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Abstract: Monitoring volatile organic compounds (VOCs) places a crucial role in environmental 

pollutants control and indoor air quality. In this study, a metal-oxide (MOx) sensor detector (used 

in a commercially available monitor) was employed to delineate the composition of air containing 

three common VOCs (ethanol, acetone and hexane) under various concentrations. Experiments with 

a single component and double components were conducted to investigate how the solvents interact 

with the metal oxide sensor. The experimental results revealed that the affinity between VOC and 

sensor was in the following order: acetone > ethanol > n-hexane. A mathematical model was 

developed, based on the experimental findings and data analysis, to convert the output resistance 

value of the sensor into concentration values, which in turn can be used to calculate a VOC-based 

air quality index. Empirical equations were established based on inferences of vapor composition 

versus resistance trends, and on an approach of using original and diluted air samples to generate 

two sets of resistance data per sample. The calibration of numerous model parameters allowed 

matching simulated curves to measured data. As such, the predictive mathematical model enabled 

quantifying not only the total concentration of sensed VOCs, but also estimating the VOC 

composition. This first attempt to obtain semi-quantitative data from a single MOx sensor, despite 

remaining selectivity challenges, is aimed at expanding the capability of mobile air pollutants 

monitoring devices.  

Keywords: volatile organic compounds; air quality monitoring; metal oxide sensor; predictive 

mathematical model; gas composition estimation.   

 

1. Introduction 

Monitoring pollutants in indoor air and at the emission sites is one of the efficient ways to 

mitigate these hazards. Volatile organic compounds (VOCs) are chemical compounds having high 

vapor pressure, thereby being volatile at room temperature. VOCs occur in all types of indoor and 

outdoor environments, and many are harmful to human health, especially above minimum safe 

levels [1]. The high concentration of VOCs in air excessing limitations can cause many health issues 

[2], and some can even contribute to damage to the Earth’s ozone layer [3]. Hence, monitoring the 

emissions (point source) and immissions (ambient concentration) of VOCs is essential, enabling 

detected values to be compared to limiting safe values [4], and thus encouraging the implementation 

of more effective emission control and personal protection strategies.  

Most of the conventional testing methods for VOCs are expensive, time-consuming, and involve 

difficult sample manipulation, such as gas chromatography-mass spectrometry, infrared 

spectrometry, and photo- or flame-ionization detection [5]. In response, technologies that are cost-

effectiveness and that improve the ease of operation are in high demand and undergoing rapid 

development [6,7]. Moreover, detectors capable of monitoring VOCs in real-time can analyze data 

promptly, which contributes to informing populations and workplace personnel of the air quality in 

real-time.  
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The working mechanism of a VOC monitor relies on converting the concentration of the targeted 

gas component into a proportional electrical signal by a gas sensor. An ideal sensor for monitoring 

VOCs must have good sensor characteristics, including: sensitivity, selectivity, robustness, 

reversibility, reproducibility, and reliability. Selectivity (i.e. the ability to distinguish a target volatile 

organic compound from others) is a very important property for monitoring VOCs [8,9], as there are 

many chemical compounds in urban, industrial and even agricultural air, and the sensor should be 

able to discriminate among these compounds if the composition is to be determined (rather than a 

total hexane-equivalent VOC concentration, for instance); but this is challenging to achieve when 

using an individual sensor [10]. Hence, an array of sensors calibrated for individual compounds can 

be used, which can collectively measure various compounds with enhanced sensitivity and 

selectivity [9,11]. Such an array of sensors converts the measured quantity into patterns that are 

specific to the measured compounds, thus giving accurate information of the concentration of 

individual VOCs. There are have been several types of sensors used in an array, including metal 

oxide sensors, optical sensors, electrochemical sensors, field-effect transistor devices, hybrid sensor 

arrays, among others [12].  

Among the various sensors, metal oxide (MOx) sensors have been widely tested for sensing and 

monitoring of VOCs [13-18]. The main structure of a MOx sensor is that a layer of semiconducting 

metal oxide, commonly SnO2, is deposited onto a substrate, while two attached metal electrodes 

measure the electrical resistance of the active layer as it reacts with the contaminated air above it [19]. 

The working principle of a MOx sensor is to measure the change in the resistance of the metal oxide 

substrate under the influence, by contact, of different concentrations and types (oxidizing or 

reducing) of gases [13]. At the semiconductor’s surface, O- and O2- ions adsorb or desorb, leading to 

alteration of the electron density. The sorbed oxygen ions alter the potential barriers at the oxide’s 

grain boundaries, and thus control the resistance of the sensing oxide surface. Reducing gases, which 

include VOCs, reduce the concentration of sorbed oxygen, thus reducing the oxide sensor’s electrical 

resistance [19]. Many factors influence the reactions on the surface of the semiconductor surface, 

including the physical properties of the substrate material, its surface area and layered 

microstructure, elemental additives/dopants, and the temperature and humidity under which the 

sensing is undertaken [10]. Based on these factors, MOx sensors have the drawback of selectivity, 

which is the ability of discriminate different volatile compounds. 

Researchers developed many techniques to improve the sensitivity of MOx sensors, including 

employment of different metal oxide materials, temperature modulation to achieve a specific 

controlled temperature for a particular VOC, designing an appropriate pattern recognition system 

with an advanced algorithm to analyze collected data, among others [20,21]. Leidinger et al. 

compared the performance of a single SnO2 metal oxide sensor and a sensor system with two metal 

oxide sensors under low testing concentration conditions [22], and it was found that at ppb levels the 

integrated sensor system performed more poorly than the single sensor, due to emissions of VOCs 

from the system’s housing materials [22]. A mathematical method called linear discriminant analysis 

(LDA) was applied to assess the mean values and slopes of the sensor response data and identify 

patterns in the data to differentiate the presence of VOCs from the background signal; however, this 

method could not be used to quantify the concentration of the VOCs, only to detect their presence 

above threshold values (100 ppb for formaldehyde and 20 ppb for naphthalele) [22]. A productive 

MOx sensor should be capable of working under various air exposure conditions and quantifying 

the different concentration of each compound [23]. Masson et al. [24] discussed in their work the 

challenges in quantifying the metal oxide sensor response due to the effect of temperature, humidity, 

non-target species, signal hysteresis and sensor drift on the measurement. Their paper presents a 

quantification model based on semiconductor fundamentals combined with empirical observations, 

which can predict the measured resistance or sensor response to the ambient pollutant (0.6 to 2.8 ppm 

of CO) while accounting for temperature effects and sensor drift [24]. Yurko et al. [25] tested and 

compared three commercial MOx sensors (BME680, CCS811 and SGP30), using both single and 

mixed VOCs, and found difficulty in discerning the response trends for mixtures of BTEX (benzene, 

toluene, ethylbenzene and xylene) and CAHs (chlorinated aliphatic hydrocarbons) in the 0 to 

6000 ppb range. The study concluded that the tested MOx sensors were reliable in detecting VOC 
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compounds, but not quantifying their concentrations. The authors posed that multisensory arrays, 

calibrated for specific compounds, and statistical analysis of measured data, may be needed for such 

complex sensing tasks. 

In the present study, a mobile air quality monitor system, equipped with an SnO2 MOx sensor, 

was used to detect and quantify mixtures of VOCs in air under various controlled-laboratory 

measuring conditions. The aims of this research included: i) calibrating this monitor under controlled 

conditions for different concentrations of VOCs and their combinations; ii) analyzing the collected 

data to investigate the relation between the VOCs; and iii) developing a mathematical model to 

estimate the total VOCs concentration and composition of testing samples based on experimental 

results and data analysis. The approach used to build the model involved a novel approach to 

measure the original and diluted gas (using an optimal dilution ratio), to enable differentiating the 

tested VOCs based on distinct concentration-resistance responses. Finally, empirical equations in the 

model were introduced to provide a general estimation of VOC composition of measured air.  

2. Experiments 

In this paper, a uRAD A3 monitor (Figure S1) from Magnasci SRL (Timisoara, Romania) was 

used to collect experimental data. The A3 monitor contained multiple sensors (Bosch BME280, 

Winsen ZH03A, Winsen ZE08-CH2O, Winsen ZE25-O3, Winzen MH-Z19B, Winzen MP503, SPU414 

with MAX4466) that can measure air temperature (-40°C to 85°C, ± 1°C), barometric pressure (300 to 

1100 hPa, ± 0.25%), humidity (0% to 100%, ± 3%), noise (30 dB to 130 dB, ± 10%), and concentrations 

of carbon dioxide (400 to 5000 ppm, ± 5%), formaldehyde (0 to 5 ppm, ± 5%), ozone (0 to 10 ppm, ± 

5%), particulate matter (PM1, PM2.5, PM10, 0 to 1000 μg/m3, ± 15%), and volatile organic compounds 

(10 to 1000 ppm, ± 15%; estimated for ethanol by the manufacturer [26]) [27]. Moreover, it is an 

automated monitoring station with Wifi functionality for real-time data transfer to the uRADMonitor 

network, and comes in a rugged aluminum enclosure with a wall mounting support, as shown in 

Figure S2. 

The VOC output value of the A3 monitor is not a total or a specific compound concentration, as 

suggested in the specifications from the manufacturer, but rather an air quality index (AQI) estimated 

value, ranging from 0 to 500. This value is estimated by comparing the electrical resistance (kΩ) value 

measured by the micro-heated (≤300 mW, heating to 200 to 400°C [28]) SnO2 MOx sensor (MP503, 

Winsen (Zhengzhou, China)) to a linear scale that is reset every 24 hours based on the maximum and 

minimum resistance values measured in the past 24 hours. As such, not only is the AQI value not 

physically accurate, but the assumption that resistance scales linearly with AQI is also unrealistic. 

This is because the resistance does not scale linearly with concentration, and the correlation of 

concentration with resistance varies from VOC to VOC [26]. As such, it is necessary to calibrate the 

MOx sensor to various concentrations of VOCs to be able to correlate resistance to concentration, 

non-linearly, before then attempting to estimate an AQI value. Secondly, given that each VOC 

compound has a different degree of toxicity, it is necessary to know, at least qualitatively, the 

composition of the VOCs present in an air sample to arrive at a more accurate AQI estimate 

obtainable using mobile MOx sensors [29]. 

This research focused on three VOCs – acetone, ethanol, and hexane. This selection was based 

on testing three compounds of unique chemical classification (a ketone, an alcohol and an alkane), as 

it was hypothesized that they would have distinct interactions with the MOx sensor. In addition, 

these solvents are commonly used in industry and their vapours are harmful to human health when 

a high exposure level is reached, and as such their detection in air is of practical interest. Anhydrous 

n-hexane was obtained from Alfa Aesar (Haverhill, MA, USA), anhydrous ACS reagent grade ethanol 

was obtained from Ricca Chemical (Arlington, TX, USA), and Spectranalyzed acetone was obtained 

from Fisher Chemical (Hampton, NH, USA). 

The controlled VOC measurement experiments were conducted using a Nalgene cylindrical 

polypropylene tank (Nalge Nunc International Corporation, Rochester, NY, USA) with a sealed lip; 

this vessel was selected due the material of construction being inert to the selected solvents, which 

minimized the amount of solvent that may have adsorbed to the tank’s inner surfaces, and also eased 
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vessel evacuation and N2-purging between experiments. The capacity of this container was 19 L, with 

a height of 38.1 cm and an outer diameter of 29.7 cm. The position of air quality sensors within closed 

vessels significantly influences the measuring results [30], therefore, the A3 monitor was placed at 

the center of the container, which was verified to produce repeatable results. To avoid issues with 

aging and drift, the age of the MOx sensor used was less than its expected lifespan (2 years) [27], the 

MOx sensor was warmed up for longer than the recommended time [26], and signal stability checked 

in the absence of VOC’s, before starting each experiment. Solvents were injected into the sealed bottle 

through a cork stopper using pre-calibrated 10 μl 1700 Series Gastight Syringes from Hamilton (Reno, 

NV, USA). It was verified that the microliter-range amounts injected rapidly evaporated within the 

sealed tank (equilibrium concentrations were well below the solvents’ vapour pressures), and data 

collection commenced after 30 minutes of equilibration time. All experiments were conducted in a 

climatically-controlled and well ventilated laboratory, to ensure temperature and humidity levels 

remained within a narrow range of variability (20.5°C ± 2°C; 45% RH ± 10%), since temperature and 

humidity moderately affect the performance of MOx sensors [26]. 

The three VOC compounds were studied separately at first, by noting resistance values for 

corresponding known concentrations of each solvent. Concentrations in parts per million by volume 

(ppmv) were calculated based on the mass of the volume of injected solvent, the inner volume of the 

sealed tank, the temperature within the tank, and application of the ideal gas law. Subsequently, 

combinations of two solvents were tested (acetone-ethanol, acetone-hexane and ethanol-hexane) and 

the resistance values for different concentrations were recorded. In the single VOC scenario, five 

different amounts of solvents (3, 6, 9, 12 and 15 µL) were inserted into the polypropylene tank, and 

five replicate tests were done at each concentration to obtain average values for each set of 

experiments. For double solvents experiments, two solvents were added simultaneously at the same 

amount (3, 6 and 9 µL), and likewise tested were conducted in five replicates. 

Following the experimental part of the work, data analysis and predictive model development 

proceeded. Each set of the data was plotted and fitted using a non-linear equation. The relation 

between the measured resistance of a single solvent was compared to the resistance measured when 

the same solvent at the same amount was injected in combination with a second compound, and 

these resistance ratios were used for calibrating the predictive model development. The mathematic 

model is constructed to estimate the total VOC concentration and the individual compound 

composition, in air mixtures containing all three tested solvents. As such, empirical equations are 

proposed to quantify the concentration of each VOC, and more details on this construction are shown 

in Section 3.4.   

3. Results and Discussion 

3.1. Single volatile organic compound 

Varying volumetric amounts of each of the three solvents were added to the container for 

evaporation, and five steady-state resistance readings per solvent were collected and plotted. The 

relation between volumetric amounts and resistance values is shown in Figure 1. The obtained 

resistance data from the A3 monitor were fitted into a non-linear curve using a power function 

(y=a·xb), where R2 represents the squared correlation coefficient. As expected, the resistance values 

decreased with the increasing amount of acetone, as observed in Figure 1a. In the presence of a 

volatile compound, the MOx sensor reacts with the compound, reducing the oxygen on the surface 

of the metal oxide. As such, the electrical current flow increases, which is coupled with the resistance 

values decreasing [19]. The data were then plotted with the axes reversed, as in Figure 1b, and this 

enabled obtaining a predictive expression to be later used in the model development (Section 3.4), 

whereby the injected volume amount could be deduced from the resistance measurement. It can be 

seen that the data fitting to the power law, within the limits tested, was very good as the correlation 

coefficient value is high, close to 1. Moreover, the volumetric values (of injected liquid) were 

converted to ppmv values (of evaporated solvent vapor) for further modeling purposes, and the 
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relation between concentration in ppmv and resistance values are presented in Figure 2 for the case 

of acetone. The trends of the curves in Figure 1 and 2 are comparable, as expected.  

 
(a) 

 
(b) 

Figure 1. (a) The effect of acetone concentration, expressed as volume of injected solvent, on the MOx 

sensor’s resistance value; (b) The inversed plot of resistance versus injected volume. All data points 

are averages of five replicates. 

 
(a) 

 
(b) 

Figure 2. (a) The effect of acetone concentration, expressed as concentration (ppmv) of evaporated 

solvent, on the MOx sensor’s resistance value; (b) The inversed plot of resistance versus concentration. 

All data points are averages of five replicates. 

The same type of experiments was conducted using ethanol and n-hexane, and the results are 

presented in Figures S3-10 in the Supplementary Materials. The resistance values of ethanol and 

hexane are greater than those of acetone (8.5 to 15.2 kΩ), ranging from 13.6 to 25.7 kΩ for ethanol and 

43.5 to 104.2 kΩ for n-hexane. At the same time, it should be accounted that the molecular weights of 

these solvents differ, so the vapor concentration ranges also somewhat differed: 52.5 to 262.5 ppmv 

for acetone; 67.0 to 335.0 ppmv for ethanol; and 29.5 to 147.6 ppmv for n-hexane. Still, the trends of 

the fitted curves are similar for all three solvents, but the fitted coefficients (a and b) differed, pointing 

to different levels of interaction between the vapor molecules and the MOx sensor. For instance, it is 

plausible that acetone is likely to interact more strongly with the SnO2-based sensor. This could be 

explained by density functional theory calculations that show that acetone molecules act as donors 

to transfer electrons and can be adsorbed on Sn and oxygen vacancy sites [31]. Given that the 

resistance values of these three compounds range differently, this behavior is posed to be useful for 
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identifying and quantifying the VOC composition more efficiently, as will be detailed in the model 

development (Section 3.4).      

3.2 Double volatile organic compounds 

From conducting the experiments of single VOCs, resistance ranges of all three VOCs were 

confirmed under controlled conditions, indicating the response of the sensor when it is exposed to a 

particular VOC. However, there are diverse VOCs that exist in real monitoring circumstances. 

Therefore, it is essential to investigate how the monitor would respond when two mixed VOCs were 

inserted into the sealed container. Another objective is also to test the selectivity/sensitivity of the 

MOx sensor in the A3 monitor. Table 1 lists the volumetric amounts and vapor concentrations of 

acetone and ethanol in the double solvent experiments, along with the total vapor concentrations 

(sum of the two solvents), and measured resistance values from each experiment. Similar experiments 

were also conducted for acetone + n-hexane and for ethanol + n-hexane experiments; all measured 

data (including preliminary and calibration trials) can be found in Thakor [32].  

 

Table 1. Acetone and ethanol dual solvent amounts, vapor concentrations, and measured resistance 

values. 

Exp. 
A1 Vol 

(µL) 

A1 Conc 

(ppmv) 

E1 Vol 

(µL) 

E1 Conc 

(ppmv) 

Total 

Vol (µL) 

Total Conc 

(ppmv) 

Resistance 

(kΩ) 

1 3 52.50 3 66.99 6 119.49 13.59 

2 6 104.99 6 133.98 12 238.97 10.81 

3 9 157.49 9 200.97 18 358.46 9.38 
1 A-Acetone; E-Ethanol. 

 

Figure 3 shows the relation between total vapor concentration, in calculated ppmv, and 

resistance values in the presence of acetone + ethanol combination (in Figure 3a), and acetone + n-

hexane (in Figure 3b). It is found that the resistance values in the presence of a second VOC (9.4 to 

17.0 kΩ) were close to the values previously presented for single acetone (in the range of 10.1 to 

15.2 kΩ, for the comparable range of 3 to 9 μL acetone), which signifies that acetone has a dominant 

effect on MOx sensor resistance. As such, it is again suggested that acetone is more likely to attach to 

the sensor compared to the other two compounds [31]. The relation between the combination of 

ethanol and n-hexane and resistance values is plotted and illustrated in Figure S11, and it is shown 

that the resistance values (15.3 to 25.3 kΩ) lean towards the single ethanol condition (16.7 to 25.7 kΩ). 

It is thus confirmed that the MOx sensor resistance values of the A3 monitor are unequally influenced 

by the type of VOC, and the influence degree, from strongest to weakest, is in the following order: 

acetone > ethanol > n-hexane. 
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(a) 

 
(b) 

Figure 3. (a) Measured resistance values in the presence of equivolumetric mixtures of acetone and 

ethanol; (b) Measured resistance values in the presence of equivolumetric mixtures of acetone and n-

hexane. 

3.3 Correlation of single and double VOC results 

As discussed previously, the relationships between resistance values and vapor concentrations 

for the conditions of a single VOC or double VOCs in combination have been given. In this section, 

these relationships are compared (i.e. a single compound versus the same compounds with another 

VOC), and the aim is to obtain correlations between these sets of data. The further aim is to provide 

insight into the influence of a second VOC on the measured resistance values. These correlations are 

needed for the mathematical model development in Section 3.4.  

In Figure 4, it can be observed that resistance values from the experiments with single acetone 

are proportionally correlated (according to adequate fit of a linear equation with zero intercept) with 

those of acetone + ethanol condition. The slope coefficient of this fitted equation is 0.878, which is less 

than 1. As expected, this indicates that the presence of ethanol in combination with acetone leads to 

depressing the resistance values of the MOx sensor further. The deviation of this slope value from 1 

is an indication of the strength on the second solvent in altering the resistance value beyond that of 

the single first solvent. As it has been asserted that acetone is more influential on resistance than 

ethanol, it is understandable that the slope value is smaller but still close to 1. 

 

Figure 4. Single (acetone) versus double (equivolumetric acetone + ethanol) VOCs correlation 

equations; each data point corresponds to experiments performed using the same solvent volume of 

the primary VOC. 

The coefficients of each binary combination (acetone + ethanol; acetone + n-hexane; ethanol + n-

hexane) are listed in Table 2. Notable from this table are the two slope coefficients at the extremes. 
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The value of 1.009 for the acetone + n-hexane case (i.e. dual solvent values correlated to single acetone 

case), is essentially equal to 1, and this signifies that, at similar concentrations (equivolumetric, but 

slightly richer in acetone ppmv-wise), n-hexane is undetectable when in combination with acetone. 

The value of 0.168 for the reverse case, n-hexane + acetone (i.e. dual solvent values correlated to single 

n-hexane values), confirms that acetone influence overwhelms the MOx sensor reducing sensitivity 

to n-hexane, but being sufficiently larger than zero, still suggest that is the n-hexane concentration 

sufficiently exceeds that of acetone, detection of the dual solvent effect is still possible. Altogether, 

the data in Table 2, once again, suggest that acetone influences the resistance more strongly than 

ethanol, followed by n-hexane, which is consistent with the findings in Section 3.2. These correlation 

equations are used in Section 3.4 for the prediction of mixed VOC composition and mathematical 

model development. 

 

Table 2. Coefficients of binary combinations. 

Single Acetone Ethanol n-Hexane 

Double  Ace+Eth Ace+Hex Eth+Ace Eth+Hex Hex+Ace Hex+Eth 

Slope 

coefficient 

0.878 1.009 0.538 0.939 0.168 0.254 

 

3.4 Predictive mathematic model: development and simulation 

As aforementioned, the A3 monitor uses a linear model to convert the measured resistance data 

from the MOx sensor directly into a VOC-based AQI value. However, it has been shown in previous 

results sections that the relationship between resistance values and vapor concentrations of VOCs is 

non-linear (i.e. follows a power-law relationship). Therefore, it is necessary to develop a mathematical 

model to improve the interpretation of the MOx sensor’s data, both with regards to estimating 

composition and yielding a useful AQI reading. The predictive mathematical model developed and 

presented herein aims to estimate the total concentration of VOCs at first, and subsequently estimate 

the composition of individual VOCs in the sampled air.  

According to the resistance versus concentration equations experimentally fitted in Sections 3.1 

and 3.2, Figure 5a was prepared by plotting calculated values of concentration for resistance values 

ranging from 1 to 200 kΩ. By using logarithmic scales, it was observed that all data series became 

linear. Moreover, it was observed that the single solvent n-hexane line lied higher than other lines, 

and that the acetone single solvent line lied lower than other lines (except at high resistance values, 

which corresponds to low concentrations, where acetone-ethanol became the lowest line). These 

trends suggest that at a given resistance value, concentrations are bound between a high and a low 

value. On this basis, the data used to generate Figure 5a was replotted taking only the maximum and 

the minimum value at any given resistance, as shown in Figure 5b. These maximum and minimum 

lines are taken as upper and lower bounds that limit the range of possible concentrations for any 

measured resistance value, when analyzing an air sample containing one or more of the three studied 

VOCs.  
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(a) 

 
(b) 

Figure 5. (a) Single and double VOCs resistance (Res) versus concentration (Conc) calculated curves 

(from experimentally-fitted equations), plotted on logarithmic scales to yield linear correlations; (b) 

Maximum and minimum values from Figure 5a re-plotted as two limiting upper and lower bounds. 

In Figure 6, the calculated values that make up the maximum and minimum lines shown in 

Figure 5b were converted into logarithmic values (i.e. log(Res) versus log(Conc)), and line equations 

were fitted to each data series. The aim was to enable calculating the maximum and minimum total 

concentration value for a given measured resistance value. This provides a range of possible total 

concentrations, but to arrive at a single estimated value, and eventually VOC composition, additional 

correlations are needed, as presented next. 

 

Figure 6. Maximum and minimum concentrations curves replotted as log(Res) versus log(Conc) and 

fitted to linear equations.   

The equations from both lines in Figure 6 have nearly identical intercepts (i.e. 5.2077 and 5.0764) 

but the slopes are substantially different. Similarly, looking at Figure 5a, it can be seen that single 

solvent lines for n-hexane, ethanol and acetone have different slopes. These observations were used 

to conceptualize that for the mathematical algorithm to predict the exact concentration between the 

upper and lower bound values for a given measured resistance, it is needed to know on what line 

with what slope the measured air would lie if its concentration was varied to produce multiple 

resistance values. Given that with two points on a graph it is possible to determine the slope, the idea 
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of sample dilution was conceived. If the resistance value of the original air and of a diluted air (of 

known dilution factor) are known, and their log values taken, then two x-values on Figure 6 are 

known. However, the y-values are not known. Yet, it was noticed that the ratio between two 

resistance values can be compared to the ratios of two resistance values that lie on the maximum and 

the minimum lines. This is detailed in Table 3. 

For physically implementing the approach of using a diluted sample for obtaining a second 

value of MOx sensor resistance, it would be required to have the pollutant monitor perform two 

sequential measurements, one with the diluted air, and another with undiluted air. One way of doing 

this would for the air quality monitor to possess a small compressed air canister for supplying clean 

dilution air; evidently, the measurement frequency would be limited by the capacity of the canister, 

which likely would have to be enough for 24 hours of continuous measurement. 

In Table 3, it was hypothesized that an air sample containing 200 ppmv of VOCs was measured, 

and the same sample four-times diluted (i.e. containing 50 ppmv) was also measured. If the 

composition of this air sample was such that the data points would lie along the maximum line, log 

values of the maximum possible measured resistance are calculated using the equations given in 

Figure 6. Likewise, if the composition of this air sample was such that the data points would lie along 

the minimum line, log values of the minimum possible measured resistance are calculated using the 

equations given in Figure 6. The resistance values are then calculated from the log values, as shown 

in Table 3. The ratio between the maximum resistance values is 2.105, and the ratio between the 

minimum resistance values is 1.650. As such, it is posed that for any measured air sample and its 

four-times diluted sample, the ratio between measured resistance would lie between 1.650 and 2.105. 

Once it is known what the ratio is, it is then possible to determine the line equation that falls between 

the maximum and minimum lines on Figure 6, and finally estimate the total VOC concentration of 

the original undiluted air sample. This is exemplified next. 

 

Table 3. Logarithmic values of concentrations and resistance values of VOCs. 

Con 

(ppm) 

Log(Con) Log(ResMax) Log(ResMin) ResMax 

(kΩ) 

ResMin 

(kΩ) 

200 2.30 1.56 1.00 36.32 10.06 

50 1.70 1.88 1.22 76.45 16.60 

 

The ratio of the two resistance values from the corresponding diluted and original samples (D/O 

ResRatio) is used to find the slope and intercept values of the line equation that falls onto Figure 6. 

This is done through an interpolation method, as exemplified in Table 4. For example, assume that 

for a certain air sample, the resistance values of the original sample and the four-times diluted sample 

are at 10 and 20 kΩ, respectively, which is reasonable as the resistance value of the diluted sample 

must be lower given the lower concentration of VOC. The resistance ratio (ResRatio) of this set of 

measurements is 2.200, as listed in Table 4. The slope and intercept of the line equation that runs 

through these two points is obtained by interpolating the slope (D) and intercept (E) of the maximum 

and minimum lines. In this Table 4 example, the resulting equation becomes: log(Conc) = –

2.071·log(Res)+5.178. As such, the original sample resistance is then used to calculate the original 

sample concentration; for 10 kΩ this corresponds to 1277 ppmv. Had the four-times diluted resistance 

been 19, 18 and 17 kΩ, the smaller resistance difference between original and diluted signifies a less 

concentrated original air, and the interpolation procedure would lead to a total VOC concentration 

estimates of 756, 447, 264 ppmv, respectively. This approach can be used to determine total VOC 

concentration of any air sample whose original and four-times diluted concentration lies within the 

graphical area of Figure 5. 
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 Table 4. Log concentrations, log resistance values and interpolation of resistance ratio. 

Data set  D/O ResRatio Log(Con)=D·Log(Res)+E 

Slope D Intercept E 

1 Maximum 2.105 -1.863 5.208 

2  Minimum 1.650 -2.768 5.077 

3   Hypothetical 

(20kΩ/10kΩ) 

2.000 
-2.0711 5.1781 

1 These values are interpolated based on the measured D/O ResRatio compared to the maximum and minimum 

lines’ D/O ResRatio. 

 

After estimating the total original concentration of VOCs using the dilution, D/O ResRatio and 

slope interpolation method presented above, it is important to attain estimates of the individual VOC 

composition to provide valuable information for air pollutant monitoring. As observed in Figures 5a 

and 5b, the maximum resistance values, at any given concentration and for single compounds, are 

attributable to n-hexane, while the minimum resistance values are attributable to acetone. Therefore, 

it can be logically inferred that the concentration order of different VOC combinations, based on the 

D/O ResRatio, is as listed in Table 5. 

 

Table 5. Modelling logic for determining composition of VOCs based on a measured D/O ResRatio. 

Measured 

D/O ResRatio 

Acetone 

Concentration 

n-Hexane 

Concentration 
Ethanol Concentration 

<1.75 Highest Lowest Acetone>Ethanol>Hexane 

>2.15 Lowest Highest Acetone<Hexane<Ethanol 

1.75-2.15 Acetone<Hexane Hexane<Ethanol Highest 

 

Relating the D/O ResRatio to VOC composition, the logical classification of Table 5 states that n-

hexane is enriched in the composition when the resistance ratio is closer to, or exceeding the 

“maximum value” (2.10), while acetone is enriched in the composition when the resistance ratio 

approaches or surpasses the “minimum value” (1.65). Therefore, trends of the composition of acetone 

and hexane should be opposite, with ethanol contributing primarily to the composition of samples 

with intermediate resistance ratios; this is illustrated in the compositional graph, based on volume 

percent of total VOC concentration, in Figure 7. To plot the graph in Figure 7, empirical equations are 

introduced to define the trends. The empirical equations are generated with the precept that the sum 

of the volumetric fractions of the three components be 100% of the total VOC concentration. Next, it 

is discussed how the empirical equations are generated. 

 

 

Figure 7. Empirical curves of individual VOC composition across a range of D/O resistance ratios. 
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It is noted that the coefficient values listed in Table 2 demonstrate the degree of VOC interaction 

with the MOx sensor, and this information is herein used in the formation of empirical equations to 

estimate the composition of VOC. To arrive at the curves plotted in Figure 7, obeying the logic 

presented in Table 5, Equations (1-3) are proposed to provide an estimated composition based on a 

measure D/O ResRatio value. Given that ethanol is associated with intermediate ResRatio values, it 

was also herein treated as the balance compound (according to Equation (3)), making up the sum of 

the three equations to 100%. Moreover, to compose Equations (1) and (2), the coefficients from Table 

2 that relate ethanol to the other two compounds were used. The coefficient of Ace+Eth (0.878), which 

is associated with the strength of acetone, was divided by the value of the coefficient of Eth+Ace 

(0.538), which is associated with the strength of ethanol, to yield a value of 1.6325, and this was 

incorporated into Equation (1) and termed Ace+Eth. The same approach was applied in taking the 

Eth+Hex value (0.939) and dividing by the Hex+Eth value (0.254) to yield a value termed Eth/Hex 

with a value of 3.6991. Comparing these two values (1.6325 and 3.6991), it is evident that the value 

involving ethanol and n-hexane is much larger than that involving ethanol and acetone, which 

impacted the shape of the empirical curves in Figure 7, being assymetrically shifted towards the 

acetone-rich side (i.e. mixtures containing acetone has a narrower range of smaller ResRatio values, 

and mixtures containing substantial amounts of n-hexane cover a wider range of higher ResRatio 

values). The other numerical coefficients used in Equations (1) and (2) were selected to reasonably 

shape the curves in Figure 7, but can be modified if experimentally validated data calls for different 

values. Experimental validation was not accomplished in the present study as the COVID-19 

pandemic lockdowns in 2020 forced the study to conclude before such experiments could be 

conducted. 

 

Acetone compostion (vol% of 𝑉𝑂𝐶𝑡𝑜𝑡𝑎𝑙) = 100 ∗ {[1 − (ResRatio − 1.6) 0.6⁄ ]2}Ace Eth⁄    (1) 

Hexane composition (vol% of 𝑉𝑂𝐶𝑡𝑜𝑡𝑎𝑙) = 100 − 100 ∗ [1 − (ResRatio − 1.6) 0.6⁄ ]1 (Eth Hex⁄ )⁄  (2) 

Ethanol composition (vol% of 𝑉𝑂𝐶𝑡𝑜𝑡𝑎𝑙) = 100 − Acetone Vol% − Hexane Vol%    (3) 

 

As an example of the application of Equations (1-3), the previously presented hypothetical 

values of measured original and diluted resistances, namely 10 kΩ and 17 to 20 kΩ, can be used to 

generate VOC compositions. In the same order of resistance ratios (20/10, 19/10, 18/10, 17/10), the 

equations yield compositional values of: 145.8, 118.9, 78.6 and 35.4 ppmv for acetone; 105.9, 281.6, 

547.8 and 913.6 ppmv for ethanol; and 12.7, 46.4, 129.1 and 328.2 ppmv for n-hexane. As such, these 

types of air would have been deemed to be especially rich in ethanol, somewhat rich in n-hexane, 

and lean in acetone. 

In addition to the assumptions, simplifications and logical decisions used to generate the 

mathematical model (i.e. Equations (1-3), which should be revisited in any future further 

development and implementation of the proposed methodology for using a single MOx sensor to 

delineate the composition of a mixture of three VOC compounds), there are also some important 

limitations in the model that should be noted and possibly eliminated in future endeavors. It can be 

seen from Figure 7 that ethanol is predicted to be always present in samples with ResRatio values 

between 1.60 and 2.20, even though at the outer limits of this range it is very much possible that 

binary mixtures of acetone and n-hexane could have such ResRatio values. Another clear limitation 

from Figure 7 is that the model predicts that any VOC mixtures with ResRatio value between 1.60 

and 2.20 will not contain more than approximately 73 vol% of ethanol in combination with acetone 

and n-hexane; this once again creates limitations when sensing binary VOC mixtures instead of 

ternary mixtures. Such limitation is a product of the coefficients used in Equations (1) and (2), which 

as aforementioned should be experimentally validated, and the construct of these equations, which 

could be further tuned to reshape the curves as dictated by experimental validation of ternary 

mixtures. Temperature and humidity corrections, either to measured values or to equation 

coefficients, would need to be taken into account for use of the proposed model under uncontrolled 

ambient conditions. 

Though the proposed mathematical model has limitations and uncertainties, it does provide 

approximate trends and values of individual VOCs in VOC mixtures. With the development of this 
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model, we move one step closer to enabling the use of single MOx sensors in mobile air pollutant 

monitors to evaluate if any sensed VOC may be exceeding the threshold of a defined standard. As 

concluded by Collier-Oxandale et al. [9], the low cost and low barrier to deployment of MOx sensors 

can facilitate studies in the domains of public health research and environmental justice, including 

the assessment of the impact of VOC sources on overburdened communities. They also point out 

that, in the context of limited resources in such communities for such studies, even cursory data on 

VOC emissions and immissions can be of value and can complement the more cumbersome and 

costly conventional approaches to VOC monitoring. 

The output of the proposed model, once volumetric percentages are multiplied by total ppmv 

value, are ppmv values of individual VOC, and these can be used to calculate a VOC-based AQI. 

Garcia et al. [33] have worked on expressing AQI of VOC-laden air to give information of VOC 

pollution in an area. The Air Quality Index for VOCs (AQIVOC) is weighed based on the impact of 

each VOC according to environmental regulations. They assigned an environmental impact 

coefficient (α) to each VOC, which are correlated to their emission limit values. For example, an α 

value of 1 correlates to an immision limit of 600 mg/Nm3, and an α value of 120 correlates to an 

immision limit of 5 mg/Nm3, according to Italian regulations [33]. The equation for AQIVOC, for air 

containing three VOC compounds, would then be given by: 
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             (4) 

 

where αi is the environmental impact coefficient and νi is the atmospheric concentration in the 

analyzed air, of the i-th VOC. 

 

If more than three solvent vapors are present in a polluted air, at concentrations that affect the 

resistance readings taken by a single MOx sensor, it may be necessary to use more than one sensor, 

in such a manner that different sensors are more sensitive to particular classes of volatile organics. 

The ability to discern more than three VOC can, in certain situations, provide more accurate 

representation of the AQIVOC; for instance, the original AQIVOC equation presented in Garcia et al. [33] 

uses i = 18, signifying that there were eighteen VOCs of interest in their study, namely: benzene, 

chloroform, cyclohexane, 1,2-dichlorobenzene, dichloromethane, ethylbenzene, heptane, hexane, 

methylcyclohexane, methylcyclopentane, 2-methylhexane, 2-methylpentane, toluene, 

tetrachloroethylene, trichloroethylene, 1,2,4-trimethylbenzene, and (m- p- o-)xylene. The necessity of 

the present composition determination approach to detect three VOCs with differing interaction 

strength with the MOx sensor may be seen as an additional limitation of the approach, but this is a 

general limitation of MOx sensors, which are designed primarily to detect total VOC concentration, 

made equivalent to a particular VOC (e.g. n-hexane), rather than to determine VOC composition. 

4. Conclusions 

This paper presents an approach to improving the accuracy of AQI determination when using a 

single MOx sensor, as is the case of the tested uRAD A3 mobile monitor. This was accomplished by 

building a mathematical model to estimate the composition of VOCs in a ternary mixture. 

Experiments were conducted with single VOC and double VOC combinations, and results were 

plotted and fitted into specific curves, and used to obtain coefficients. The experimental data 

indicated that the resistance values varied with different VOCs at same concentrations, and moreover 

that for the three tested VOCs the resistance values ranged between an upper and lower limit, which 

could be represented by linear equations on a log(Res) versus log(Conc) graph. These experimental 

results were used to create a predictive mathematical model, and the preliminary results demonstrate 

the feasibility of applying the discrepancy in VOC-MOx sensor interaction among the three VOCs to 
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develop such model. It could be concluded that acetone most strongly interacted with the MOx 

sensor, followed by ethanol, and then by n-hexane. A hypothetical approach where the resistances of 

the original air sample and a four-times diluted air sample are measured was employed to define a 

linear equation as a function of the D/O ResRatio, to then obtain the original total VOC concentration 

(exemplified in Table 4). According to the analysis of coefficients between single VOC and double 

VOC experiment, it was found that the interaction performance of ethanol with the MOx sensor is 

slightly closer to acetone, while hexane shows more dissimilarity to ethanol. These behaviors and 

coefficient ratio values were used to conceptualize empirical equations (Equations (1-3)) whose 

curves as a function of ResRatio yielded expected VOC composition data (exemplified in Figure 7). 

Overall, the results of this mathematical model are divided into two parts to fulfill the study’s aims, 

as follows: (i) determining the total concentration of VOCs with the resistance values obtained from 

original and diluted samples; and (ii) estimating individual VOC composition in the original sampled 

air. Once a VOC composition is known, it is then possible to calculated an estimated AQIVOC value, 

according to Equation (4). 

Improving the representation of air quality index has far-reaching importance in daily life as 

VOC pollutants are not only in the atmosphere but they are also indoor pollutants. Many of them are 

in offices, homes and industrial facilities. Hence they are in close vicinity of populations, which makes 

them vulnerable to inhale significant quantities that can exceed recommended or regulated health 

limits. Air pollutants continue to cause many health problems and long terms health effects, so 

knowing the air quality and controlling it continues to gain importance every day and is a pressing 

societal need. 
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