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Abstract: Here we present Hilfer-Polya, ip-Hilfer Ostrowski and p-Hilfer-Hilbert-Pachpatte types
fractional inequalities. They are univariate inequalities involving left and right Hilfer and ¢-Hilfer
fractional derivatives. All estimates are with respect to norms |- pr 1 < p < oo. At the end we
provide applications.
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1. Introduction

We are motivated by the following famous Polya’s integral inequality, see [5], [6, p.
62], [7] and [8, p. 83].

Theorem 1. Let f(x) be a differentiable and not identically a constant on [a,b] with f(a) =
f(b) = 0. Then there exists at least one point ¢ € [a,b] such that

4
(b—a)®

£ > s [ fo )

We are inspired also by the related first fractional Polya Inequality, see Chapter 2, p. 9,
[2].

In this article we establish fractional integral inequalities using the Hilfer and -Hilfer
fractional derivatives. These are of Polya, Ostrowski and Hilbert-Pachpatte types.

2. Background

Let —co < a < b < oo, the left and right Riemann-Liouville fractional integrals of
order a € C (R(«) > 0) are defined by

1 X
4 _ _ na—l1
(16 )@ = 53 [, =0 0, @
x > a; where I stands for the gamma function,
and )
1 _
o _ - a—1
(1)) = g [, =0 S0, ©
x < b.
The Riemann-Liouville left and right fractional derivatives of order &« € C (R(a) > 0)
are defined by

@ = () W00 = e () [0 e @

n—e)
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(n = [R(«)], [-] means ceiling of the number; x > a)

(Bp_y)(x) = (—1)”(05()”(1;@)(,() —

(Y Lo

(n = [R(a)]; x < b), respectively, where R («) is the real part of a.
In particular, when o = n € Z, then

(48) () = (409) () = (v

(87:y)(x) =y (x), and (Af_y) (x) = (=1)"y" (x), n €N,

see [9].

Leta > 0,1 = [a,b] C R, f an integrable function defined on I and ¢ € C!(I) an
increasing function such that ¢'(x) # 0, for all x € I. Left fractional integrals and left
Riemann-Liouville fractional derivatives of a function f with respect to another function ¢
are defined as ([4], [9])

BYF) = o [0 O -y 0, ©)

and

850 = (g ) 1m0 = 7)

# Li o / o n—ua—1
o () [ YOwem-por o,

respectively, where n = [«].
Similarly, we define the right ones:

B = i [ p()* (b, ®)

and

850 = (~ ) B0 =

! ! d ! n—ua—
I(n—a) (_IIJ’(X)dx) / 9O — ()" f(B)at. ©)
The following semigroup property holds; if &, > 0, f € C(I), then

BYRYF = 1P and VY = 7PV

Next letagaina > 0, n = [a], [ = [a,]], f,9 € C"(I) : ¢ is increasing and ¢ (x) # 0, for
all x € I. The left p-Caputo fractional derivative of f of order « is given by ([1])

CDM f(x) = [T <¢%x) ;lx) £(x), (10)

and the right ¢-Caputo fractional derivative ([1])

DY f() = [ (-t ) ) a
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We set Logan
=170 = (rras) 12)
Clearly, when &« = m € N we have
DY f(x) = f;"(x) and DY f(x) = (-1)"f" (),
and if « ¢ N, then
Crry n—a—1 c[n]
DIYF() = fory [, VO — vy 0, (13)
and
Dt f() = s [ P (14
(n—ua)
If ¢(x) = x, then we get the usual left and right Caputo fractional derivatives
DR f(x) = £ (x), DLf(x) = ()" f"(x),
form € N, and (« ¢ N)
1 X n—a—1 ¢(n
DLuf(x) = “Dif(3) = Frrgy [, = 0" 0t (15)
—1)" b I
Di (x) = DY f(x) = an _)a) /x (t = %) L0 (1), (16)

Also we set 0 0
Dt fx) = DY f(x) = f(x).
Next we will deal with the y-Hilfer fractional derivative.
Definition 1. ([11]) Let n —1 < o« < n,n € N, I = [a,b] C Rand f,¢ € C"([a,b]), ¢

is increasing and ¢'(x) # 0, for all x € 1. The -Hilfer fractional derivative (left-sided and
right-sided) 1 ID) ﬁ f of order a and type 0 < B < 1, respectively, are defined by

MDY ) = 0 (s ) P ) @)
and .,
HeBY £ (x) = [Pln=o) <_¢’1x) ;;) [(P0=9% £(x), x € [a,b]. (18)
The original Hilfer fractional derivatives ([10]) come from (x) = x, and are denoted by 1 DZf f(x)
and H]D)Z’f'f(x).

When B = 0, we get Riemann-Liouville fractional derivatives, while when f = 1 we have
Caputo type fractional derivatives.

We define v = a + B(n — ). Wenotice thatn —1 <a <a+p(n—a) <a+n—a=mn,
hence [«y| = n. We can easily write that ([11])

MDY F(x) = T AT F (), (19)
and
HpePY f(x) = YAV £(x), x € [a,b]. (20)
We have that ([11])
8150 = (i) B ) @
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and
A1 = (gt ) P ), @)
T (x) dx
In particular, when 0 < &« < 1and 0 < B <1,y = a + B(1 — ), we have that
DY) = o [ Y PO AT (b, 3)
" HpbY [ RN
DY) = gy Y OWO —p) P fwa, e
€ [a,b].
Remark 1. ([11]) Let p = n(1 — B) + B«, then [u] = n.
Assume that g(x) = Iﬁr_ﬁ)("_“);wf(x) € C"([a, b]), we have that
o,B; n—pu; 1 d\"
MDY ) = 11 (s ) 80 @)
Thus
AP = CDiPg(x) = CDYF 1P f()] (26)

Assume that w(x) = Iél:ﬁ)("ﬂx)ﬂpf(x) € C"([a,b]). Hence

a,B; n—u); 1 d\" n—p 1 d)\”
D = () v = () v @

Thus
HD'Z/fﬂPf: CDZlil’w(x) — CDﬂlP( (1 B)(n—a); wf( )) (28)

We mention the simplified ¢-Hilfer fractional Taylor formulae:

Theorem 2. (see also [11]) Let , f € C"([a, b]), with ¢ being increasing such that '(x) # 0
over [a,b], wheren —1 <a <n,0<pB<1,andy=wa+p(n—ua),x € [a,b]. Then

- Y
;1 f), li(j_)i) fl}}n K] ( u1+ B)(n—a);y )(a)
r(lm /ax P (1) (p(x) — p(0)* DY f(t)at, (29)

and

nl(—1)f —(x))7 n— n—u
f(X)_kZ{( Ur(zpfy(l?kfg))) f[ k( (1-B)( wf)()

e [ YOO ) B oy o)

Here notice that (I(l P)n=a lpf)(a) ( (1=p)(n—a lpf)( )=0.
We also mention the following alternative ip-Hilfer fractional Taylor formulae:

Theorem 3. ([3]) Let f, € C"([a,b]), with  being increasing, ¥'(x) # 0 over [a,b] C R,
a>0:[a] =n0<B<1 u=n(l—pB)+ Ba. Assume that g(x) = I,gfﬁ)("w);wf(x),
w(x) = [P f(x) € C(fa ).

Then
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1)
 Hpws 1 gy (@) .
LY DTS = ()~ X T () — (@) (31
where L
1 d
gl[g]( ) = (l[)’(x) dx) g( )’ k*O,]_, ,71—1,
and
2)
n=1 (—1\ ¥ (p
I HDSPY £(x) = w(x) — Y Sl )Z 2O ) -y, (32)
k=0 '
where

0 1 d\*
wy (x) = (l/)’(x)dx> w(x), k=0,1,..,n—1; x € [a,b].

Next we list two Hilfer fractional derivatives representation formulae:

Theorem 4. ([3]) Leta > 0,a ¢ N, [a] =n,0 < p <1; f € C*([a,b]), [a,b] C R; and set
v = a+ B(n— a). Assume further that A}, f € C([a,b]) : AV, /f(a) =0, forj=1,...,n. Let
alsow > 0: [ =7, withy = & + B(n — &), and assume that « > & and v > 7. Then

X—

@ 1 x —a-
DRl f(x) = ﬁ/a (x — £y L HDEP £(1)at, (33)
Vx € lab], B
furthermore H]Dgf f € AC([a,b]) (absolutely continuous functions) if x —w > 1 and
HDYP £ € C([a,b]) ifa — & € (0,1).

Theorem 5. ([3]) Leta > 0, a ¢ N, [a] =n,0 < p <1; f € C*([a,b]), [a,b] C R; and set
v =a+ B(n —w). Assume further that A} _f € C([a,b]) : AZ:]f(b) =0,j=1,..,n Letalso
®>0:[aw| =7, withy =w+ B(n —w), and assume that &« > & and vy > 7. Then

1

H]Dgff(x) = m

/ b(t — ) T LHDEP (1 at, (34)
Vxé€lab], - -
furthermore H]DDfo € AC([a,b]) ifa —a > 1and H]D)Z’igf € C([a,b])ifa —m € (0,1).

3. Main Results
We present the following Hilfer-Polya type fractional inequalities:

Theorem 6. Let & > 0, ¢ N, [a] =n,0 < p <1 f € C"([a,b]), [a,b] C R; and set
v = a+ B(n — a). Assume further that A), f € C([a,b]) : AY f(a) =0, for j =1,...,n; and
A} feC(ab]): Al Tf(b)=0,j=1,.,n Letalsox > 0: [a] =7, withy = &+ (1 — &),
and assume that & > w and ¢ > 7.
Set o
T,

) AP f(x), x € {a,”Ter],
D (x) = (35)

AP r(x), x e (4L 0)],

and

72

My = max{HH}D)foHoo,[lZ atb’ HDgﬁf”w,[“ﬁb'b]}' o
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Then b Hiyip Hiap Ml(b )ﬂt—&-i-l
/a D f (x)dx —/‘ DS (x ‘d =2 (a—a+2) (57)
Proof. From (33) we have
Hm&B 1 /x _ pa—a—1 HpapB
D) = iy L (-0 s @9
Vaxée [a, ”szh]
By (34), we get
Hy#b _;/” w1 Hppnp
]D)b_f(x) - F(OC—E) X (t x) Db_f(t>dtl (39)
vxe |4t p).
We derive that
Hpp HHD fH°° [2,%5] a—T (40
O R e U )
Vxe [u, “zib},
and similarly,
H "‘.Bf
Hohr)] < PP s, e )
b- INa—a+1) ’
vxe [t p).
We notice that:
b e
/a HIDRA £ (x)dx = / L OHDT ()i [ ! HD f(x)dx
T
ah
[ it rax+ [, #Difpoax ®2)
a e
We further derive that
T ]
Hm&, < o, oA _
|7 i ([ < oc—vc+1) /ﬂ (x —a)" “dx (43)
H H _
e ey ) R
INa—w+2) 2 I"(rx—zx+2) 2 '
That is, it holds

Hmy&p HH fH [2,%42] g\l
]D)u+f(x)‘dx< T(oc—zx—l—Z) ( 5 ) : (44)

ath
/ 2
a
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Similarly, it holds
H]D)"‘nB _
b e I
Hp&h oo[1326] (b—a
/a;b D*f(x>‘dx< r(a—a+22) ( 2 ' (45)
Therefore, we obtain
b _
/ HD®P £ (x)dx </ (D% (x) | dx =
a
ath _ b _
2
|7 [MREtp|ax+ [, ["DfEf]dx <
T
H Hm%P
182 sy ooyt PRy e
|42 _ 4
1"(04—0(—1—2) ( 2 ) + I'a—a+2) ( 2 ) (46)
(b >a a+1
2 H HmyB <
Tl Ll MR i I =
ZMl(b_a)DLle+1 7 Ml(b_a)a*DH*l
200 HIT (g —w+2) 20T (a —w+2)
O
We continue with the Lq-variant:
Theorem 7. All as in Theorem 6 with o —w > 1 (i.e. &« > w + 1). Call
H wﬁ
M, = max{H D% fH et f” 5 } (47)
I 2 2 I
- / " HDTAf ()| < / [P i < M~ (48)
a “Ja - 2“_&_1F(DC*§+1)'
Proof. By (38) we have
D5 ()] < /x(x—t)"‘_a_l DG f () |at <
~T(a —vc) at -
(X—ﬂ)“ Hpy
I'(a—7) H fH [a,742] “9)
Vxe [a, “Zib}
Similarly, from (39) we find that
_ b—x
0t )| < o (50)
vre |4t p).
Furthermore we obtain
] .

atb
/2
a

D () |dx < = a) / (x—a)* * ldx =
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D521 sy b oy
F(zx—a—i—l) ( 2 ) ' Gb
Similarly, we derive
—_— ] TN
§ < .
/a;b D} ()]s Ta—a+1) ( 2 ) 62
Therefore we obtain
b _ b _
/ Hp®b £ (x)dx §/ ‘H]D)""ﬂf(x)‘dx:
a a
ath _ b _
2
[t [, [PRiE s <
H HpP _
[ e e )
2 < (53)
F(zx—a—f—l) 2 -
My (b—a)* " M,  (b—a)*"
IMNa—-—a+1) 2¢7% M(a—a+1) 20-a-1°
O
Next comes the L;-variant of Hilfer-Polya fractional inequality:
Theorem 8. All as in Theorem 6 with & — & > %, where p,q > 1: % + % =1. Call
— H aﬁ
M3z = max{H Dy’ fH (0252 f” oyt } (54)
Then ) )
/ HD%A £ (x)dx S/ H]Da'ﬁf(x)‘dxg
a a
a—7+1
M3 T (b aa_)a_l p. (55)
F(oc—ﬁ)(p(a—&—l)+1)P(¢x—ﬁ+%) 2 q
Proof. By (38) we have
H a—x—1 |H
— <
‘Df ‘_Foc—vc/(x 2 ‘Df(t)‘dt_
1 x ,
_ pypla—w—1) Plla
T« — @) (/a (x=1) dt) | "o fH l0,25]
(s-3)
i) A — H]D)”"ng (56)
1 atb
INae—w)(pla—a—1)+1)7 [o.25]’
Vxe [a,”zih},withtx—ﬁ> %.
And, by (39), similarly we derive
~_ 1
- b oy (@)
Dy ()| < —2=) - HD”‘ﬁfH s (57)
INae—w)(pla—a—1)+1)r 15
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Vxe [%b,b],witha—i> %.
Consequently, we obtain that
ash NG g ash B
[ it fax < "ot H Eal [ (x— )" F) gy =
a I’(tx—zx)(p(zx—tx—l)+1)r’ a
H
] o
i 1 (e
I’(oc—oc)(p(zx—(x—l)—kl)%’((x—zx+?>
Similarly, we derive
HDfo a S
/ y Dy f(x)|dx < | qu’f] (H)“ T 59
gt Ma—@)(pla—a—1)+1)7 («—g+ 1)\ 2
Therefore, we obtain
/ ! HD f (x| < / ’ (D% £ (x) | dx =
a a
H Hpuh
(i P g) v
F(a—oc)(p(uc—a—l)—|—1)P(o¢—¢x+%) B a

Ms (b—a)* 5
I _ _ 1 _ 1 a—a—1
(a—a)(p(oc—a—l)—i—l)P(a—tx—l—?) 2 q

proving the claim. [

Next come p-Hilfer-Ostrowski type inequalities for several functions involved.
For basic yp-Hilfer-Ostrowski type inequalities involving one function see [3].
We make

Remark 2. Our setting here follows: Let f; € C"([a,b]), « ¢ N, n = [a], a > 0; i =
1,...,r € N—{1}, xo € [a,b]. Assume that g1;(x) = Igjrﬁ)(n_“)"lpﬂ(x) € C"([xo,b]) and
wr; ( ) = I A0V £ 3 € ([, x0)), forall i =1, ..., r

§1i(x), x € [xo,b]
q)ixo(x) = { } (61)

Define
wy;i(x), x € [a,xp)

Notice that if B = 1, we get g1;(x0) = w1;(X0) = @ix,(X0) = fi(x0), alli=1,...,r
In general, for f € C([a,b]) we have

B < s [0 060 o) o <

£ 1loo,{a,b]

m(lp(x) - lP(ﬂ))al Vxe [{1, b] (62)

Hence I, f( ) =
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Similalry, we have
b
BY50| < gy [ YOO = @) ol <
1 lloo o] «
Tt 1) (p(b) —y(x))", Vx € [a,b]. (63)

That is I"¥ f(b) = 0.

So when 0 < B < 1, by the above we obtain g1;(xo) = wi;(x0) = Qix,(X0) = 0, for all
i=1,..r.

Thus, it is always true that g1;(xg) = wy;(xp), i =1,..., 7

We present

Theorem 9. Let ¢, f; € C"([a,b]), a ¢ N,n = [a], 0 >0;i=1,..,r € N— {1}, x9 € [a,]].
Here ¢ is increasing, 1[) (x) #OQover [a,b)] CR,0< B <1, pu= n(l — B) + Bu. Assume that

gii(x) = 1P £y € ([0, b)) and wyy(x) = TP £(x) € € ([a, x)), for

alli = 1,...,r, and @iy, (x) is as in (61). Assume also that ggllb(xo) = wgi]lp(xo) = 0, for all

k=1,..,n—-1.
Then
1)

0¥ (f1, s fr) (x0) = (64)

b r r b r

7‘/ (l | (P)\xo > Z (Plxo X0 / | |(ij0(x) dx| =
a i=1 7 \j=1
J#

:
Y[ H(p,xo (1 MO 1)) +
i=1

L ]#z

vl r

[ | T et | (125 #E2 i) )ax | |,
X0 ]:1

L j#i

and in case of 0 < B < 1, we have that

O (i ) x0) =1 [ (meo ) (65)

2) furthermore, it holds

1
S [T | )~ e+
j=

Jj# 1,[a,x0]
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Hm.B; 1p -
ZH DA o [T 2% (9(0) = ¥(x0))" - (66)
ol
U HEYY)
It follows the L;-variant.
Theorem 10. All as in Theorem 9, with « > 1. Then
16 (f1, - fr) (x0)| < T
Hpy 13 lP y—l
ZH Li((aol9) H")f"O "
1,[a,x0]
(L A 1 Y I (LR S
i 1,[0,b]
Next we have the Lj-variant.
Theorem 11. All as in Theorem 9. Let also p,q > 1: % + % =1witha > % Then
" 1
|0V (f1, - fr) (x0)] < i
L) (p(p—=1)+1)7
Hpb ¢ : —7
ZH Dy, [T ((x0) — p(a))" 1+
=2
i#i 1,[a,xo]
B ¢ : n
3] il N |3 CO N [CTO BT S C
]:
J# 1,[x0,6]
Proof. of Theorems 9-11.
By Theorem 3 we have
£1i(x) = gui(x0) = Lot MDY fi(x), Vx € [0, ),
and (69)
w(x) = wii(x0) = Li¥ MDY fi(x), v x € [a, o),
foralli=1,..,r
That is 5
(14
9ixg (%) = pixy (x0) = I "D fi(x), ¥ x € [xo,b)],
(70)

and

q)ix(] (x) - (Pixo(x0> - IJI:OIK H]D)ioﬁflpfl(x)’ V x e [a/ xo)’

foralli=1,..,r
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r

Multiplying (70) by [ IT @jx,(x) | we get, respectively,
j=1
j#i

r r r
[T o) = [ TT0jx(®) | @iy (x0) = | [ [ @jso (%) Ifgﬁ HDzﬁlpfi(x)/ (71)
A=1 =1 =1

j#i j#i

Vx € [xo,b],
and

r r r
[T oaxe®) = | TTojxo(®) | Pixe(x0) = | [T @jxo (%) 15:515 Hsz_'lpfz‘(x)r (72)
A=1 =1 i1
j#i j#i

Vx€lax), foralli=1,..,r.
Adding (71) and (72), separately, we obtain

r(ﬁ G"Axo(x)) -) ﬁﬁl’jxo(x) Pixy (X0) | = (73)
A=1 i=1 ];1‘
i

r
3 [ T () |18 DR fi(o) |,

=1\ j=1
j#i
Vxe [XO, b],
and
r r ’
r(mMo(x))—z TT 030 | @i (20) | = 7
A=1 i=1 j=1
j#i
~ 1| T J H B
Yo | TT o () [ 152 MDY Fi(x) |,
i=1| | j=1
j#i
Ve axg).

Next integrate (73) and (74) with respect to x € [a, b]. We have

b r r b r
7/ (H @Axo(x)>dx_ Z (Pixo(x0>/ H(ijo(x) dx | =
0 \A=1 j X\ j=1

i=1
j#i

i=1|7%0

oINS ¥ HpbY

Y| [ Tl (o) | (10 D32 fi () ) | (75)
=1
J#i
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and

/a (H(Pw )dx_i Py xo/ H%m ol

i=1
]751

Zl [ H(P]xo (25" FDEPY £i(x) ) x| 76)
y

Finally adding (75) and (76) we obtain the useful and nice identity (64).
Identity (64) implies

ifi”’f i

i G| < 3 || Tl | (52 (1)) dx| +
L

i=1
j#i

HpPY g,

[Tl
X0 ]=1
J#

(1%

(x))dx = (77)

v ol | o

i=1 a | j=1 ()
j#i

([ w0 - g0y | (s 5) o) ]ar)as] +

b r 1
/. o) |5
J#

([ 0w — vy (“ms2s) o ]ar)ax| | <

(y1+ 1) & HHD?(Oﬁ—wﬁ

oo[M]/xo(lli(xo)—tp(x))” I Tlop(x)] |dx (78)
s4X0] Ja ]:1
i

H x0+

")~ 90| Tl (0] 02| | <
L

/[x()/b] X0
J#i

T H lXﬁl[J T
rorr o || IR A, 060 — @) TT o -

i=1 |, j=1

i#i 1,[a,xo]
H ; 4
R N CIORSIENY [T = (79)
, 1

j# 1,x0,0]
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1 H r ‘ B 1
I(p+1) ZH DXO_ 00,[a,x) ]1:{(’)]9‘0 (¥(x0) — ¢(a))"+
i#i 1,[a,xo]
ZHHDXH oo (LT 96 ((6) = p(x0))" ¢, (50)
[xob] |57
j#i lr[xl)/b]

proving (66).
Ifo ¢ Nanda > 1,thenn = [a] > 1,andn—1 > 1 > B(n—a). Hence n —
B(n—a) >1and u > 1. So we have

|91P(f1, fr)(X())| i /axo 11!‘(/)]'360(3(” 1"(1‘14)
=

i=1
J#

([ w00 - g0y | (M8 5) ) ]ar)as] +

b r 1
L[ Tl | 5

0] j=1
Jj#
([ o vy (o) ofar)ax|| < 1)
1 r H X0 -1 r '
1 2| | 1258 gy [ 960 =90 | Tl 0]
J#
b
o Y AT Rt b R |
i
i - HmB¥ ¢ ]4 1
F(mg |5 Ly P Hq"f"‘) t®
]#l 1[a,x0] |
Hpy Py _ 11T o —
H Yot fi Ll([xob]llf( y(b) lp(xo))” ]_llq)lxo -
i# 1,[x0,b]
H -1
w1 | EPE AL Hgom ($(x0) ~ (@) 4 (69

]7&1 1,[a,x0)
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3] el T H% (o) = p()" "
J?él 1,[xob]
proving (67).
Leta > O with [a] =n € N,andletp,qg > 1: %—i—% =1, witha > % Clearly

n > % Let0 < B < 1, then aff > g,furthermorey:n(l—ﬁ)+/3a> §+n(1—ﬁ) >

Ei1-p= §+l+l—§—§ Lyl(1-p) >} Thatispu > L.
From (81), by using Holder’s inequality twice, we have

1
|6¥(f1, s fr) (0)] < )
pu=1)+1
Lo f () = 9) 7 [lgape el
z; /a g’q)]xo(x” (p(y—1)+1)% ” Xo— fl) qa([axol,¥) *
jFL
(p—1)+1
b () = 90) " 7 gy _
N pemrrwrn ] I | R
J#i
1

==

F(u)(p(p—1)+1)

aive ]-If{\qojxom! (o) = o))" 3 O]

i=1

j#i
e p—1 || Hpy B
[ om0l | e = w7 [1pife ax| | <
X | j=1 Lg([x0.b],%)
j#i
1
() (p(p—1) +1)7
| (i (e ¢)<¢(xo>f¢<a>>’*‘% [T + (85)
i=1 AL j=1
L j# 1,[a,xo]
‘H]D)iolilpfl Lq([x0,b], lP)(lp(b)_lp(xo))V_% Hq)]xo =
J?él 1,[xo,b]
1
() (p(p—1) +1)7
Yy [Hme g, T ((x0) — p(a))" 1+ (86)
i=1 j=1

J# 1,[a,x0)
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By

i),

T
| LT o1, ((b) = p(x0)* 7 ¢,
=1
j#i 1,[xo,b]
proving (68). O
Next we present a ¢-Hilfer-Hilbert-Pachpatte left fractional inequality:
Theorem 12. Let i = 1,2; y;, fi € C"i([a;, b;]), with ; being strictly increasing over [a;, b;],

where n; —1 < a; < n;, 0 < B; <1, and v; = a; + Bi(n; — a;), x; € [a;,b;]. Assume that
f}giiki] (Ié};ﬁi)("ﬁ“");%ﬁ) (a;) =0, fork; =1,..,n; — 1. Letalso p,q > 1: % + % =1, such

i

that oy > %and ap > %. Then

/bl /bz | f1(x1) || f2(x2) [dx1dx2 -
M ( 1 (11) =g (ag)P 1D + (#Jz(xz)lﬁz(ﬂz))q(azl)ﬂ) o

p(p(a;—1)[+1) q(q(a2—-1)+1)
(b1 —a1)(b2 a2) Hm*1,B1:41 Hypy%2 P22
r(le)r( H ]D)ﬂ1+ f HLq 111 bl l/)] El2+ f HLP [u2 bz] lpz (87)
Proof. By Theorem 2 we have
1 X o Bt
filxi) = ) /a () (i) — (1) PGP £y (), (88)
Y x; € [{Ili,bl’],i =1,2.
Then
1 i
()] < /(t. Ax.) — 1h. 0‘1 H “t /51 Yi .
G| < iy L 0 @it = guCe) ™ [P p e (59)
i=1,2,Vx € [ai,bi].
By Holder’s inequality we obtain
L i) - )T
x < 1(X1) — Y141 s HD“lfﬁl;lpl , 90
Al < I'(ar) (p(ag —1) _|_1)% H e S Ly([ay,b1]41) ®0)
Vx1 € [a1,b1],
and
1 (o)~ pae))" T
o) < 2(X2) — Palan 1 Hppy%2.P2; le 91
Vx € [az, b2].
Hence we have
1
| (x)[|f2(x2)] < : T
I(a1)(a2)(p(ar —1) +1)7 (q(az — 1) + 1)1
p(al 1)+1 q(ag—1)+1
(¥1(x1) — ¥1(a1)) (P2(x2) — o(a2)) 7 (92)
Hma1.B1¢1 Hpp%2.P2iy2
H DalJr fi HLq([ﬂl bil.1) a2+ f2 HLp ([a2,b2],42)
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(using Young’s inequality for a,b > 0, arbi < % + g)

1 () (@) T (o) — o) g
(w2) p

[(ap)T (plar —1)+1) q(q(az —1) +1)
Hm1,B1:%1 H “2rﬁz,¢2
H D‘“* h HLq ([a1,b1],91) ”2+ fa HL,, (Jaz,ba]2)
Y x; € [ai,bi];i =1,2.
So far we have
|f1(x1) || f2(x2)| < 4)
(1 (x1) =1 (@) (1) + (2(x2) —a(a)) (2" D+
p(p(a;—1)+1) q(q(az—1)+1)
Hm*1.P1:¢1 H fxzrﬁz,lliz
H D“1+ f HLq ([a1,b1),91) ”2+ f HL,, ([a2,b2),92)
I(a1)l(a2) ’

V€ [ai,bi];i =1,2.
The denominator in (94) can be zero only when x; = 41 and x; = a».
Therefore we obtain (87), by integrating (94) over [a1, b1] X [ap,by]. O

It follows the right side analog of last theorem.
Theorem 13. Let i = 1,2; y;, fi € C"i([a;, b;]), with ; being strictly increasing over [a;, b;],
wherenl—l <wa;<n,0<B; <1, and'yZ =w; + Bi(n; —w;), x; € [a;,b;]. Letalsop,q > 1:

1 —I— g = L such that ay > ¢ and ap > +. Assume thatf[n’ ]<I£41: )(nl_“)lp’fl)( i) =0, for
k 1,. — 1. Then

/bl /”2 Lf1(x1) 1 fa(x2) [ dx1dx2 <
ap Jap ((l,l’l(hl)1,01(361))’7(0‘11)+1 +(¢2(h2)¢2(xz))q(a21)+1> N

p(p(a;—1)[+1) q(q(az—1)+1)
(by — al)(bZ Hmy&1.81:%1 Hypya2 P22
T(aq)T (a2 H Dbl* h HL,7 (Ja1,b1),91) bz* fa HL}, (Jaz,ba)92) (95)

Proof. Similar to Theorem 12, by the use of (30). [

We continue with other Hilfer-Hilbert-Pachpatte fractional inequalities.

Theorem 14. Leti =1,2;,a; > 0,a; ¢ N, [D&l‘-| =n;,0<B; <1, fi € C”i([ai,bi]), [ﬂi,bi] CcCR
and set v; = a; + Bi(n; — a;). Assume further that A}, f; € C([a;, bj]) : Azii;]"fi(ai) =0, for
ji=1,..,n;. Letalsow; > 0: [a;] = n;, with%y; = &; + p;(n; — w;), and assume that a; > ®;
and «y; > ;. Furthermore let p,q > 1 : % + % =1, such that xy > % and ay > %. Then

HmyA2.P2
Du2+ f2 xz ‘dxlde

b PO ()|
<
/111 / ((xl ”1 "‘1 a1—1)+1 (Xz*ﬂz) (zxz & — 1)+1> ~

p(plar—@—1)[+1) q(q(ax—m—1)+1)
(b1 —a1)(b2 — Hp b1 Hyyt2.2
F(le — le)r(DCQ — th H m+ f HLq ([a1,01]) ‘ Du2+ f HL,, [uz,bz] (%)

Proof. Similar to Theorem 12, by the use of Theorem 4. [

It follows
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Theorem 15. Leti=1,20; > 0,0; ¢ N, [a;] =1n;,0 < B; <1, f; € C"({a;, by]), [a;, bi] CR
and set y; = a; + Bi(n; — a;). Assume further that A% _fi € C([a;, by]) - A% ]’fl( i) =0, for
ji=1,..,n; Letalsow; > 0: [a;] =1, with7y; = vc, + Bi(n; — a;), and assume that n; > &;
and «y; > ;. Furthermore let p,q > 1 : % + % =1, such that a0y > % and ay > % Then

by by ’HD 1/31f1(951)‘ HDzjfzfz(xz)‘dxldxz -
Al / < by — xl "‘1 T — 1)+1 (bzxz)q(a2a21)+l> >

p(p(ar—a;—1)[+1) q(q(a—a2—1)+1)
(b1 —a1)(ba — Hpy b1 Hpy2.b2
T(ar — @)l (a2 — @) H gl Ly( [al,bﬂ)‘ e Ly(lazba])’ 7
Proof. Similar to Theorem 12, by the use of Theorem 5. O
We finish with two applications:
Corollary 1. All as in Theorem 12, with i (x1) = €*1, P (x2) = e*2. Then
/bl /b2 f1(x1)[|f2(x2) |dx1dxa
a (%1 —em )P4 vy _pmpya(ap-1)+1\ T
P(P(wl Di+1) q(q(az—1)+1)
(bl B al) (b2 H “1//51/ H 062,‘52,3 2
F(D{l)r( H Dul+ f HLq 111 h] ﬂ2+ f HLP [112 bz] e"2 (98)

Proof. By Theorem 12. [

Corollary 2. All as in Theorem 13, with [a;,b;] C (0,400), i = 1,2; and ¢1(x1) = Inxq,
Po(x2) = Inxy. Then

/ /l’z |f1 (1) f2(x2) [dxy dxa

pac 1)+1 q(ar—1)+1
bl 1-1) lnz%)(z)

p(p(m DFD) T e -1+1)

(b1 — a1)(by — a) ‘ Hp Brinx; H
I'(a1)T (a2) b= ULy (faybn)in )

Proof. By Theorem 13. O

H a2r,32rln X2
]D) . 99
‘ f2 HLp([”z,bz],ln x2) ®9)
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