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Abstract: System-of-systems (SoS) approach is often used for simulating disruptions to business and 
infrastructure system networks allowing for integration of several models into one simulation. 
However, the integration is frequently challenging as each system is designed individually with 
different characteristics, such as time granularity. Understanding the impact of time granularity on 
propagation of disruptions between businesses and infrastructure systems and finding the 
appropriate granularity for the SoS simulation remain as major challenges. To tackle these, we 
explore how time granularity, recovery time, and disruption size affect the propagation of 
disruptions between constituent systems of an SoS simulation. To address this issue, we developed 
a High Level Architecture (HLA) simulation of 3 networks and performed a series of simulation 
experiments. Our results revealed that time granularity and especially recovery time have huge 
impact on propagation of disruptions. Consequently, we developed a model for selecting an 
appropriate time granularity for an SoS simulation based on expected recovery time. Our simulation 
experiments show that time granularity should be less than 1.13 of expected recovery time. We 
identified some areas for future research centered around extending the experimental factors space. 

Keywords: system-of-systems; High Level Architecture (HLA); infrastructure modelling; 
infrastructure resilience; time granularity; complex networks; synchronization. 

 

1. Introduction 

Development of new technologies results in infrastructure systems becoming more 
interdependent thus introducing additional complexities. These systems require and produce inputs 
and outputs not only for internal use by the systems themselves, but also for other infrastructure 
systems and businesses. Often, those businesses also provide infrastructure resources that are then 
delivered over a systems network. Along with these heightened interdependencies, systems 
disruptions are increasing in both magnitude and frequency. This is especially visible within the 
context of urban settings, where various interdependent systems are vital to the survival and normal 
operation of a society [1]. As a result, the design and development of infrastructure systems must be 
done in a way that ensures they are resilient and can sustain a large variety of disruptions. While a 
major concern of designers is the proper response to disruptions, planners and policymakers must 
recognize how disruptions emerging in one system can affect other systems, and how disruptions 
propagate from one system to another. 

Currently, however, there is insufficient understanding about how such propagation of 
disruptions between systems occurs [2-6]. To understand this, simulations and models of 
infrastructure systems are often run to predict how systems behave under a disruption [6]. Similar 
issues appear in many other fields such as evolutionary dynamics of social economy [7-9]. Although 
the effect of a propagated disruption on a simulation is affected by many factors, the extent to which 
modeled environments are influenced has not been adequately studied [3] [10-12]. These streams of 
research focus on supply chain propagation of disruptions and their adequate modeling, however, 
they seldom incorporate infrastructure systems into these models. It is interesting to see how 
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infrastructure systems simulations are affected by factors that influence disruption propagation. 
Moreover, these authors focus primarily on outlining various methods of representing disruption 
propagation, however, they do not consider factors, such as time granularity, that might affect 
disruption propagation. For example, time granularity of a simulation is expected to affect the 
propagation of disruptions. While time granularity of a simulation is expected to be a crucial factor, 
no comprehensive research has been conducted on how it might affect a propagation of disruptions 
between infrastructure systems and businesses within a system-of-systems (SoS) framework. 
Therefore, the practical value of such simulations is diminished due to their limited correspondence 
with real-world scenarios. Consequently, we focus on understanding the impact of time granularity 
on propagation of disruptions, which is vital if we are to determine how disruptions to infrastructure 
systems and businesses affect societies. 

Although models have been designed to examine interdependencies among infrastructure 
systems [13-17], they have not considered the issue of time granularity and how it influences the 
propagation of disruptions between systems under an SoS simulation. Current investigations include 
separate analyses of individual systems, e.g., traffic simulation [18], water supplies [19], or power 
grids [20]. However, only single systems have been involved there, thus constraining those analyses 
that might address propagation of disruptions to several infrastructure systems. Similarly, 
propagation issues between systems have been studied in signal processing literature [21-24]. 
However, these do not look at propagation of disruptions between infrastructure systems, especially 
in the context of SoS simulations. Another stream of research, utilizing SoS simulations of 
infrastructures [25-27], does not focus on modeling disruptions or ensure the accurate capture of their 
propagation. In contrast, Dubaniowski and Heinimann [6] have examined the impact of time 
granularity on infrastructure systems. However, their study has not considered businesses or the 
impacts of disruption size and recovery time on the propagation of disruptions. Our study remedied 
this gap by including businesses in the simulation and considering the impacts of more factors such 
as disruption size and recovery time. Furthermore, an SoS model of infrastructure systems within an 
urban ecosystem, where disruptions are introduced [27-28], has limited applicability because it does 
not account for the propagation of those disruptions, and does not provide for many variations based 
on time granularity of the simulation and different types of disruptions. In this study, we tackle the 
challenge of understanding propagation of disruptions and its dependence on different time 
granularities as well as other factors such as disruption size and recovery time. 

The objectives of our study were to develop a distributed system-of-systems model of 
infrastructure systems and businesses to: (1) study the effects of different disruption characteristics 
on propagation of disruptions between constituent systems; (2) investigate how time granularity of 
distributed model can affect propagation of disruptions in the model; and (3) develop a framework 
model for selecting the most appropriate time granularity of an SoS distributed model based on 
expected, estimated disruption parameters. In particular, our goal was to investigate how time 
granularity of a simulation, as well as the recovery time and size of a disruption to a theoretical 
constituent network – water supply – might propagate and affect the outcome for businesses that are 
networked within the simulation. In this study, we also present a general framework for performing 
such analysis on any SoS simulation of several constituent network systems. 

This study aims to improve the accuracy of SoS simulations of infrastructure systems and 
businesses, and so the correspondence of those simulations with the real-world. Particularly, this 
study addresses the issues arising from combining various infrastructure system models operating 
at different time granularities. Inclusion of such systems in an SoS framework poses many challenges 
and often presents inadequate results due to disparity of time granularities between constituent SoS 
systems. While the choice of the overarching SoS time granularity is vital to representing disruptions 
propagation in the SoS model adequately, this is not addressed adequately in the current research 
streams as shown in the review above. Currently, disruptions represented in an SoS simulation often 
do not propagate properly between SoS components due to inadequate overarching time granularity 
of the SoS simulation. This leads to repeated simulations, which waste simulation budgets, or results 
in inadequate outcomes. Results of such simulations do not bring as much value because of having 
significant disparities with the real-world results and not representing the actual disruption events 
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accurately. Obtaining the suitable time granularity for such simulations would bring results of these 
SoS simulations closer to the real-world values, what this study attempts to achieve. Consequently, 
as a result of this study, practitioners, as well as decision-makers, of risk and disaster management 
will benefit from better simulations and decision support tools, which in turn would contribute to 
better responses to disruptions. In particular, the gap addressed in this study is the accurate selection 
of the time granularity parameter in an SoS simulation. Closing this gap will lead to more accurate 
simulations, and thus better decisions by the users of these simulations such as infrastructure 
planners, policy makers, or risk managers. 

Our expectation in the analysis part of this study was that time granularity would have the most 
significant impact on the propagation of disruptions, because coarse time granularity can completely 
bar disruptions of very short periods from cascading to other systems in the simulation. For this 
study, we did not consider a variety of networks or how their topology might affect the propagation 
of disruptions. The cause of the initial disruption was also outside the scope of this study. 

The main contributions of our study were: 1) the development of a framework to select the 
appropriate time granularity for an SoS simulation of disruption propagation; 2) application of this 
framework to infrastructure and business networks resulting in a recommendation regarding the 
choice of the optimal time granularity, which according to our findings should not exceed 1.13 of the 
expected recovery time of the disrupted system. The findings can be further extended to other fields 
such as finance, biology, evolutionary dynamics of social economy. 

This study takes up the challenge of investigating the impact of time granularity on propagation 
of disruptions in SoS simulation of infrastructures and businesses. The rest of this paper is organized 
as follows. Section 2 describes in detail the model specification, particularly the conceptual 
framework that we use to model infrastructures and businesses. In Section 3, we outline the set up 
that we use in the application of the framework for the simulation experiment, and the 
implementation of the systems. In Section 4, we present the results of the simulation experiments 
with regards to different metrics, as well as model and recommendation as to time granularity in SoS 
simulations of infrastructures and businesses. Finally, in Section 5, we present the conclusions of this 
study, particularly the key findings and implications of our study and an overview of future work 
that could be conducted on this subject. 

2. Conceptual framework – system-of-systems of infrastructure systems 

Frameworks and methodologies have been established to model individual infrastructure 
systems and businesses, e.g., power [20] or water supplies [19], transportation [29], emergency 
services [30], or financial systems [31]. Those models correspond only to individual infrastructure 
systems, and are independent and autonomous in the way they represent each separate system. 
However, in reality, these systems are interconnected due to various interdependencies among 
infrastructure systems and the businesses to which they deliver. For example, water supply systems 
are heavily dependent on a power supply to operate their pumps, and emergency services rely upon 
both power and water to run hospitals that treat sick people. Those people must also be moved to 
and from hospital over transportation networks. Similarly, a business such as a restaurant is 
dependent on access to power to operate its machinery and kitchen equipment, and on water supply 
to cook and serve meals and clean the equipment. 

The interdependencies between infrastructure systems and businesses can be modelled in an 
overarching framework. The SoS approach models individual systems as being autonomous in their 
internal operations, but at the same time connected with and affected by other systems [25][27][32]. 
Therefore, this approach considers both inter- and intra-system interdependencies. In such a 
framework, infrastructure systems and businesses are standalone models, while the 
interdependencies between them are simulated as lifeline connections (Figure 1). Those lifelines 
provide vital infrastructures and businesses with access to network systems, thereby mimicking their 
interdependencies. 
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Figure 1. Conceptual model of infrastructure system-of-systems, where complexity is two-fold, i.e., 
within and between specific systems. 

The conceptual model shown on Figure 1 represents good duality under real-life conditions, 
with individual systems also linked through roads, power lines, water and gas pipes, and similar 
infrastructure networks. Services are delivered to provide access to and distribution of actual 
infrastructure systems and the resources produced by businesses. On the Figure, the 
interdependencies are exhibited through lifeline infrastructure connections between various 
constituent systems. A system depends on lifelines that it is connected to for performing this system’s 
critical functions. 

In this study, time granularity is defined as the frequency of performing synchronization 
between constituent systems – federates – of an SoS simulation, expressed as a number of timesteps 
between two consecutive synchronizations of all federates. The concept of time granularity is of great 
importance in a simulated SoS setting [6] because the impact and propagation of disruptions between 
constituent systems can vary significantly depending on the time granularity of that simulation. 
Therefore, we developed SoS simulation experiments of infrastructure systems and business 
networks combined with a disruption generator. These experiments allowed us to understand how 
time granularity affects propagation of disruptions in the SoS. 

To perform the analysis of how time granularity and other factors affect propagation of 
disruptions between systems within a context of an SoS simulation, and consequently to choose an 
appropriate time granularity, we have developed the following general framework (Figure 2): 
1. Select number and types of individual systems to be modeled, define their performance metrics, 

and experimental factors to be tested. 
2. Identify interdependencies between selected systems and define these interdependencies.  
3. Implement individual systems’ networks into an SoS HLA simulation. 
4. Implement disruption introduction mechanism, include this mechanism in the SoS HLA 

simulation. 
5. Fix the time available for the simulation experiment, hence determine the number of experiments 

that will be executed and the experiment layout e.g. full-factorial layout or less dense layout. 
6. Run the simulation experiment and record the data. 
7. Perform ANCOVA analysis on the data to find factors affecting disruption propagation the most, 

and to determine the relationship of these factors to time granularity. 
8. Draw conclusions as to how time granularity of the SoS simulation should be selected for this 

type of simulation with regards to simulation parameters and desired accuracy. 
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Figure 2: Framework for the analysis of time granularity effects on propagation of disruption in an 
SoS simulation. 

The above steps show a general procedure to follow in order to analyze how propagation of 
disruptions between constituent systems of an SoS simulation is affected by different factors. This 
procedure allows to gather information on how to select an appropriate time granularity for the 
simulation. Furthermore, interactions of factors with time granularity can be tested too to understand 
their impact on propagation of disruptions. As a result, valuable information on how to select crucial 
parameters for the simulation can be obtained. This is of tremendous value when designing large 
scale SoS simulations. Small-scale prototype simulations such as presented in this study can be used 
to establish the range of values that time granularity should take for large-scale simulations of similar 
networks, and what factors should affect the selection of time granularity. 

In this section, we described the specification of the model used in the simulation, we outlined 
the framework to follow to derive an optimal time granularity for SoS simulation. In the next section, 
we focus on the experiment that we performed by applying the above framework. 

3. Methodology – experimental setup 

In the previous section, we described the model in detail and we described the conceptual 
framework that we used to derive the experimental simulation described in this section. In this 
section, we focus on describing the experimental setup i.e. layout, metrics, and implementation in 
detail. 

3.1. Experimental layout 

We designed an experimental model system to examine the change in disruption patterns for 
constituent systems as a function of time granularity (Figure 3). When combined with a disruption 
generator, we could introduce system disruptions in accordance with prescribed patterns. Our 
observer module was then used to visualize results in real time as the simulation progressed so that 
we could determine how the impact of the disruption was propagated within the system over time. 

8. Draw conclusions as to how time granularity of the SoS simulation should be selected for this type of simulation with regards to simulation parameters and desired 
accuracy.

7. Perform ANCOVA analysis on the data to find factors affecting disruption propagation the most, and to determine the relationship of these factors to time granularity.

6. Run the simulation experiment simulation and record the data.

5. Fix the time available for the simulation experiment, hence determine the number of experiments that will be executed and the experiment layout e.g. full-factorial layout 
or less dense layout.

4. Implement disruption introduction mechanism, include this mechanism in the SoS HLA simulation.

3. Implement individual systems’ networks into an SoS HLA simulation.

2. Identify interdependencies between selected systems and define these interdependencies. 

1. Select number and types of individual systems to be modeled, define their performance metrics, and experimental factors to be tested.
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Figure 3. Experimental model system setup for 3 networks and disruption generator. 

The three networks were abstractly generated based on their unique characteristics, as well as 
on their interdependencies and corresponding connections to each other. This process is described in 
more detail in Section 3.1.2 below. Synchronization between networks occurred at a predetermined 
frequency, i.e., federates performed simulations internally in timesteps without any wait times 
between subsequent timesteps. However, at the synchronization points, the federates had to halt and 
wait for all other federates to catch up so that their data could be exchanged. 

The three networks included water supply network, power grid network and businesses 
network. All these networks have unique characteristics. Water supply and power grid networks 
tend to have branch network topology. Their reaction time is different with water network reacting 
to disruption within minutes and power grid within milliseconds, On the other hand, a businesses 
network has a branch topology too, however, with many links that connect to others without going 
through the common root i.e. with hints of mesh topology. This is complemented by a lot of 
interdependencies to both water supply and electric grid network. The propagation of disruption 
within the network happens in matter of minutes to hours, and this is reflected in the model by 
appropriate delays. Hence, the propagation of disruptions from other networks if these appeared 
could be captured in the businesses network. 

After disruptions were introduced into the water supply network, their propagation through 
the SoS was assessed according to the impact they had on the business network. As shown in Figure 
3, three experimental factors were varied: time granularity, recovery time after the disruption, and 
the disruption size. For our purposes, the disruption generator followed Poisson processes, which 
adequately represent real-world disruption occurrences [33-34]. The two parameters used in defining 
our original disruption included (1) actual disruption size (DS), i.e., the number of affected nodes in 
water supply network; and (2) actual recovery time (RT), which indicated how long the disruption 
remained effective in the water supply network. For the actual disruption size, we randomly 
generated a particular pattern of affected nodes for each disruption size parameter level based on 
random number generator. We have used this generated pattern throughout all experiment 
configurations. This allowed us to shape the disruption curve and compare the size of a disruption 
and its propagation and recovery pattern depending on different simulation parameters and 
experimental factors’ values. 

The electric grid network was introduced into the simulation to show how independent 
simulation that itself does not introduce disruption to the SoS can affect the propagation of 
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disruptions between two other networks. The electric grid showed how a system that is not disrupted 
initially can become affected by a disruption originating in another system, and subsequently also 
additionally impact the observed businesses network. The main objective of the study was to 
understand time granularity effects on disruption propagation characteristics. Hence, electric grid 
was not measured itself because it would not bring significant additional value to this study, 
however, the process could be similarly repeated for the electric grid network as the target network 
of our observations. 

We also determined how time granularity might affect simulation speed. Because 
synchronization of the system required time, increasing the frequency of synchronizations, i.e., 
decreasing time granularity, would decrease the speed of simulation. Our goal was to understand 
the trade-off between accuracy and speed so that we could choose the most appropriate time 
granularity parameter for the SoS simulation and, hence, estimate the runtime of the simulation 
under such granularity. 

To sum up, the experimental process was as follows: 
1. Develop 3 networks with interdependencies between those: water supply, power supply, 

businesses; described in Section 3.1.2. 
2. Introduce a disruption to water supply simulation. Disruption and experimental configurations 

are described in more detail in Section 3.1.1. 
3. Register performance metrics (described in Section 3.2) of the businesses network simulation. 
4. Repeat the above for each experimental configuration described in Section 3.1.1 (Table 1). 

The implementation of the above is described in Section 3.3. While conducting the above 
experiment, we were interested in recording propagation of disruptions from one infrastructure 
system – water supply network – to businesses network. Hence, we focused on recording metrics 
related to the propagated disruption i.e. propagated disruption size and propagated recovery time. 
These were analyzed in relation to time granularity in order to see the impact that time granularity 
of the SoS had on propagation of disruptions between constituent networks. We developed a model 
for deriving an adequate time granularity for the SoS simulation such that the propagation of 
disruptions would register. Finally, we looked at the trade-off between simulation time and time 
granularity. This emphasized the importance of selecting an appropriate time granularity under 
limited simulation budgets. 

In this study, we present an application of the above procedure to an SoS consisting of 3 systems 
and we test impact of 3 experimental factors on propagation of disruptions between constituent 
systems of an SoS simulation. The rest of this study describes this scenario in more detail and outlines 
the application of the above procedure to the scenario, including the analysis of results with 
inferences on how to select an appropriate time granularity for an SoS simulation. However, the 
general framework in principle can be applied to any combination of infrastructure systems and other 
network systems in order to determine the impact of various factors on propagation of disruptions 
between constituent systems of an SoS simulation. 

3.1.1. Factorial layout 

We applied a full-factorial experimental layout to study the impact of time granularity (TG), 
actual recovery time (RT), and disruption size (DS) on simulation results (Table 1). Those three 
factors were assigned values based on Latin Hypercube Sampling (LHS) [35]. Because the overall 
water supply network size was 22 nodes, sampling for disruption size was performed in the space 
between 7 and 21 nodes disrupted. Time granularity and recovery time were both assessed on the 
space of between 1 and 30 to provide us with a good overview of real-life simulations. The full 
factorial experimental layout consisted of 125 parameter configurations. This allowed us to identify 
solid conclusions by which we could determine the impact of individual factors on the accuracy and 
outcome of the simulation. 
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Table 1. 5 x 5 x 5 hypercube full-factorial layout achieved via LHS. Experimental factors included time granularity (TG), recovery time (RT), and disruption size (DS). 1 
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3.1.2. Specification of topologies for infrastructure systems 

Networks used in this simulation experiment were abstract, and were randomly generated via 
the Erdős-Renyi model [36-37]. The use of real-world networks would improve the significance of 
the study and is intended to be included in the future. However, at the moment we lack access to 
data representing accurate networks in the same area with the relevant time granularity. 
Furthermore, the development of a real-world case study for this project would far exceed the time 
and resources available. The primary purpose of our manuscript is to highlight the issue of time 
granularity in developing SoS dynamic simulations, and to present a basis and framework for the 
selection of an appropriate time granularity in these simulations. In the future, we do hope to expand 
on the issues mentioned in our manuscript and eventually to deliver a real case study. The networks 
included in our study represented water supply, power grid, and businesses. They were represented 
as graphs in which direction signified the way in which interactions would occur between subsequent 
nodes, such as those associated with normal transportation of a resource over various links. 
Disruptions were introduced at nodes, which were then removed from the network and their 
connection links abandoned. Recovery was simulated by returning those nodes to the network and 
re-establishing their connections with subsequent and preceding nodes. 

In each network, nodes corresponded to units that performed operations and interacted with 
other nodes in the same network as well as with corresponding nodes in other federates. Edges 
corresponded to transfer links between operational units within each network. Although the 
mechanics of each network were similar, they were also distinct and abstract. Each node had its own 
intrinsic, internal performance, but also took inputs from the incoming edges of its network and from 
its corresponding nodes in the other two networks. These internal and external performances were 
then combined and transformed to determine the total performance of that particular node. 
Performance was then propagated to the following nodes through the outgoing edges. Similarly, 
performance was propagated through inter-network connections and a synchronization mechanism 
to the corresponding nodes of the other two networks. Interaction between different federates could 
take place only through synchronization. In doing so, we designed a working process for each 
constituent federate to simulate an individual infrastructure system or business network within the 
SoS simulation environment. Each network had similar but slightly different mechanics for 
calculating the performance of its own nodes.  

A section of network topologies is shown in Figure 4. The Figure shows selection of nodes and 
their connections for the networks used in the simulation experiment. Each network consisted of a 
certain number of nodes with a certain number of edges between them. A selection of these nodes 
and edges is shown on Figure 4. The nodes also had corresponding interdependent nodes in other 
networks of the SoS simulation with which they communicated at a given frequency by exchanging 
information at synchronization points. These interconnections between networks are represented on 
Figure 4 with the dashed lines. We set the following specifications for the networks used in the 
experiment: 22 nodes and 77 edges for the water supply network, 21 nodes/77 edges for the power 
grid network, and 20 nodes/75 edges for the business network. 
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Figure 4. Section of topologies of 3 simulation experiment networks. 

3.2. Performance metrics 

We collected data that described how a disruption to the water supply might influence 
performance of the business network. The collected data included simulated, propagated recovery 
time (SPRT) and simulated, propagated disruption size (SPDS) of the business network (Table 2). 
These metrics were chosen as the most representative due to showing the most important features of 
a disruption. Our aim was to derive an independent framework for choosing time granularity for an 
SoS simulation of infrastructure systems and business networks that would result in the most 
accurate simulation while simultaneously preserving the efficiency of that simulation. We used a 
Measure of Performance (MoP) to compare the results from experimental configurations, based on 
sum of all individual performances of nodes in a network. We expressed MoP as a percentage of its 
default, optimal conditions performance before the disruption strikes, which was set at 100%. MoP 
can be understood as the overall performance of the system and can be compared across different 
instances of time in order to see how performance of the system is affected by experimental factors. 
MoP for each network is obtained by summing all individual node’s performances for that network. 
For example, MoP for a water network could correspond to the sum of all the water delivered to 
water consumers in the region e.g. expressed in m3. Similarly, in case of a power system it can 
correspond to the total electricity transported in the network e.g. expressed in Wh. For businesses, 
the MoP can represent the total economic activity in the area such as GDP or total value of goods and 
services produced in that area e.g. expressed in $. Such metrics succinctly show any disturbances in 
the respective networks by decreased production and delivery of resources, which would be required 
under normal operating conditions. 

Table 2. Performance metrics and variables 

Performance metric Description 
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Simulated propagated 
recovery time (SPRT) (trec) 

[timesteps] 

The length of time needed for a 
system to recover to 99% of its 
original performance after a 
disruption was propagated 
and, subsequently, retracted. 
Expressed in timesteps. 

Simulated propagated 
disruption size (SPDS) (dmax) 

[%] 

The difference between 100% 
and the lowest point along the 
MoP curve of the target system 
after a disruption was 
propagated to that system.  

Actual, initial recovery time in 
the original system (RT) 

[timesteps] 

The length of the disruption in 
the system in which the 
disruption originated i.e. in the 
water supply network. 
Expressed in timesteps. 

Actual, initial disruption size 
in the original system (DS) [%] 

The difference between 100% 
and the lowest point along the 
MoP curve of the initial system 
after a disruption was 
introduced to that system 

Measure of performance 
(MoP) [%] 

Measure of satisfaction of the 
demand for resources in the 
system. Expressed as 
percentage of the normal 
operating conditions, when all 
of the demand is satisfied. 

Time granularity (TG) 
[timesteps] 

Frequency of synchronization 
of the systems i.e. frequency of 
exchange of interdependent 
data between constituent 
systems in the SoS simulation. 

 
Disruptions and recovery are modelled in a similar fashion. Disruption is modelled by 

decreasing the performance of an individual node or a set of nodes sharply in one timestep to null 
performance in effect by removing the node from the network, and subsequently observing how the 
target network reacts to this. Similarly, recovery is modelled by reverting the disrupted nodes in one 
sharp timestep back to their original levels of performance from before the disruption had occurred, 
and subsequently observing how the target network rebounds and recovers from the disruption. 
Individual network mechanisms and within-network as well as between-network propagations are 
responsible for the recovery process. 

As depicted in Figure 5, the simulated propagated recovery time (trec) (SPRT) enabled us to 
calculate the length of time needed for a system to recover after a disruption was propagated and, 
subsequently, retracted. Recovery was determined to be the point at which that system had returned 
to within 99% of its original (pre-disrupted) performance. For our simulation, we were primarily 
interested in the impact of actual recovery time (RT) in water supply network on the simulated 
propagated recovery time (SPRT) in businesses network, which would then represent the difference 
in recovery times due to synchronization between federates in the SoS, as defined by time granularity 
– our key experimental parameter. In this way we could assess the accuracy of the SoS simulation 
and its dependence on time granularity. 
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Figure 5. Recovery time (trec) and maximum disruption size (dmax) definitions. Disruption was 
introduced into water supply network (MoP2) and propagated to business network (MoP1).  

Another dependent variable, maximum simulated propagated disruption size (dmax) (SPDS), 
was defined and measured as the lowest point along the performance curve after a disruption was 
propagated to that network. Those results indicated the magnitude of such an impact by one system 
on another, e.g., when a disruption to the water supply interfered with operations by the business 
network. This approach served as an alternative metric for assessing the accuracy of a simulation 
based on time granularity. 

Our final evaluation involved comparing speeds (in seconds per timestep) among different time 
granularity configurations so that we could determine how the former changes in conjunction with 
the latter. This was an important factor because of the trade-off found between speed and accuracy 
in simulations. Successful design of a framework requires selecting the most appropriate time 
granularity based on desired speed and some basic knowledge about the networks being simulated. 
All of these were goals of our study here. 

Finally, we devised a model of likelihood of visibility of disruption based on recovery time to 
time granularity ratio. Such model can help in selection of the optimal time granularity based on 
expected recovery time. Similarly, we developed a model that predicts estimated error for recovery 
time based on the relationship between simulated propagated recovery time and actual recovery 
time. This model can further aid with selection of an adequate time granularity. Moreover, such 
model could be used to estimate the actual recovery time of the original system based on the recorded 
recovery time in the propagated system. 

3.3. Model implementation 

Planners use distributed modelling frameworks to implement the SoS approach for businesses 
and infrastructure systems. This involves numerous individual, autonomous systems connected with 
each other through inputs and outputs to other systems. One such framework is HLA [38-40], a tool 
originated in military applications to simulate battlefield actions, as well as various systems 
pertaining to simulated battle situations and training. Since then, HLA has been employed in various 
other applications, including the modelling of civil infrastructure [25] [41-42].. 

A particular implementation of HLA features three components: interface specification, object 
model template (OMT), and rules. Interface specification defines where and how constituent systems 
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(‘federates’) communicate with RTI, a method used to join all constituent distributed systems. This 
component serves as the inter-federate communication and synchronization unit of the HLA. Second, 
OMT describes what information is exchanged between constituent federates and what updates 
about the federation must be communicated to those federates. Finally, rules specify what federates 
have to obey to subscribe to the overall HLA SoS simulation (‘federation’). When modelling 
infrastructure systems, the federates within an HLA simulation can include infrastructure systems, 
disruption generators, observers and visualization tools, patterns of user services, and businesses. 
All of these federates introduce dynamic changes to the systems and allow designers to observe their 
effects on the overall SoS. 

Although HLA is perfectly suited to describing and modelling the manner in which constituent 
systems exchange information and synchronize with each other, it does not indicate the ideal time 
granularity at which such synchronization and exchange of information should take place. In this 
context, time granularity means the frequency of exchange of information among federates (i.e., 
constituent systems), disruption generators, and other components. As such, granularity reflects the 
frequency of inter-system synchronization. Although specification of HLA provides some 
mechanisms to perform time management [43-45], it does not identify the best time granularity for 
that exchange. In fact, the most adequate time granularity varies among types of simulations, where 
even different disruption events might apply to the same simulation of infrastructures. 

Our simulation was developed in C++ v11 [46] and Python. The HLA framework was applied 
from Portico 2.0.2 HLA [47] implementation, with Portico’s HLA being used to define the interfaces 
between federates, and to manage time in the simulation. Data at given time granularities were 
synchronized through HLA RTI, as adapted from Portico’s implementation, and graph operations 
were performed with the use of the igraph library for C++ and Python, version 0.7.1 [48]. Disruptions 
were generated and introduced to the system through a disruption generator developed in C++ v11. 
All infrastructure system networks were developed in Python 3.5 [49], under Anaconda 2.4.0 
distribution [50]. We used the following libraries to create those networks: igraph, for graph 
generation, representation, and operations; and NumPy version 1.10.1 [51], for linear algebra and 
numerical operations. The observer was designed with a webpage interface developed in JavaScript, 
HTML, and Python, using the CanvasJS library [52]. This observer enabled us to collect data about 
the simulations, to visualize their progress, and to view the performance of the system in real time. 
The simulation was developed, evaluated, and run on a Mac OS High Sierra 10.13.6 operating system. 

This implementation shadowed a specific scheme. First, the infrastructure systems were 
developed based on the definitions established for their interconnections, number of nodes, and 
working mechanisms, i.e., inputs and outputs. Within each network, the nodes depended on 
preceding nodes and on their corresponding nodes from other federates. Once individual networks 
and their mechanisms were defined, the interfaces between federates were devised. This was 
followed by the design of HLA interfaces which considered what information and how often needs 
to be exchanged between federates. Finally, the overall HLA simulation was created by combining 
the individual constituents together to include all components of the infrastructure systems i.e. the 
three networks of interest. 

Before arriving at our final experimental design, we evaluated the systems for different 
individual networks, each of which was tested to assess its representation of a real-life system. Our 
preliminary investigation showed that the networks and HLA SoS simulation performed well 
individually and as a whole, adequately representing individual networks and propagating and 
communicating disruptions between them as required. The networks were compared with 
simulations of individual infrastructures as devised by domain experts. This allowed us to assess the 
adequacy of the networks. A small-scale testing was developed to ensure that these networks respond 
well to disruptions being introduced. HLA SoS simulation as a whole was similarly tested with 
reference to expectations described by domain experts. Small-scale easy to estimate disruptions were 
introduced and response of the system was recorded. This followed the expectations of the experts. 
Hence, the adequacy of the model was established. Furthermore, interdependencies introduced 
between federates in the SoS were evaluated by experts of power systems, water supply networks, 
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and economists to ensure that these interdependencies corresponded well with the real-world and 
that duality of the simulation model was maintained. 

In this section, we presented the experimental setup, layout and implementation of the model 
used in the simulation experiment. In the following section, we present the results of the experiments 
described in this section. Moreover, we provide an analysis of this results and derive statistical 
models based on our simulation results, which in turn can help us in making a recommendation to 
the optimal time granularity for the SoS simulation described in this section. 

4. Results and analysis of the simulation experiment 

In the previous section, we described the simulation experiment. In this section, we present and 
analyze the results of the simulation experiment performed in accordance with descriptions from 
the previous sections. Consequently, we make a recommendation for to the optimal time 
granularity for an SoS simulation of infrastructure systems and businesses.4.1. Disruption size 

In this subsection, we evaluate the impact of various factors described in Table 2 as well as time 
granularity, and interactions between these factors on the simulated, propagated disruption size 
(SPDS) performance metric described in Section 3.2. The experimental layout is shown in Section 3.1 
and the implementation of the model for the simulation experiment executed here is explained in 
Section 3.3. 

Simulated, propagated disruption size (SPDS) was measured under different experimental 
configurations to understand which factors had the largest impact on the simulated disruption size 
(SPDS). An ANCOVA (Analysis of Covariance) was performed in R to determine the strength of the 
effect of experimental factors on SPDS. Figure 6 presents only those factors and their interactions that 
had a significant impact on the share in variation of SPDS. Adequate time granularity is of immense 
importance in system-of-systems models. The most important factor proved to be time granularity 
(TG), followed by actual recovery time (RT) and then actual disruption size (DS). We found this 
interesting for several reasons. First, the influence of propagated disruption was decided primarily 
by TG. Second, and more importantly, the RT was responsible for a greater share of the variation in 
SPDS than the DS. This finding demonstrated that the RT in an SoS federate had a greater effect on 
the SPDS in other federates than did the DS in the original federate itself especially for the case of 
three networks considered in this study. Although interactions among experimental factors also 
influenced the variations in SPDS, they had much less impact than did individual factors. Share of 
residuals in variation were also lower than the combined share of other factors. Overall, the 
experimental factors explained 71% of the variation of SPDS. That high percentage indicated that the 
variation in size could be well-explained by the experimental factors. 
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Figure 6. Share in overall variation for simulated disruption size (SPDS) due to experimental factors 
(parameters).  

The results above suggested that correctly adjusting the ratio of time granularity to the expected 
recovery time in a simulation would be of immense importance when simulating the disruption size 
in an SoS evaluation. Therefore, careful selection of the ratio of time granularity to recovery time 
would have to be based on the data available to us if we were to determine the optimal time 
granularity for a simulation and yield the most accurate simulation results. These results signify the 
need for an adequate time granularity selection. Adjusting the time granularity can vary the 
outcomes of the simulation. Hence, when designing a simulation experiment time granularity needs 
to be considered. In particular, we need to make sure that the results with the time granularity 
selected are representing the real world accurately. As our further analysis below shows, the finer 
time granularity would yield more accurate results, and the coarser time granularity loses accuracy 
of the simulation. 

4.2. Recovery time 

In this subsection, we evaluate the impact of various factors described in Table 2 as well as time 
granularity, and interactions between these factors on the simulated, propagated recovery time 
(SPRT) performance metric described in Section 3.2. The experimental layout is shown in Section 3.1 
and the implementation of the model for the simulation experiment executed here is explained in 
Section 3.3. 

Similar to our assessment of disruption size, we analyzed the impact of experimental factors on 
the variation in simulated, propagated recovery time (SPRT) of the business network. Simulated 
recovery time (SPRT) under various configurations was measured to understand how SPRT was 
affected by these factors. As before, we performed ANCOVA in R, using the data obtained when 
measuring the SPRT. Figure 7 presents only the factors and their interactions that had significant 
impacts on the share in variation for SPRT. Impact was almost equally shared between time 
granularity (TG) and actual recovery time (RT). This indicated that both factors would require careful 
adjustments if simulations were to represent actual disruption events adequately. The most 
influential were time granularity (TG) of the simulation and the actual recovery time (RT) for the 
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water supply network. Furthermore, TG had a slightly larger effect on SPRT. Again, this result 
underlined the importance of adequate TG and its critical influence on the accuracy and outcome of 
the simulation. The interaction between these two factors also had a significant but smaller share in 
the variation of SPRT. We noted with interest that the size of the disruption (DS) to the water supply 
had no significant impact on the SPRT. Similar to our results from examination of disruption sizes, 
the residual share in variation of SPRT was approximately 30%, which indicated that 70% of the 
variation (a reasonably high percentage) could be explained by experimental factors. 

 
Figure 7. Variations in simulated recovery time (SPRT) due to experimental factors (parameters).  

All of the findings presented above strongly suggested that time granularity (TG) was of great 
importance in an SoS simulation. Making proper adjustments to time granularity in reference to 
recovery time would be crucial if we were to obtain reliable simulation results. Furthermore, 
depending upon TG, simulation results could change significantly because the impact of RT and TG 
on the share of variation in SPRT was similar. In both cases of SPRT and SPDS, TG accounted for a 
larger share of the variation than did either the RT or the actual DS. Again, here we strongly see the 
importance of time granularity on obtaining adequate results of the simulation. The results obtained 
here signify that varying time granularity can result in outcomes, which do not represent real-world 
accurately, and in loss of propagation effects of disruptions. In particular, it is important to select time 
granularity which is fine enough to ensure that propagation of disruptions is noted in the simulation. 
The results obtained and described in this section support this view. 

4.3. Model of visibility of disruption 

One reason that time granularity and actual recovery time had such a great impact on the 
simulation outcome was that disruptions below a certain recovery time did not get propagated 
through the SoS simulation to other federates. If the time granularity was large enough, then when 
such a disruption occurred, the individual system recovered from the disruption before that 
propagation took place. This implied that time granularity prevented such an occurrence. As such, 
this phenomenon contributed to the great impact of time granularity on variation of the metrics. 

Hence, in this subsection, we derive the optimal time granularity for the simulation of 
infrastructure systems and businesses described in Sections 2 and 3. This is done by running a logistic 
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regression model on the experimental data. Namely, the ratio of RT to TG (described in Table 2) was 
used as the independent variable, and the dependent variable was measured considered as not-
visible for SPDS lower than 5%, while visible if SPDS was greater than 5%. Such logistic regression 
model allows us to postulate the optimal time granularity for the simulation.  

Based on these results, we then derived a model of likelihood for disruption visibility that would 
allow us to select time granularity of the simulation according to the (expected) recovery time of 
disruptions, making their propagation visible in the system. This model was used to select the 
maximum time granularity so that one could observe and detect an SoS disruption. Here, visibility 
of a disruption was understood to be a drop in performance to below 95% of the original level in the 
network to which disruption should propagate. 

This logistical model (Figure 8) was developed based on our simulated data, using R and the 
glm.fit function [53]. It depicted the likelihood that a disruption would be visible in a business 
network, according to the ratio of actual recovery time of the water supply network to time 
granularity. The primary limitation associated with this model would be the networks to which it 
could be applied. Here, we used it to select a time granularity for a simulation based on the most 
important parameters: time granularity (TG) and actual recovery time (RT). Those parameters were 
combined into a ratio so that we could adjust for our desired likelihood of visibility. In most practical 
applications we can estimate the minimum actual recovery time. Then, by using the model from 
Figure 8, we can derive the time granularity. Our model suggested that the ratio of actual recovery 
time to time granularity should be at least 0.88. In doing so, for the disruption to propagate to other 
federates the time granularity should be less than 1.13 of the estimated actual recovery time. 

 
Figure 8. Model of likelihood for disruption visibility based on ratio of actual recovery time to time 
granularity (RT/TG). 

Because visibility of a disruption is a key parameter when simulating an SoS infrastructure 
network, we wished to examine whether a disruption originating in one network could propagate to 
another network, for how long, and with what impact. This would enable us to understand how 
businesses respond to a certain disruption in the water supply network. However, if an excessively 
large time granularity prevented such a propagation, then the simulation would be useless. 
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Consequently, in a real-life scenario, we would not be able to determine whether the disruption 
would propagate. Hence, selection of appropriate time granularity for an SoS simulation is vital.  

Our finding here could apply to multitude of other infrastructure networks, which also exhibit 
similar properties. These networks also require synchronization frequencies that are below or around 
expected recovery times. This is because individual networks otherwise might recover before the 
disruption is propagated. The general rule of maintaining recovery time above time granularity 
would hold. However, to obtain a detailed analysis of a different set of infrastructure networks, the 
simulation experiment should be conducted in a similar fashion with these particular networks 
following our general framework presented earlier. Such approach would allow to obtain a more 
accurate ratio of expected recovery time to time granularity that could apply for such networks. 
Similarly, uncertainty of the parameters could be estimated better with approaches such as 
bootstrapping and rerunning the simulation multiple times in order to obtain deviation from the 
numbers that we had obtained in the experiment. Stochasticity within each individual network and 
the overall system could be captured through such approach. However, this would require 
significant simulation time and might not be practical given the goals of such simulation. A 
representative sample of results used for calculation of the metric is sufficient in order to obtain a 
general rule for designing SoS of infrastructure systems and businesses. 

Finally, the result here is of great significance, and such logistic model should be obtained when 
designing large simulation experiments for infrastructure systems. The time granularity needs to be 
fine enough to capture cascading effects of disruptions. Such model allows us to define the time 
granularity, which would be fine enough to ensure propagation of disruptions. This model is derived 
based on the previous two subsections (Section 4.1 and 4.2), which support the need for finding an 
adequate time granularity for a system-of-systems simulation. To respond to the need for obtaining 
an accurate simulation results, which represent real-world accurately, we have derived and 
presented the logistic model described in this section. 

4.4. Simulation time vs. time granularity trade-off 

In this subsection, we evaluate the impact of time granularity, as described in Table 2 on the 
speed of execution of the simulation. This is important to note how speed is affected by time 
granularity to note that performance metrics described in Section 3.2 have a trade-off with the 
simulation speed. Both high speed and good visibility of disruption as described in the previous 
subsection being the desired outcome. Once, we know the maximum time granularity, we can use 
simulation time trade-off curve to further tweak and narrow down the time granularity of the 
simulation. 

Because the SoS approach often entails performing one simulation immediately after another, 
we want to enable performing as many simulations as possible within a limited period of time to test 
different scenarios. Our goal was to achieve the most rapid simulation that was also the most 
accurate. Since simulation speed was affected by time granularity, at any given level of accuracy, a 
trade-off existed between time granularity and simulation time. 

In our experiment, simulation time was expressed in seconds per timestep. As time granularity 
increased, the simulation time decreased because reduced granularities involved more 
synchronization between federates. Such synchronizations are time-consuming and computationally 
expensive, thereby lengthening the simulations. As shown in Figure 9, simulation time was roughly 
inversely proportional to time granularity. Nevertheless, we also noted that the greater the time 
granularity, the lower the accuracy of the simulation and the higher the likelihood that a disruption 
would not propagate to other networks – in our case, the businesses network. This produced a trade-
off between simulation speed and accuracy that was controlled by the time granularity parameter. 
Consequently, when attempting to choose as high a time granularity as possible in order to decrease 
execution time, we still have to establish restrictions on maximum time granularity, so that disruption 
can effectively propagate between systems. 

There is a clear traded-off between disruption time and time granularity of disruption. This can 
be seen based on results in this section. Hence, to estimate the time of running a simulation, we can 
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use this model coupled with the minimum time granularity required obtained from the logistic model 
in Section 4.3. Furthermore, based on a given simulation budget, we can try use the below model to 
obtained the relevant time granularity and the experimental layout. Hence, it is important to perform 
such simulation time analysis and compare it with the time granularity requirements such as in 
previous sections. 

 
Figure 9. Inverse relationship that leads to trade-off between simulation time and accuracy, controlled 
by time granularity. 

4.5. Ratio of recovery time to time granularity 

In our SoS simulation, selecting the appropriate time granularity was critical. However, we 
detected a trade-off between time granularity and the speed of the simulation. The principal factors 
affecting our results were time granularity (TG) and recovery time (RT), both of which influenced the 
size of the simulated disruption to the business network (SPDS) more than did the size of the 
disruption to the water supply network (DS). Therefore, we concluded that the ratio of the recovery 
time for the original disruption to the water supply (i.e., actual recovery time (RT)) to the time 
granularity of the simulation (TG) had an even greater impact on the variation among our 
experimental metrics (both described in Table 2) on the simulation described in Section 3. 

Figure 10, presents the results of our ANCOVA analysis. The ratio of actual recovery time of 
water supply network to time granularity (RT/TG) accounted for the greatest share, by far (~86%), in 
variation of the ratio of simulated recovery time of the business network to time granularity 
(SPRT/TG). This meant that the ratio RT/TG could be used to explain, with high accuracy, the ratio 
SPRT/TG. Therefore, SPRT/TG could be modelled based on RT/TG. 
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Figure 10. Variations in ratios of simulated recovery time by business network (SPRT) to time 
granularity due to experimental factors. 

Consequently, we could use this model to estimate the desired accuracy of the simulation, this 
is the difference between SPRT and RT. Then, we can adjust TG accordingly to achieve this desired 
accuracy of the model. 

One limitation associated with this model is its dependence on the type of simulation that is 
being run. Depending on the chosen federates, the actual difference in RT and SPRT recovery times 
might differ between actual conditions and those that are simulated or propagated. Therefore, the 
type of simulation, and its internal mechanics, as well as the type and number of interdependencies, 
have a great impact on this model’s accuracy and validity. Likewise, Dubaniowski and Heinimann 
[6], have demonstrated that such a model that translates the ratio from actual (RT/TG) to simulated 
(SPRT/TG) values might have several regimes depending on whether the ratio is below or above 2. 
We found it also interesting that such a relationship did not emerge when using the disruption size 
metric. This further indicated that the selection of an appropriate time granularity is especially 
sensitive to the recovery time for the major event that is expected in a given simulation. Therefore, 
the minimum recovery time that is anticipated for major events should be carefully estimated when 
designing an SoS simulation. 

Our proposed generalized linear model (Figure 11) was built to consider only the most 
significant factor, i.e., the ratio of recovery time to time granularity (RT/TG). It can be used to select 
the best time granularity depending on how much tolerance one has for error. Based on the maximum 
acceptable error, we can choose the highest time granularity that satisfies this to ensure the fastest 
simulation speed. Similarly, and perhaps more importantly, if we know the time granularity of a 
simulation, then the model can estimate the actual size of an event and its recovery time based on the 
simulated recovery time. This can help in obtaining the relevant data of a simulation that might have 
too coarse time granularity, which could be very beneficial, when we have limited simulation budget, 
but need to obtain as relevant results as possible. Using the linear model described in this section can 
be of essence to retrieving representative information from a simulation experiment with a given time 
granularity. 
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Figure 11. Model of relationship between simulated (SPRT) and actual (RT) recovery times as fraction 
of time granularity (TG). 

We must reiterate our conclusion that this proposed model can vary in its applicability and 
accuracy, depending upon the networks that are simulated. Although we utilized networks here that 
resembled infrastructure systems such as water supply, power grid, and businesses, this model might 
not be fully applicable and yield different results in other situations. Nevertheless, the outcome from 
the study described here is valuable for deriving the actual size of a real event based on the simulated 
event size, and it can aid in choosing the appropriate time granularity, especially in SoS HLA 
simulations. However, a simulation following our general framework can be performed in order to 
find out more details about desired time granularities for different networks in an SoS simulation. 
Finally, it is possible that such a model could have several regimes depending upon the range of 
values of the ratio of actual recovery time to time granularity (RT/TG). 

4.6. Summary of key results 

Our research yielded the following major results: 
 Time granularity had the greatest influence on both simulated recovery time and size of 

disruptions in systems to which those disruptions had propagated. 
 Recovery time had a larger impact than disruption size on both recovery time and disruption 

size in systems to which disruptions had propagated.  
 Experimental factors explained 70% of the variation in experimental performance metrics. 
 From the model, we determined that the minimum ratio of actual recovery time to time 

granularity at which the propagation of disruptions was visible was 0.88. 
 Simulation speed was inversely proportional to time granularity, and the best speeds were 

achieved at higher granularities. 
 The ratio of actual recovery time to time granularity had the greatest effect on the ratio of 

simulated, propagated recovery time to time granularity. Hence, it was crucial to our simulation 
that we achieve an adequate ratio of actual recovery time to time granularity. The share of 
variation in simulated recovery time to time granularity ratio due to the ratio of actual recovery 
time to time granularity was 86%. 
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 We developed a general linear model to estimate the actual recovery time based on simulated, 
propagated recovery time. 
 

5. Conclusions 

Our simulation experiments were specifically designed to investigate how time granularity, 
recovery time, and size of a disruption to the water supply might propagate and affect the outcome 
of a business network under simulated conditions. After developing an HLA system-of-systems 
simulation that incorporated two infrastructure systems (water supply and power grid), a business 
network, and a disruption generator, we ran full-factorial simulation experiments to analyze various 
impacts on the propagation of disruptions. We then developed two models to assist in selecting an 
adequate time granularity based on expected recovery time and desired accuracy of the simulation. 

The results from the simulation experiment demonstrated that time granularity, recovery time 
from disruptions, and disruption size all had a significant impact on the outcome of our simulation. 
Assessments of performance by the business network indicated that the simulated propagated 
recovery time (SPRT) and disruption size (SPDS) were affected by all experimental factors, but 
especially by time granularity and recovery time. The ratio of actual recovery time to time granularity 
had the greatest effect on the ratio of simulated, propagated recovery time to time granularity. Our 
study determined that the minimum ratio of actual recovery time to time granularity at which the 
propagation of disruptions was visible for infrastructure system networks and businesses was 0.88 
Finally, we developed a general linear model to estimate the actual recovery time based on simulated, 
propagated recovery time. 

Another important contribution of this study, besides the optimal ratio of time granularity to 
expected recovery time in an SoS simulation, is the development and proof-of-concept of the 
framework for deriving the optimal value of time granularity. This is a key contribution of this study 
to various fields of research that might benefit from distributed simulations of propagating 
disruptions including social economics, finance, sociology or biology to name a few. 

Our study about the effect of time granularity on propagation of disruptions in a SoS simulation 
of infrastructure systems and businesses networks is novel. Our simulation experiment addressed 
the issue of selecting an appropriate time granularity when modelling disruptions in distributed 
modelling SoS environments such as the Portico HLA. This has closed a major gap in current research 
stream. Obtaining the suitable time granularity for such simulations will bring results of these SoS 
simulations closer to true values. Consequently, as a result of this study, practitioners, as well as 
decision-makers, of risk and disaster management will benefit from better simulations and decision 
support tools, which in turn would contribute to better responses to disruptions. In particular, the 
gap addressed in this study is the accurate selection of the time granularity parameter in an SoS 
simulation. Closing this gap will lead to more accurate simulations, and thus better decisions by the 
users of these simulations. 

Our research findings have several further implications. Scientists can use the findings of this 
study to develop better models of infrastructure systems and business networks. The closing of the 
gap regarding selection of the appropriate time granularity will enable them to achieve better 
simulation representations at lower simulation costs. Scientists and researchers can select time 
granularity that yields the most optimal results of SoS simulations in terms of the most accurate 
disruption propagation representation. The experimental framework presented here can also be used 
to define time granularity of SoS simulations for applications other than infrastructure systems such 
as military systems, business systems or evolutionary dynamics of social economics. This would 
result in more accurate simulations in these fields thus decreasing the simulation time and budgets 
required, as well as yielding better results. For practitioners, policymakers, and scientists, better 
simulations can help them to achieve better estimates of the size and cost of actual disruptions. Thus, 
more accurate and faster simulations would result in better decisions regarding infrastructure 
development, contingency plans, and responses to ongoing disruptions. 
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Practitioners and scientists who regularly perform such simulations can benefit from identifying 
the maximum time granularity required if they are still to register the propagation of disruptions. 
This will aid in solving the trade-off between speed and accuracy of the simulation, which in turn 
would allow them to perform more simulations within the same timeframe, thereby leading to 
savings in both cost and time. Moreover, they can benefit from the framework to perform analysis of 
how individual factors affect propagation of disruptions between constituent systems in an SoS 
simulation of infrastructure systems. Addressing the gap of selecting the optimal time granularity, 
through faster and more accurate simulations will result in improved speed of simulations and so 
decreased time and budget spent on simulations. This is advantageous to scientists, practitioners, 
and decision-makers alike. 

Our study is limited in its ability to apply these results to other networks and infrastructure 
systems. Although the test system was analyzed for various parameters of disruptions, the topologies 
and mechanics of the network were constant. In real-world scenarios, the nature of the networks, as 
well as their sizes, could differ. However, this can be remedied by applying our generalized 
framework to different situations and simulation in a small-scale, drawing conclusions from these to 
utilize when developing a large-scale simulation of the same systems. Similarly, the experimental 
space and metrics are restricted. Here, we focused on only a subset of possible factors that might 
influence a disruption. Another limitation was that the model of the ratio of simulated, propagated 
recovery time to time granularity based on the ratio of actual recovery time to time granularity may 
have several regimes that could be analyzed separately. Finally, our model was limited in capturing 
and representing stochasticity and uncertainty of results and parameters. To address these 
challenges, future work on this subject might include similar simulation experiments over a broader 
field of network topologies with different operating parameters. A real-life network could be used to 
investigate whether the results obtained here remain valid. Bootstrapping methods could be used to 
capture and represent uncertainty of results as a standard deviation of the resulting parameters. This 
would contribute to better representation and understanding of key results to make these more 
applicable. Finally, a wider range of disruption parameters could be studied, along with more 
experimental metrics, so that we could determine what other factors can affect the propagation of 
disruptions, and whether the models obtained through our study still apply. 
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