance of the system is affected by experimental factors.
MoP for each network is obtained by summing all individual node’s performances for that network.
For example, MoP for a water network could correspond to the sum of all the water delivered to
water consumers in the region e.g. expressed in m?. Similarly, in case of a power system it can
correspond to the total electricity transported in the network e.g. expressed in Wh. For businesses,
the MoP can represent the total economic activity in the area such as GDP or total value of goods and
services produced in that area e.g. expressed in $. Such metrics succinctly show any disturbances in
the respective networks by decreased production and delivery of resources, which would be required
under normal operating conditions.

Table 2. Performance metrics and variables

Performance metric Description
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Simulated propagated
recovery time (SPRT) (trec)
[timesteps]

The length of time needed for a
system to recover to 99% of its
original performance after a
disruption was propagated
and, subsequently, retracted.
Expressed in timesteps.

Simulated propagated
disruption size (SPDS) (dmax)
[%]

The difference between 100%
and the lowest point along the
MoP curve of the target system
after a  disruption was
propagated to that system.

Actual, initial recovery time in
the original system (RT)
[timesteps]

The length of the disruption in
the system in which the
disruption originated i.e. in the
water supply network.
Expressed in timesteps.

Actual, initial disruption size
in the original system (DS) [%]

The difference between 100%
and the lowest point along the
MoP curve of the initial system
after a  disruption

introduced to that system

was

Measure of performance
(MoP) [%]

Measure of satisfaction of the
demand for resources in the

do0i:10.20944/preprints202103.0159.v1

system. Expressed as
percentage of the mnormal
operating conditions, when all
of the demand is satisfied.

Time granularity (TG) Frequency of synchronization

[timesteps] of the systems i.e. frequency of
exchange of interdependent
data between constituent

systems in the SoS simulation.

Disruptions and recovery are modelled in a similar fashion. Disruption is modelled by
decreasing the performance of an individual node or a set of nodes sharply in one timestep to null
performance in effect by removing the node from the network, and subsequently observing how the
target network reacts to this. Similarly, recovery is modelled by reverting the disrupted nodes in one
sharp timestep back to their original levels of performance from before the disruption had occurred,
and subsequently observing how the target network rebounds and recovers from the disruption.
Individual network mechanisms and within-network as well as between-network propagations are
responsible for the recovery process.

As depicted in Figure 5, the simulated propagated recovery time (trc) (SPRT) enabled us to
calculate the length of time needed for a system to recover after a disruption was propagated and,
subsequently, retracted. Recovery was determined to be the point at which that system had returned
to within 99% of its original (pre-disrupted) performance. For our simulation, we were primarily
interested in the impact of actual recovery time (RT) in water supply network on the simulated
propagated recovery time (SPRT) in businesses network, which would then represent the difference
in recovery times due to synchronization between federates in the SoS, as defined by time granularity
— our key experimental parameter. In this way we could assess the accuracy of the SoS simulation
and its dependence on time granularity.
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Figure 5. Recovery time (tre) and maximum disruption size (dmax) definitions. Disruption was
introduced into water supply network (MoP2) and propagated to business network (MoP1).

Another dependent variable, maximum simulated propagated disruption size (dmax) (SPDS),
was defined and measured as the lowest point along the performance curve after a disruption was
propagated to that network. Those results indicated the magnitude of such an impact by one system
on another, e.g., when a disruption to the water supply interfered with operations by the business
network. This approach served as an alternative metric for assessing the accuracy of a simulation
based on time granularity.

Our final evaluation involved comparing speeds (in seconds per timestep) among different time
granularity configurations so that we could determine how the former changes in conjunction with
the latter. This was an important factor because of the trade-off found between speed and accuracy
in simulations. Successful design of a framework requires selecting the most appropriate time
granularity based on desired speed and some basic knowledge about the networks being simulated.
All of these were goals of our study here.

Finally, we devised a model of likelihood of visibility of disruption based on recovery time to
time granularity ratio. Such model can help in selection of the optimal time granularity based on
expected recovery time. Similarly, we developed a model that predicts estimated error for recovery
time based on the relationship between simulated propagated recovery time and actual recovery
time. This model can further aid with selection of an adequate time granularity. Moreover, such
model could be used to estimate the actual recovery time of the original system based on the recorded
recovery time in the propagated system.

3.3. Model implementation

Planners use distributed modelling frameworks to implement the SoS approach for businesses
and infrastructure systems. This involves numerous individual, autonomous systems connected with
each other through inputs and outputs to other systems. One such framework is HLA [38-40], a tool
originated in military applications to simulate battlefield actions, as well as various systems
pertaining to simulated battle situations and training. Since then, HLA has been employed in various
other applications, including the modelling of civil infrastructure [25] [41-42]..

A particular implementation of HLA features three components: interface specification, object
model template (OMT), and rules. Interface specification defines where and how constituent systems
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(“federates’) communicate with RTIL, a method used to join all constituent distributed systems. This
component serves as the inter-federate communication and synchronization unit of the HLA. Second,
OMT describes what information is exchanged between constituent federates and what updates
about the federation must be communicated to those federates. Finally, rules specify what federates
have to obey to subscribe to the overall HLA SoS simulation (‘federation’). When modelling
infrastructure systems, the federates within an HLA simulation can include infrastructure systems,
disruption generators, observers and visualization tools, patterns of user services, and businesses.
All of these federates introduce dynamic changes to the systems and allow designers to observe their
effects on the overall SoS.

Although HLA is perfectly suited to describing and modelling the manner in which constituent
systems exchange information and synchronize with each other, it does not indicate the ideal time
granularity at which such synchronization and exchange of information should take place. In this
context, time granularity means the frequency of exchange of information among federates (i.e.,
constituent systems), disruption generators, and other components. As such, granularity reflects the
frequency of inter-system synchronization. Although specification of HLA provides some
mechanisms to perform time management [43-45], it does not identify the best time granularity for
that exchange. In fact, the most adequate time granularity varies among types of simulations, where
even different disruption events might apply to the same simulation of infrastructures.

Our simulation was developed in C++ v11 [46] and Python. The HLA framework was applied
from Portico 2.0.2 HLA [47] implementation, with Portico’s HLA being used to define the interfaces
between federates, and to manage time in the simulation. Data at given time granularities were
synchronized through HLA RTI, as adapted from Portico’s implementation, and graph operations
were performed with the use of the igraph library for C++ and Python, version 0.7.1 [48]. Disruptions
were generated and introduced to the system through a disruption generator developed in C++ v11.
All infrastructure system networks were developed in Python 3.5 [49], under Anaconda 2.4.0
distribution [50]. We used the following libraries to create those networks: igraph, for graph
generation, representation, and operations; and NumPy version 1.10.1 [51], for linear algebra and
numerical operations. The observer was designed with a webpage interface developed in JavaScript,
HTML, and Python, using the Canvas]S library [52]. This observer enabled us to collect data about
the simulations, to visualize their progress, and to view the performance of the system in real time.
The simulation was developed, evaluated, and run on a Mac OS High Sierra 10.13.6 operating system.

This implementation shadowed a specific scheme. First, the infrastructure systems were
developed based on the definitions established for their interconnections, number of nodes, and
working mechanisms, i.e., inputs and outputs. Within each network, the nodes depended on
preceding nodes and on their corresponding nodes from other federates. Once individual networks
and their mechanisms were defined, the interfaces between federates were devised. This was
followed by the design of HLA interfaces which considered what information and how often needs
to be exchanged between federates. Finally, the overall HLA simulation was created by combining
the individual constituents together to include all components of the infrastructure systems i.e. the
three networks of interest.

Before arriving at our final experimental design, we evaluated the systems for different
individual networks, each of which was tested to assess its representation of a real-life system. Our
preliminary investigation showed that the networks and HLA SoS simulation performed well
individually and as a whole, adequately representing individual networks and propagating and
communicating disruptions between them as required. The networks were compared with
simulations of individual infrastructures as devised by domain experts. This allowed us to assess the
adequacy of the networks. A small-scale testing was developed to ensure that these networks respond
well to disruptions being introduced. HLA SoS simulation as a whole was similarly tested with
reference to expectations described by domain experts. Small-scale easy to estimate disruptions were
introduced and response of the system was recorded. This followed the expectations of the experts.
Hence, the adequacy of the model was established. Furthermore, interdependencies introduced
between federates in the SoS were evaluated by experts of power systems, water supply networks,
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and economists to ensure that these interdependencies corresponded well with the real-world and
that duality of the simulation model was maintained.

In this section, we presented the experimental setup, layout and implementation of the model
used in the simulation experiment. In the following section, we present the results of the experiments
described in this section. Moreover, we provide an analysis of this results and derive statistical
models based on our simulation results, which in turn can help us in making a recommendation to
the optimal time granularity for the SoS simulation described in this section.

4. Results and analysis of the simulation experiment

In the previous section, we described the simulation experiment. In this section, we present and
analyze the results of the simulation experiment performed in accordance with descriptions from
the previous sections. Consequently, we make a recommendation for to the optimal time
granularity for an SoS simulation of infrastructure systems and businesses.4.1. Disruption size

In this subsection, we evaluate the impact of various factors described in Table 2 as well as time
granularity, and interactions between these factors on the simulated, propagated disruption size
(SPDS) performance metric described in Section 3.2. The experimental layout is shown in Section 3.1
and the implementation of the model for the simulation experiment executed here is explained in
Section 3.3.

Simulated, propagated disruption size (SPDS) was measured under different experimental
configurations to understand which factors had the largest impact on the simulated disruption size
(SPDS). An ANCOVA (Analysis of Covariance) was performed in R to determine the strength of the
effect of experimental factors on SPDS. Figure 6 presents only those factors and their interactions that
had a significant impact on the share in variation of SPDS. Adequate time granularity is of immense
importance in system-of-systems models. The most important factor proved to be time granularity
(TG), followed by actual recovery time (RT) and then actual disruption size (DS). We found this
interesting for several reasons. First, the influence of propagated disruption was decided primarily
by TG. Second, and more importantly, the RT was responsible for a greater share of the variation in
SPDS than the DS. This finding demonstrated that the RT in an SoS federate had a greater effect on
the SPDS in other federates than did the DS in the original federate itself especially for the case of
three networks considered in this study. Although interactions among experimental factors also
influenced the variations in SPDS, they had much less impact than did individual factors. Share of
residuals in variation were also lower than the combined share of other factors. Overall, the
experimental factors explained 71% of the variation of SPDS. That high percentage indicated that the
variation in size could be well-explained by the experimental factors.
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Figure 6. Share in overall variation for simulated disruption size (SPDS) due to experimental factors
(parameters).

The results above suggested that correctly adjusting the ratio of time granularity to the expected
recovery time in a simulation would be of immense importance when simulating the disruption size
in an SoS evaluation. Therefore, careful selection of the ratio of time granularity to recovery time
would have to be based on the data available to us if we were to determine the optimal time
granularity for a simulation and yield the most accurate simulation results. These results signify the
need for an adequate time granularity selection. Adjusting the time granularity can vary the
outcomes of the simulation. Hence, when designing a simulation experiment time granularity needs
to be considered. In particular, we need to make sure that the results with the time granularity
selected are representing the real world accurately. As our further analysis below shows, the finer
time granularity would yield more accurate results, and the coarser time granularity loses accuracy
of the simulation.

4.2. Recovery time

In this subsection, we evaluate the impact of various factors described in Table 2 as well as time
granularity, and interactions between these factors on the simulated, propagated recovery time
(SPRT) performance metric described in Section 3.2. The experimental layout is shown in Section 3.1
and the implementation of the model for the simulation experiment executed here is explained in
Section 3.3.

Similar to our assessment of disruption size, we analyzed the impact of experimental factors on
the variation in simulated, propagated recovery time (SPRT) of the business network. Simulated
recovery time (SPRT) under various configurations was measured to understand how SPRT was
affected by these factors. As before, we performed ANCOVA in R, using the data obtained when
measuring the SPRT. Figure 7 presents only the factors and their interactions that had significant
impacts on the share in variation for SPRT. Impact was almost equally shared between time
granularity (TG) and actual recovery time (RT). This indicated that both factors would require careful
adjustments if simulations were to represent actual disruption events adequately. The most
influential were time granularity (TG) of the simulation and the actual recovery time (RT) for the
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water supply network. Furthermore, TG had a slightly larger effect on SPRT. Again, this result
underlined the importance of adequate TG and its critical influence on the accuracy and outcome of
the simulation. The interaction between these two factors also had a significant but smaller share in
the variation of SPRT. We noted with interest that the size of the disruption (DS) to the water supply
had no significant impact on the SPRT. Similar to our results from examination of disruption sizes,
the residual share in variation of SPRT was approximately 30%, which indicated that 70% of the
variation (a reasonably high percentage) could be explained by experimental factors.
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Figure 7. Variations in simulated recovery time (SPRT) due to experimental factors (parameters).

All of the findings presented above strongly suggested that time granularity (TG) was of great
importance in an SoS simulation. Making proper adjustments to time granularity in reference to
recovery time would be crucial if we were to obtain reliable simulation results. Furthermore,
depending upon TG, simulation results could change significantly because the impact of RT and TG
on the share of variation in SPRT was similar. In both cases of SPRT and SPDS, TG accounted for a
larger share of the variation than did either the RT or the actual DS. Again, here we strongly see the
importance of time granularity on obtaining adequate results of the simulation. The results obtained
here signify that varying time granularity can result in outcomes, which do not represent real-world
accurately, and in loss of propagation effects of disruptions. In particular, it is important to select time
granularity which is fine enough to ensure that propagation of disruptions is noted in the simulation.
The results obtained and described in this section support this view.

4.3. Model of visibility of disruption

One reason that time granularity and actual recovery time had such a great impact on the
simulation outcome was that disruptions below a certain recovery time did not get propagated
through the SoS simulation to other federates. If the time granularity was large enough, then when
such a disruption occurred, the individual system recovered from the disruption before that
propagation took place. This implied that time granularity prevented such an occurrence. As such,
this phenomenon contributed to the great impact of time granularity on variation of the metrics.

Hence, in this subsection, we derive the optimal time granularity for the simulation of
infrastructure systems and businesses described in Sections 2 and 3. This is done by running a logistic
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regression model on the experimental data. Namely, the ratio of RT to TG (described in Table 2) was
used as the independent variable, and the dependent variable was measured considered as not-
visible for SPDS lower than 5%, while visible if SPDS was greater than 5%. Such logistic regression
model allows us to postulate the optimal time granularity for the simulation.

Based on these results, we then derived a model of likelihood for disruption visibility that would
allow us to select time granularity of the simulation according to the (expected) recovery time of
disruptions, making their propagation visible in the system. This model was used to select the
maximum time granularity so that one could observe and detect an SoS disruption. Here, visibility
of a disruption was understood to be a drop in performance to below 95% of the original level in the
network to which disruption should propagate.

This logistical model (Figure 8) was developed based on our simulated data, using R and the
glm fit function [53]. It depicted the likelihood that a disruption would be visible in a business
network, according to the ratio of actual recovery time of the water supply network to time
granularity. The primary limitation associated with this model would be the networks to which it
could be applied. Here, we used it to select a time granularity for a simulation based on the most
important parameters: time granularity (TG) and actual recovery time (RT). Those parameters were
combined into a ratio so that we could adjust for our desired likelihood of visibility. In most practical
applications we can estimate the minimum actual recovery time. Then, by using the model from
Figure 8, we can derive the time granularity. Our model suggested that the ratio of actual recovery
time to time granularity should be at least 0.88. In doing so, for the disruption to propagate to other
federates the time granularity should be less than 1.13 of the estimated actual recovery time.

o |
=
[
S
°
S @ |
& ©
©
=
° «© |
2 o
9
(2]
S < |
“60
©
3
(qV]
= o
o
<
_I J
o |
o

[ I I [ I
0.80 0.85 0.90 0.95 1.00

Actual recovery time

Time granularity

Figure 8. Model of likelihood for disruption visibility based on ratio of actual recovery time to time
granularity (RT/TG).

Because visibility of a disruption is a key parameter when simulating an SoS infrastructure
network, we wished to examine whether a disruption originating in one network could propagate to
another network, for how long, and with what impact. This would enable us to understand how
businesses respond to a certain disruption in the water supply network. However, if an excessively
large time granularity prevented such a propagation, then the simulation would be useless.
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Consequently, in a real-life scenario, we would not be able to determine whether the disruption
would propagate. Hence, selection of appropriate time granularity for an SoS simulation is vital.

Our finding here could apply to multitude of other infrastructure networks, which also exhibit
similar properties. These networks also require synchronization frequencies that are below or around
expected recovery times. This is because individual networks otherwise might recover before the
disruption is propagated. The general rule of maintaining recovery time above time granularity
would hold. However, to obtain a detailed analysis of a different set of infrastructure networks, the
simulation experiment should be conducted in a similar fashion with these particular networks
following our general framework presented earlier. Such approach would allow to obtain a more
accurate ratio of expected recovery time to time granularity that could apply for such networks.
Similarly, uncertainty of the parameters could be estimated better with approaches such as
bootstrapping and rerunning the simulation multiple times in order to obtain deviation from the
numbers that we had obtained in the experiment. Stochasticity within each individual network and
the overall system could be captured through such approach. However, this would require
significant simulation time and might not be practical given the goals of such simulation. A
representative sample of results used for calculation of the metric is sufficient in order to obtain a
general rule for designing SoS of infrastructure systems and businesses.

Finally, the result here is of great significance, and such logistic model should be obtained when
designing large simulation experiments for infrastructure systems. The time granularity needs to be
fine enough to capture cascading effects of disruptions. Such model allows us to define the time
granularity, which would be fine enough to ensure propagation of disruptions. This model is derived
based on the previous two subsections (Section 4.1 and 4.2), which support the need for finding an
adequate time granularity for a system-of-systems simulation. To respond to the need for obtaining
an accurate simulation results, which represent real-world accurately, we have derived and
presented the logistic model described in this section.

4.4. Simulation time vs. time granularity trade-off

In this subsection, we evaluate the impact of time granularity, as described in Table 2 on the
speed of execution of the simulation. This is important to note how speed is affected by time
granularity to note that performance metrics described in Section 3.2 have a trade-off with the
simulation speed. Both high speed and good visibility of disruption as described in the previous
subsection being the desired outcome. Once, we know the maximum time granularity, we can use
simulation time trade-off curve to further tweak and narrow down the time granularity of the
simulation.

Because the SoS approach often entails performing one simulation immediately after another,
we want to enable performing as many simulations as possible within a limited period of time to test
different scenarios. Our goal was to achieve the most rapid simulation that was also the most
accurate. Since simulation speed was affected by time granularity, at any given level of accuracy, a
trade-off existed between time granularity and simulation time.

In our experiment, simulation time was expressed in seconds per timestep. As time granularity
increased, the simulation time decreased because reduced granularities involved more
synchronization between federates. Such synchronizations are time-consuming and computationally
expensive, thereby lengthening the simulations. As shown in Figure 9, simulation time was roughly
inversely proportional to time granularity. Nevertheless, we also noted that the greater the time
granularity, the lower the accuracy of the simulation and the higher the likelihood that a disruption
would not propagate to other networks — in our case, the businesses network. This produced a trade-
off between simulation speed and accuracy that was controlled by the time granularity parameter.
Consequently, when attempting to choose as high a time granularity as possible in order to decrease
execution time, we still have to establish restrictions on maximum time granularity, so that disruption
can effectively propagate between systems.

There is a clear traded-off between disruption time and time granularity of disruption. This can
be seen based on results in this section. Hence, to estimate the time of running a simulation, we can
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use this model coupled with the minimum time granularity required obtained from the logistic model
in Section 4.3. Furthermore, based on a given simulation budget, we can try use the below model to
obtained the relevant time granularity and the experimental layout. Hence, it is important to perform
such simulation time analysis and compare it with the time granularity requirements such as in
previous sections.
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Figure 9. Inverse relationship thatleads to trade-off between simulation time and accuracy, controlled
by time granularity.

4.5. Ratio of recovery time to time granularity

In our SoS simulation, selecting the appropriate time granularity was critical. However, we
detected a trade-off between time granularity and the speed of the simulation. The principal factors
affecting our results were time granularity (TG) and recovery time (RT), both of which influenced the
size of the simulated disruption to the business network (SPDS) more than did the size of the
disruption to the water supply network (DS). Therefore, we concluded that the ratio of the recovery
time for the original disruption to the water supply (i.e., actual recovery time (RT)) to the time
granularity of the simulation (TG) had an even greater impact on the variation among our
experimental metrics (both described in Table 2) on the simulation described in Section 3.

Figure 10, presents the results of our ANCOVA analysis. The ratio of actual recovery time of
water supply network to time granularity (RT/TG) accounted for the greatest share, by far (~86%), in
variation of the ratio of simulated recovery time of the business network to time granularity
(SPRT/TG). This meant that the ratio RT/TG could be used to explain, with high accuracy, the ratio
SPRT/TG. Therefore, SPRT/TG could be modelled based on RT/TG.
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Figure 10. Variations in ratios of simulated recovery time by business network (SPRT) to time
granularity due to experimental factors.

Consequently, we could use this model to estimate the desired accuracy of the simulation, this
is the difference between SPRT and RT. Then, we can adjust TG accordingly to achieve this desired
accuracy of the model.

One limitation associated with this model is its dependence on the type of simulation that is
being run. Depending on the chosen federates, the actual difference in RT and SPRT recovery times
might differ between actual conditions and those that are simulated or propagated. Therefore, the
type of simulation, and its internal mechanics, as well as the type and number of interdependencies,
have a great impact on this model’s accuracy and validity. Likewise, Dubaniowski and Heinimann
[6], have demonstrated that such a model that translates the ratio from actual (RT/TG) to simulated
(SPRT/TG) values might have several regimes depending on whether the ratio is below or above 2.
We found it also interesting that such a relationship did not emerge when using the disruption size
metric. This further indicated that the selection of an appropriate time granularity is especially
sensitive to the recovery time for the major event that is expected in a given simulation. Therefore,
the minimum recovery time that is anticipated for major events should be carefully estimated when
designing an SoS simulation.

Our proposed generalized linear model (Figure 11) was built to consider only the most
significant factor, i.e., the ratio of recovery time to time granularity (RT/TG). It can be used to select
the best time granularity depending on how much tolerance one has for error. Based on the maximum
acceptable error, we can choose the highest time granularity that satisfies this to ensure the fastest
simulation speed. Similarly, and perhaps more importantly, if we know the time granularity of a
simulation, then the model can estimate the actual size of an event and its recovery time based on the
simulated recovery time. This can help in obtaining the relevant data of a simulation that might have
too coarse time granularity, which could be very beneficial, when we have limited simulation budget,
but need to obtain as relevant results as possible. Using the linear model described in this section can
be of essence to retrieving representative information from a simulation experiment with a given time
granularity.
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Figure 11. Model of relationship between simulated (SPRT) and actual (RT) recovery times as fraction
of time granularity (TG).

We must reiterate our conclusion that this proposed model can vary in its applicability and
accuracy, depending upon the networks that are simulated. Although we utilized networks here that
resembled infrastructure systems such as water supply, power grid, and businesses, this model might
not be fully applicable and yield different results in other situations. Nevertheless, the outcome from
the study described here is valuable for deriving the actual size of a real event based on the simulated
event size, and it can aid in choosing the appropriate time granularity, especially in SoS HLA
simulations. However, a simulation following our general framework can be performed in order to
find out more details about desired time granularities for different networks in an SoS simulation.
Finally, it is possible that such a model could have several regimes depending upon the range of
values of the ratio of actual recovery time to time granularity (RT/TG).

4.6. Summary of key results

Our research yielded the following major results:

e Time granularity had the greatest influence on both simulated recovery time and size of
disruptions in systems to which those disruptions had propagated.

e  Recovery time had a larger impact than disruption size on both recovery time and disruption
size in systems to which disruptions had propagated.

e Experimental factors explained 70% of the variation in experimental performance metrics.

e From the model, we determined that the minimum ratio of actual recovery time to time
granularity at which the propagation of disruptions was visible was 0.88.

e Simulation speed was inversely proportional to time granularity, and the best speeds were
achieved at higher granularities.

e  The ratio of actual recovery time to time granularity had the greatest effect on the ratio of
simulated, propagated recovery time to time granularity. Hence, it was crucial to our simulation
that we achieve an adequate ratio of actual recovery time to time granularity. The share of
variation in simulated recovery time to time granularity ratio due to the ratio of actual recovery
time to time granularity was 86%.
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e  We developed a general linear model to estimate the actual recovery time based on simulated,
propagated recovery time.

5. Conclusions

Our simulation experiments were specifically designed to investigate how time granularity,
recovery time, and size of a disruption to the water supply might propagate and affect the outcome
of a business network under simulated conditions. After developing an HLA system-of-systems
simulation that incorporated two infrastructure systems (water supply and power grid), a business
network, and a disruption generator, we ran full-factorial simulation experiments to analyze various
impacts on the propagation of disruptions. We then developed two models to assist in selecting an
adequate time granularity based on expected recovery time and desired accuracy of the simulation.

The results from the simulation experiment demonstrated that time granularity, recovery time
from disruptions, and disruption size all had a significant impact on the outcome of our simulation.
Assessments of performance by the business network indicated that the simulated propagated
recovery time (SPRT) and disruption size (SPDS) were affected by all experimental factors, but
especially by time granularity and recovery time. The ratio of actual recovery time to time granularity
had the greatest effect on the ratio of simulated, propagated recovery time to time granularity. Our
study determined that the minimum ratio of actual recovery time to time granularity at which the
propagation of disruptions was visible for infrastructure system networks and businesses was 0.88
Finally, we developed a general linear model to estimate the actual recovery time based on simulated,
propagated recovery time.

Another important contribution of this study, besides the optimal ratio of time granularity to
expected recovery time in an SoS simulation, is the development and proof-of-concept of the
framework for deriving the optimal value of time granularity. This is a key contribution of this study
to various fields of research that might benefit from distributed simulations of propagating
disruptions including social economics, finance, sociology or biology to name a few.

Our study about the effect of time granularity on propagation of disruptions in a SoS simulation
of infrastructure systems and businesses networks is novel. Our simulation experiment addressed
the issue of selecting an appropriate time granularity when modelling disruptions in distributed
modelling SoS environments such as the Portico HLA. This has closed a major gap in current research
stream. Obtaining the suitable time granularity for such simulations will bring results of these SoS
simulations closer to true values. Consequently, as a result of this study, practitioners, as well as
decision-makers, of risk and disaster management will benefit from better simulations and decision
support tools, which in turn would contribute to better responses to disruptions. In particular, the
gap addressed in this study is the accurate selection of the time granularity parameter in an SoS
simulation. Closing this gap will lead to more accurate simulations, and thus better decisions by the
users of these simulations.

Our research findings have several further implications. Scientists can use the findings of this
study to develop better models of infrastructure systems and business networks. The closing of the
gap regarding selection of the appropriate time granularity will enable them to achieve better
simulation representations at lower simulation costs. Scientists and researchers can select time
granularity that yields the most optimal results of SoS simulations in terms of the most accurate
disruption propagation representation. The experimental framework presented here can also be used
to define time granularity of SoS simulations for applications other than infrastructure systems such
as military systems, business systems or evolutionary dynamics of social economics. This would
result in more accurate simulations in these fields thus decreasing the simulation time and budgets
required, as well as yielding better results. For practitioners, policymakers, and scientists, better
simulations can help them to achieve better estimates of the size and cost of actual disruptions. Thus,
more accurate and faster simulations would result in better decisions regarding infrastructure
development, contingency plans, and responses to ongoing disruptions.
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Practitioners and scientists who regularly perform such simulations can benefit from identifying
the maximum time granularity required if they are still to register the propagation of disruptions.
This will aid in solving the trade-off between speed and accuracy of the simulation, which in turn
would allow them to perform more simulations within the same timeframe, thereby leading to
savings in both cost and time. Moreover, they can benefit from the framework to perform analysis of
how individual factors affect propagation of disruptions between constituent systems in an SoS
simulation of infrastructure systems. Addressing the gap of selecting the optimal time granularity,
through faster and more accurate simulations will result in improved speed of simulations and so
decreased time and budget spent on simulations. This is advantageous to scientists, practitioners,
and decision-makers alike.

Our study is limited in its ability to apply these results to other networks and infrastructure
systems. Although the test system was analyzed for various parameters of disruptions, the topologies
and mechanics of the network were constant. In real-world scenarios, the nature of the networks, as
well as their sizes, could differ. However, this can be remedied by applying our generalized
framework to different situations and simulation in a small-scale, drawing conclusions from these to
utilize when developing a large-scale simulation of the same systems. Similarly, the experimental
space and metrics are restricted. Here, we focused on only a subset of possible factors that might
influence a disruption. Another limitation was that the model of the ratio of simulated, propagated
recovery time to time granularity based on the ratio of actual recovery time to time granularity may
have several regimes that could be analyzed separately. Finally, our model was limited in capturing
and representing stochasticity and uncertainty of results and parameters. To address these
challenges, future work on this subject might include similar simulation experiments over a broader
field of network topologies with different operating parameters. A real-life network could be used to
investigate whether the results obtained here remain valid. Bootstrapping methods could be used to
capture and represent uncertainty of results as a standard deviation of the resulting parameters. This
would contribute to better representation and understanding of key results to make these more
applicable. Finally, a wider range of disruption parameters could be studied, along with more
experimental metrics, so that we could determine what other factors can affect the propagation of
disruptions, and whether the models obtained through our study still apply.
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