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1. Introduction

We are motivated by the following famous Polya’s integral inequality, see [5], [6, p.
62], [7] and [8, p. 83].

Theorem 1. Let f (x) be a differentiable and not identically a constant on [a, b] with f (a) =
f (b) = 0. Then there exists at least one point ξ ∈ [a, b] such that

∣∣ f ′(ξ)∣∣ > 4

(b− a)2

∫ b

a
f (x)dx. (1)

We are inspired also by the related first fractional Polya Inequality, see Chapter 2, p. 9,
[2].

In this article we establish fractional integral inequalities using the Hilfer and ψ-Hilfer
fractional derivatives. These are of Polya, Ostrowski and Hilbert-Pachpatte types.

2. Background

Let −∞ < a < b < ∞, the left and right Riemann-Liouville fractional integrals of
order α ∈ C (R(α) > 0) are defined by

(Iα
a+ f )(x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, (2)

x > a; where Γ stands for the gamma function,
and (

Iα
b− f

)
(x) =

1
Γ(α)

∫ b

x
(t− x)α−1 f (t)dt, (3)

x < b.
The Riemann-Liouville left and right fractional derivatives of order α ∈ C (R(α) ≥ 0)

are defined by

(∆α
a+y)(x) =

(
d

dx

)n(
In−α
a+ y

)
(x) =

1
Γ(n− α)

(
d

dx

)n ∫ x

a
(x− t)n−α−1y(t)dt (4)
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(n = dR(α)e, d·emeans ceiling of the number; x > a)

(
∆α

b−y
)
(x) = (−1)n

(
d

dx

)n(
In−α
b− y

)
(x) =

(−1)n

Γ(n− α)

(
d

dx

)n ∫ b

x
(t− x)n−α−1y(t)dt (5)

(n = dR(α)e; x < b), respectively, whereR(α) is the real part of α.
In particular, when α = n ∈ Z+, then(

∆0
a+y
)
(x) =

(
∆0

b−y
)
(x) = y(x);

(∆n
a+y)(x) = y(n)(x), and

(
∆n

b−y
)
(x) = (−1)ny(n)(x), n ∈ N,

see [9].
Let α > 0, I = [a, b] ⊂ R, f an integrable function defined on I and ψ ∈ C1(I) an

increasing function such that ψ′(x) 6= 0, for all x ∈ I. Left fractional integrals and left
Riemann-Liouville fractional derivatives of a function f with respect to another function ψ
are defined as ([4], [9])

Iα,ψ
a+ f (x) =

1
Γ(α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))α−1 f (t)dt, (6)

and

∆α,ψ
a+ f (x) =

(
1

ψ′(x)
d

dx

)n
In−α,ψ
a+ f (x) = (7)

1
Γ(n− α)

(
1

ψ′(x)
d

dx

)n ∫ x

a
ψ′(t)(ψ(x)− ψ(t))n−α−1 f (t)dt,

respectively, where n = dαe.
Similarly, we define the right ones:

Iα,ψ
b− f (x) =

1
Γ(α)

∫ b

x
ψ′(t)(ψ(t)− ψ(x))α−1 f (t)dt, (8)

and

∆α,ψ
b− f (x) =

(
− 1

ψ′(x)
d

dx

)n
In−α,ψ
b− f (x) =

1
Γ(n− α)

(
− 1

ψ′(x)
d

dx

)n ∫ b

x
ψ′(t)(ψ(t)− ψ(x))n−α−1 f (t)dt. (9)

The following semigroup property holds; if α, β > 0, f ∈ C(I), then

Iα,ψ
a+ Iβ,ψ

a+ f = Iα+β,ψ
a+ f and Iα,ψ

b− Iβ,ψ
b− f = Iα+β,ψ

b− f .

Next let again α > 0, n = dαe, I = [a, b], f , ψ ∈ Cn(I) : ψ is increasing and ψ′(x) 6= 0, for
all x ∈ I. The left ψ-Caputo fractional derivative of f of order α is given by ([1])

CDα,ψ
a+ f (x) = In−α,ψ

a+

(
1

ψ′(x)
d

dx

)n
f (x), (10)

and the right ψ-Caputo fractional derivative ([1])

CDα,ψ
b− f (x) = In−α,ψ

b−

(
− 1

ψ′(x)
d

dx

)n
f (x). (11)
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We set

f [n]ψ (x) := f (n)ψ f (x) :=
(

1
ψ′(x)

d
dx

)n
f (x). (12)

Clearly, when α = m ∈ N we have

CDα,ψ
a+ f (x) = f [m]

ψ (x) and CDα,ψ
b− f (x) = (−1)m f [m]

ψ (x),

and if α /∈ N, then

CDα,ψ
a+ f (x) =

1
Γ(n− α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))n−α−1 f [n]ψ (t)dt, (13)

and
CDα,ψ

b− f (x) =
(−1)n

Γ(n− α)

∫ b

x
ψ′(t)(ψ(t)− ψ(x))n−α−1 f [n]ψ (t)dt. (14)

If ψ(x) = x, then we get the usual left and right Caputo fractional derivatives

CDm
a+ f (x) = f (m)(x), CDm

b− f (x) = (−1)m f (m)(x),

for m ∈ N, and (α /∈ N)

Dα
∗a f (x) = CDα

a+ f (x) =
1

Γ(n− α)

∫ x

a
(x− t)n−α−1 f (n)(t)dt, (15)

Dα
b−(x) = CDα

b− f (x) =
(−1)n

Γ(n− α)

∫ b

x
(t− x)n−α−1 f (n)(t)dt. (16)

Also we set
CD0,ψ

a+ f (x) = CD0,ψ
b− f (x) = f (x).

Next we will deal with the ψ-Hilfer fractional derivative.

Definition 1. ([11]) Let n − 1 < α < n, n ∈ N, I = [a, b] ⊂ R and f , ψ ∈ Cn([a, b]), ψ
is increasing and ψ′(x) 6= 0, for all x ∈ I. The ψ-Hilfer fractional derivative (left-sided and
right-sided) HDα,β;ψ

a+(b−) f of order α and type 0 ≤ β ≤ 1, respectively, are defined by

HDα,β;ψ
a+ f (x) = Iβ(n−α);ψ

a+

(
1

ψ′(x)
d

dx

)n
I(1−β)(n−α);ψ
a+ f (x), (17)

and
HDα,β;ψ

b− f (x) = Iβ(n−α);ψ
b−

(
− 1

ψ′(x)
d

dx

)n
I(1−β)(n−α);ψ
b− f (x), x ∈ [a, b]. (18)

The original Hilfer fractional derivatives ([10]) come from ψ(x) = x, and are denoted by HDα,β
a+ f (x)

and HDα,β
b− f (x).

When β = 0, we get Riemann-Liouville fractional derivatives, while when β = 1 we have
Caputo type fractional derivatives.

We define γ = α + β(n− α). We notice that n− 1 < α ≤ α + β(n− α) ≤ α + n− α = n,
hence dγe = n. We can easily write that ([11])

HDα,β;ψ
a+ f (x) = Iγ−α;ψ

a+ ∆γ;ψ
a+ f (x), (19)

and
HDα,β;ψ

b− f (x) = Iγ−α;ψ
b− ∆γ;ψ

b− f (x), x ∈ [a, b]. (20)

We have that ([11])

∆γ,ψ
a+ f (x) =

(
1

ψ′(x)
d

dx

)n
I(1−β)(n−α);ψ
a+ f (x), (21)
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and

∆γ,ψ
b− f (x) =

(
− 1

ψ′(x)
d

dx

)n
I(1−β)(n−α);ψ
b− f (x). (22)

In particular, when 0 < α < 1 and 0 ≤ β ≤ 1; γ = α + β(1− α), we have that

HDα,β;ψ
a+ f (x) =

1
Γ(γ− α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))γ−α−1∆γ;ψ

a+ f (t)dt, (23)

and
HDα,β;ψ

b− f (x) =
1

Γ(γ− α)

∫ b

x
ψ′(t)(ψ(t)− ψ(x))γ−α−1∆γ;ψ

b− f (t)dt, (24)

x ∈ [a, b].

Remark 1. ( [11]) Let µ = n(1− β) + βα, then dµe = n.
Assume that g(x) = I(1−β)(n−α);ψ

a+ f (x) ∈ Cn([a, b]), we have that

HDα,β;ψ
a+ f (x) = In−µ;ψ

a+

(
1

ψ′(x)
d

dx

)n
g(x). (25)

Thus
HDα,β;ψ

a+ f = CDµ;ψ
a+ g(x) = CDµ;ψ

a+

[
I(1−β)(n−α);ψ
a+ f (x)

]
. (26)

Assume that w(x) = I(1−β)(n−α);ψ
b− f (x) ∈ Cn([a, b]). Hence

HDα,β;ψ
b− f (x) = Iβ(n−α);ψ

b−

(
− 1

ψ′(x)
d

dx

)n
w(x) = In−µ;ψ

b−

(
− 1

ψ′(x)
d

dx

)n
w(x). (27)

Thus
HDα,β;ψ

b− f = CDµ;ψ
b− w(x) = CDµ;ψ

b−

(
I(1−β)(n−α);ψ
b− f (x)

)
. (28)

We mention the simplified ψ-Hilfer fractional Taylor formulae:

Theorem 2. (see also [11]) Let ψ, f ∈ Cn([a, b]), with ψ being increasing such that ψ′(x) 6= 0
over [a, b], where n− 1 < α < n, 0 ≤ β ≤ 1, and γ = α + β(n− α), x ∈ [a, b]. Then

f (x)−
n−1

∑
k=1

(ψ(x)− ψ(a))γ−k

Γ(γ− k + 1)
f [n−k]
ψ

(
I(1−β)(n−α);ψ
a+ f

)
(a) =

1
Γ(α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))α−1 HDα,β;ψ

a+ f (t)dt, (29)

and

f (x)−
n−1

∑
k=1

(−1)k(ψ(b)− ψ(x))γ−k

Γ(γ− k + 1)
f [n−k]
ψ

(
I(1−β)(n−α);ψ
b− f

)
(b) =

1
Γ(α)

∫ b

x
ψ′(t)(ψ(t)− ψ(x))α−1 HDα,β;ψ

b− f (t)dt. (30)

Here notice that
(

I(1−β)(n−α);ψ
a+ f

)
(a) =

(
I(1−β)(n−α);ψ
b− f

)
(b) = 0.

We also mention the following alternative ψ-Hilfer fractional Taylor formulae:

Theorem 3. ([3]) Let f , ψ ∈ Cn([a, b]), with ψ being increasing, ψ′(x) 6= 0 over [a, b] ⊂ R,
α > 0 : dαe = n, 0 ≤ β ≤ 1, µ = n(1− β) + βα. Assume that g(x) = I(1−β)(n−α);ψ

a+ f (x),

w(x) = I(1−β)(n−α);ψ
b− f (x) ∈ Cn([a, b]).

Then

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 March 2021                   doi:10.20944/preprints202103.0064.v1

https://doi.org/10.20944/preprints202103.0064.v1


Journal Not Specified 2021, 1, 0 5 of 19

1)

Iµ;ψ
a+

HDα,β;ψ
a+ f (x) = g(x)−

n−1

∑
k=0

g[k]ψ (a)

k!
(ψ(x)− ψ(a))k, (31)

where

g[k]ψ (x) =
(

1
ψ′(x)

d
dx

)k
g(x), k = 0, 1, ..., n− 1,

and
2)

Iµ;ψ
b−

HDα,β;ψ
b− f (x) = w(x)−

n−1

∑
k=0

(−1)kw[k]
ψ (b)

k!
(ψ(b)− ψ(x))k, (32)

where

w[k]
ψ (x) =

(
1

ψ′(x)
d

dx

)k
w(x), k = 0, 1, ..., n− 1; x ∈ [a, b].

Next we list two Hilfer fractional derivatives representation formulae:

Theorem 4. ([3]) Let α > 0, α /∈ N, dαe = n, 0 < β < 1; f ∈ Cn([a, b]), [a, b] ⊂ R; and set
γ = α + β(n− α). Assume further that ∆γ

a+ f ∈ C([a, b]) : ∆γ−j
a+ f (a) = 0, for j = 1, ..., n. Let

also α > 0 : dαe = n, with γ = α + β(n− α), and assume that α > α and γ > γ. Then

HDα,β
a+ f (x) =

1
Γ(α− α)

∫ x

a
(x− t)α−α−1 HDα,β

a+ f (t)dt, (33)

∀ x ∈ [a, b],
furthermore HDα,β

a+ f ∈ AC([a, b]) (absolutely continuous functions) if α − α ≥ 1 and
HDα,β

a+ f ∈ C([a, b]) if α− α ∈ (0, 1).

Theorem 5. ([3]) Let α > 0, α /∈ N, dαe = n, 0 < β < 1; f ∈ Cn([a, b]), [a, b] ⊂ R; and set
γ = α + β(n− α). Assume further that ∆γ

b− f ∈ C([a, b]) : ∆γ−j
b− f (b) = 0, j = 1, ..., n. Let also

α > 0 : dαe = n, with γ = α + β(n− α), and assume that α > α and γ > γ. Then

HDα,β
b− f (x) =

1
Γ(α− α)

∫ b

x
(t− x)α−α−1 HDα,β

b− f (t)dt, (34)

∀ x ∈ [a, b],
furthermore HDα,β

b− f ∈ AC([a, b]) if α− α ≥ 1 and HDα,β
b− f ∈ C([a, b]) if α− α ∈ (0, 1).

3. Main Results

We present the following Hilfer-Polya type fractional inequalities:

Theorem 6. Let α > 0, α /∈ N, dαe = n, 0 < β < 1; f ∈ Cn([a, b]), [a, b] ⊂ R; and set
γ = α + β(n− α). Assume further that ∆γ

a+ f ∈ C([a, b]) : ∆γ−j
a+ f (a) = 0, for j = 1, ..., n; and

∆γ
b− f ∈ C([a, b]) : ∆γ−j

b− f (b) = 0, j = 1, ..., n. Let also α > 0 : dαe = n, with γ = α+ β(n− α),
and assume that α > α and γ > γ.

Set

HDα,β f (x) :=


HDα,β

a+ f (x), x ∈
[

a, a+b
2

]
,

HDα,β
b− f (x), x ∈

(
a+b

2 , b
]
,

(35)

and

M1 := max
{∥∥∥HDα,β

a+ f
∥∥∥

∞,[a, a+b
2 ]

,
∥∥∥HDα,β

b− f
∥∥∥

∞,[ a+b
2 ,b]

}
. (36)
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Then ∣∣∣∣∫ b

a

HDα,β f (x)dx
∣∣∣∣ ≤ ∫ b

a

∣∣∣HDα,β f (x)
∣∣∣dx ≤ M1(b− a)α−α+1

2α−αΓ(α− α + 2)
. (37)

Proof. From (33) we have

HDα,β
a+ f (x) =

1
Γ(α− α)

∫ x

a
(x− t)α−α−1 HDα,β

a+ f (t)dt, (38)

∀ x ∈
[

a, a+b
2

]
.

By (34), we get

HDα,β
b− f (x) =

1
Γ(α− α)

∫ b

x
(t− x)α−α−1 HDα,β

b− f (t)dt, (39)

∀ x ∈
[

a+b
2 , b

]
.

We derive that

∣∣∣HDα,β
a+ f (x)

∣∣∣ ≤
∥∥∥HDα,β

a+ f
∥∥∥

∞,[a, a+b
2 ]

Γ(α− α + 1)
(x− a)α−α, (40)

∀ x ∈
[

a, a+b
2

]
,

and similarly,

∣∣∣HDα,β
b− f (x)

∣∣∣ ≤
∥∥∥HDα,β

b− f
∥∥∥

∞,[ a+b
2 ,b]

Γ(α− α + 1)
(b− x)α−α, (41)

∀ x ∈
[

a+b
2 , b

]
.

We notice that:∫ b

a

HDα,β f (x)dx =
∫ a+b

2

a

HDα,β f (x)dx +
∫ b

a+b
2

HDα,β f (x)dx =

∫ a+b
2

a

HDα,β
a+ f (x)dx +

∫ b

a+b
2

HDα,β
b− f (x)dx. (42)

We further derive that

∫ a+b
2

a

∣∣∣HDα,β
a+ f (x)

∣∣∣dx ≤

∥∥∥HDα,β
a+ f

∥∥∥
∞,[a, a+b

2 ]

Γ(α− α + 1)

∫ a+b
2

a
(x− a)α−αdx = (43)

∥∥∥HDα,β
a+ f

∥∥∥
∞,[a, a+b

2 ]

Γ(α− α + 2)

(
a + b

2
− a
)α−α+1

=

∥∥∥HDα,β
a+ f

∥∥∥
∞,[a, a+b

2 ]

Γ(α− α + 2)

(
b− a

2

)α−α+1
.

That is, it holds

∫ a+b
2

a

∣∣∣HDα,β
a+ f (x)

∣∣∣dx ≤

∥∥∥HDα,β
a+ f

∥∥∥
∞,[a, a+b

2 ]

Γ(α− α + 2)

(
b− a

2

)α−α+1
. (44)
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Similarly, it holds

∫ b

a+b
2

∣∣∣HDα,β
b− f (x)

∣∣∣dx ≤

∥∥∥HDα,β
b− f

∥∥∥
∞,[ a+b

2 ,b]

Γ(α− α + 2)

(
b− a

2

)α−α+1
. (45)

Therefore, we obtain ∣∣∣∣∫ b

a

HDα,β f (x)dx
∣∣∣∣ ≤ ∫ b

a

∣∣∣HDα,β f (x)
∣∣∣dx =

∫ a+b
2

a

∣∣∣HDα,β
a+ f (x)

∣∣∣dx +
∫ b

a+b
2

∣∣∣HDα,β
b− f (x)

∣∣∣dx ≤∥∥∥HDα,β
a+ f

∥∥∥
∞,[a, a+b

2 ]

Γ(α− α + 2)

(
b− a

2

)α−α+1
+

∥∥∥HDα,β
b− f

∥∥∥
∞,[ a+b

2 ,b]

Γ(α− α + 2)

(
b− a

2

)α−α+1
= (46)

(
b−a

2

)α−α+1

Γ(α− α + 2)

[∥∥∥HDα,β
a+ f

∥∥∥
∞,[a, a+b

2 ]
+
∥∥∥HDα,β

b− f
∥∥∥

∞,[ a+b
2 ,b]

]
≤

2M1(b− a)α−α+1

2α−α+1Γ(α− α + 2)
=

M1(b− a)α−α+1

2α−αΓ(α− α + 2)
.

We continue with the L1-variant:

Theorem 7. All as in Theorem 6 with α− α > 1 (i.e. α > α + 1). Call

M2 := max
{∥∥∥HDα,β

a+ f
∥∥∥

1,[a, a+b
2 ]

,
∥∥∥HDα,β

b− f
∥∥∥

1,[ a+b
2 ,b]

}
. (47)

Then ∣∣∣∣∫ b

a

HDα,β f (x)dx
∣∣∣∣ ≤ ∫ b

a

∣∣∣HDα,β f (x)
∣∣∣dx ≤ M2(b− a)α−α

2α−α−1Γ(α− α + 1)
. (48)

Proof. By (38) we have∣∣∣HDα,β
a+ f (x)

∣∣∣ ≤ 1
Γ(α− α)

∫ x

a
(x− t)α−α−1

∣∣∣HDα,β
a+ f (t)

∣∣∣dt ≤

(x− a)α−α−1

Γ(α− α)

∥∥∥HDα,β
a+ f

∥∥∥
1,[a, a+b

2 ]
, (49)

∀ x ∈
[

a, a+b
2

]
.

Similarly, from (39) we find that

∣∣∣HDα,β
b− f (x)

∣∣∣ ≤ (b− x)α−α−1

Γ(α− α)

∥∥∥HDα,β
b− f

∥∥∥
1,[ a+b

2 ,b]
, (50)

∀ x ∈
[

a+b
2 , b

]
.

Furthermore we obtain

∫ a+b
2

a

∣∣∣HDα,β
a+ f (x)

∣∣∣dx ≤

∥∥∥HDα,β
a+ f

∥∥∥
1,[a, a+b

2 ]

Γ(α− α)

∫ a+b
2

a
(x− a)α−α−1dx =
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∥∥∥HDα,β
a+ f

∥∥∥
1,[a, a+b

2 ]

Γ(α− α + 1)

(
b− a

2

)α−α

. (51)

Similarly, we derive

∫ b

a+b
2

∣∣∣HDα,β
b− f (x)

∣∣∣dx ≤

∥∥∥HDα,β
b− f

∥∥∥
1,[ a+b

2 ,b]

Γ(α− α + 1)

(
b− a

2

)α−α

. (52)

Therefore we obtain ∣∣∣∣∫ b

a

HDα,β f (x)dx
∣∣∣∣ ≤ ∫ b

a

∣∣∣HDα,β f (x)
∣∣∣dx =

∫ a+b
2

a

∣∣∣HDα,β
a+ f (x)

∣∣∣dx +
∫ b

a+b
2

∣∣∣HDα,β
b− f (x)

∣∣∣dx ≤[∥∥∥HDα,β
a+ f

∥∥∥
1,[a, a+b

2 ]
+
∥∥∥HDα,β

b− f
∥∥∥

1,[ a+b
2 ,b]

]
Γ(α− α + 1)

(
b− a

2

)α−α

≤ (53)

2M2

Γ(α− α + 1)
(b− a)α−α

2α−α
=

M2

Γ(α− α + 1)
(b− a)α−α

2α−α−1 .

Next comes the Lq-variant of Hilfer-Polya fractional inequality:

Theorem 8. All as in Theorem 6 with α− α > 1
q , where p, q > 1 : 1

p + 1
q = 1. Call

M3 := max
{∥∥∥HDα,β

a+ f
∥∥∥

q,[a, a+b
2 ]

,
∥∥∥HDα,β

b− f
∥∥∥

q,[ a+b
2 ,b]

}
. (54)

Then ∣∣∣∣∫ b

a

HDα,β f (x)dx
∣∣∣∣ ≤ ∫ b

a

∣∣∣HDα,β f (x)
∣∣∣dx ≤

M3

Γ(α− α)(p(α− α− 1) + 1)
1
p
(

α− α + 1
p

) (b− a)α−α+ 1
p

2α−α− 1
q

. (55)

Proof. By (38) we have∣∣∣HDα,β
a+ f (x)

∣∣∣ ≤ 1
Γ(α− α)

∫ x

a
(x− t)α−α−1

∣∣∣HDα,β
a+ f (t)

∣∣∣dt ≤

1
Γ(α− α)

(∫ x

a
(x− t)p(α−α−1)dt

) 1
p ∥∥∥HDα,β

a+ f
∥∥∥

q,[a, a+b
2 ]

=

(x− a)
(

α−α− 1
q

)
Γ(α− α)(p(α− α− 1) + 1)

1
p

∥∥∥HDα,β
a+ f

∥∥∥
q,[a, a+b

2 ]
, (56)

∀ x ∈
[

a, a+b
2

]
, with α− α > 1

q .
And, by (39), similarly we derive

∣∣∣HDα,β
b− f (x)

∣∣∣ ≤ (b− x)
(

α−α− 1
q

)
Γ(α− α)(p(α− α− 1) + 1)

1
p

∥∥∥HDα,β
b− f

∥∥∥
q,[ a+b

2 ,b]
, (57)
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∀ x ∈
[

a+b
2 , b

]
, with α− α > 1

q .
Consequently, we obtain that

∫ a+b
2

a

∣∣∣HDα,β
a+ f (x)

∣∣∣dx ≤

∥∥∥HDα,β
a+ f

∥∥∥
q,[a, a+b

2 ]

Γ(α− α)(p(α− α− 1) + 1)
1
p

∫ a+b
2

a
(x− a)

(
α−α− 1

q

)
dx =

∥∥∥HDα,β
a+ f

∥∥∥
q,[a, a+b

2 ]

Γ(α− α)(p(α− α− 1) + 1)
1
p
(

α− α + 1
p

)( b− a
2

)α−α+ 1
p
. (58)

Similarly, we derive

∫ b

a+b
2

∣∣∣HDα,β
b− f (x)

∣∣∣dx ≤

∥∥∥HDα,β
b− f

∥∥∥
q,[ a+b

2 ,b]

Γ(α− α)(p(α− α− 1) + 1)
1
p
(

α− α + 1
p

)( b− a
2

)α−α+ 1
p
. (59)

Therefore, we obtain ∣∣∣∣∫ b

a

HDα,β f (x)dx
∣∣∣∣ ≤ ∫ b

a

∣∣∣HDα,β f (x)
∣∣∣dx =

(∥∥∥HDα,β
a+ f

∥∥∥
q,[a, a+b

2 ]
+
∥∥∥HDα,β

b− f
∥∥∥

q,[ a+b
2 ,b]

)
Γ(α− α)(p(α− α− 1) + 1)

1
p
(

α− α + 1
p

)( b− a
2

)α−α+ 1
p
≤ (60)

M3

Γ(α− α)(p(α− α− 1) + 1)
1
p
(

α− α + 1
p

) (b− a)α−α+ 1
p

2α−α− 1
q

,

proving the claim.

Next come ψ-Hilfer-Ostrowski type inequalities for several functions involved.
For basic ψ-Hilfer-Ostrowski type inequalities involving one function see [3].
We make

Remark 2. Our setting here follows: Let fi ∈ Cn([a, b]), α /∈ N, n = dαe, α > 0; i =

1, ..., r ∈ N− {1}, x0 ∈ [a, b]. Assume that g1i(x) = I(1−β)(n−α);ψ
x0+

fi(x) ∈ Cn([x0, b]) and

w1i(x) = I(1−β)(n−α);ψ
x0− fi(x) ∈ Cn([a, x0]), for all i = 1, ..., r.

Define

ϕix0(x) :=


g1i(x), x ∈ [x0, b]

w1i(x), x ∈ [a, x0)

. (61)

Notice that if β = 1, we get g1i(x0) = w1i(x0) = ϕix0(x0) = fi(x0), all i = 1, ..., r.
In general, for f ∈ C([a, b]) we have∣∣∣Iα,ψ

a+ f (x)
∣∣∣ ≤ 1

Γ(α)

∫ x

a
ψ′(t)(ψ(x)− ψ(t))α−1| f (t)|dt ≤

‖ f ‖∞,[a,b]

Γ(α + 1)
(ψ(x)− ψ(a))α, ∀ x ∈ [a, b]. (62)

Hence Iα,ψ
a+ f (a) = 0.
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Similalry, we have∣∣∣Iα,ψ
b− f (x)

∣∣∣ ≤ 1
Γ(α)

∫ b

x
ψ′(t)(ψ(t)− ψ(x))α−1| f (t)|dt ≤

‖ f ‖∞,[a,b]

Γ(α + 1)
(ψ(b)− ψ(x))α, ∀ x ∈ [a, b]. (63)

That is Iα,ψ
b− f (b) = 0.

So when 0 ≤ β < 1, by the above we obtain g1i(x0) = w1i(x0) = ϕix0(x0) = 0, for all
i = 1, ..., r.

Thus, it is always true that g1i(x0) = w1i(x0), i = 1, ..., r.

We present

Theorem 9. Let ψ, fi ∈ Cn([a, b]), α /∈ N, n = dαe, α > 0; i = 1, ..., r ∈ N− {1}, x0 ∈ [a, b].
Here ψ is increasing, ψ′(x) 6= 0 over [a, b] ⊂ R, 0 ≤ β ≤ 1, µ = n(1− β) + βα. Assume that
g1i(x) = I(1−β)(n−α);ψ

x0+
fi(x) ∈ Cn([x0, b]) and w1i(x) = I(1−β)(n−α);ψ

x0− fi(x) ∈ Cn([a, x0]), for

all i = 1, ..., r, and ϕix0(x) is as in (61). Assume also that g[k]1iψ(x0) = w[k]
1iψ(x0) = 0, for all

k = 1, ..., n− 1.
Then
1)

θψ( f1, ..., fr)(x0) := (64)

r
∫ b

a

(
r

∏
λ=1

ϕλx0(x)

)
dx−

r

∑
i=1

ϕix0(x0)
∫ b

a

 r

∏
j=1
j 6=i

ϕjx0(x)

dx

 =

r

∑
i=1


∫ x0

a

 r

∏
j=1
j 6=i

ϕjx0(x)

(Iµ;ψ
x0−

HDα,β;ψ
x0− fi(x)

)
dx

+
∫ b

x0

 r

∏
j=1
j 6=i

ϕjx0(x)

(Iµ;ψ
x0+

HDα,β;ψ
x0+

fi(x)
)

dx


,

and in case of 0 ≤ β < 1, we have that

θψ( f1, ..., fr)(x0) = r
∫ b

a

(
r

∏
λ=1

ϕλx0(x)

)
dx, (65)

2) furthermore, it holds

∣∣θψ( f1, ..., fr)(x0)
∣∣ ≤ 1

Γ(µ + 1)
 r

∑
i=1

∥∥∥HDα,β;ψ
x0− fi

∥∥∥
∞,[a,x0]

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[a,x0]

(ψ(x0)− ψ(a))µ+
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 r

∑
i=1

∥∥∥HDα,β;ψ
x0+

fi

∥∥∥
∞,[x0,b]

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[x0,b]

(ψ(b)− ψ(x0))
µ

. (66)

It follows the L1-variant.

Theorem 10. All as in Theorem 9, with α > 1. Then∣∣θψ( f1, ..., fr)(x0)
∣∣ ≤ 1

Γ(µ)
 r

∑
i=1

∥∥∥HDα,β;ψ
x0− fi

∥∥∥
L1([a,x0],ψ)

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[a,x0]

(ψ(x0)− ψ(a))µ−1+

 r

∑
i=1

∥∥∥HDα,β;ψ
x0+

fi

∥∥∥
L1([x0,b],ψ)

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[x0,b]

(ψ(b)− ψ(x0))
µ−1

. (67)

Next we have the Lq-variant.

Theorem 11. All as in Theorem 9. Let also p, q > 1 : 1
p + 1

q = 1 with α > 1
q . Then

∣∣θψ( f1, ..., fr)(x0)
∣∣ ≤ 1

Γ(µ)(p(µ− 1) + 1)
1
p

 r

∑
i=1

∥∥∥HDα,β;ψ
x0− fi

∥∥∥
Lq([a,x0],ψ)

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[a,x0]

(ψ(x0)− ψ(a))µ− 1
q +

 r

∑
i=1

∥∥∥HDα,β;ψ
x0+

fi

∥∥∥
Lq([x0,b],ψ)

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[x0,b]

(ψ(b)− ψ(x0))
µ− 1

q

. (68)

Proof. of Theorems 9-11.
By Theorem 3 we have

g1i(x)− g1i(x0) = Iµ;ψ
x0+

HDα,β;ψ
x0+

fi(x), ∀ x ∈ [x0, b],
and
w1i(x)− w1i(x0) = Iµ;ψ

x0−
HDα,β;ψ

x0− fi(x), ∀ x ∈ [a, x0],
(69)

for all i = 1, ..., r.
That is

ϕix0(x)− ϕix0(x0) = Iµ;ψ
x0+

HDα,β;ψ
x0+

fi(x), ∀ x ∈ [x0, b],
and
ϕix0(x)− ϕix0(x0) = Iµ;ψ

x0−
HDα,β;ψ

x0− fi(x), ∀ x ∈ [a, x0),
(70)

for all i = 1, ..., r.
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Multiplying (70) by

 r
∏
j=1
j 6=i

ϕjx0(x)

 we get, respectively,

r

∏
λ=1

ϕλx0(x)−

 r

∏
j=1
j 6=i

ϕjx0(x)

ϕix0(x0) =

 r

∏
j=1
j 6=i

ϕjx0(x)

Iµ;ψ
x0+

HDα,β;ψ
x0+

fi(x), (71)

∀ x ∈ [x0, b],
and

r

∏
λ=1

ϕλx0(x)−

 r

∏
j=1
j 6=i

ϕjx0(x)

ϕix0(x0) =

 r

∏
j=1
j 6=i

ϕjx0(x)

Iµ;ψ
x0−

HDα,β;ψ
x0− fi(x), (72)

∀ x ∈ [a, x0), for all i = 1, ..., r.
Adding (71) and (72), separately, we obtain

r

(
r

∏
λ=1

ϕλx0(x)

)
−

r

∑
i=1


 r

∏
j=1
j 6=i

ϕjx0(x)

ϕix0(x0)

 = (73)

r

∑
i=1


 r

∏
j=1
j 6=i

ϕjx0(x)

Iµ;ψ
x0+

HDα,β;ψ
x0+

fi(x)

,

∀ x ∈ [x0, b],
and

r

(
r

∏
λ=1

ϕλx0(x)

)
−

r

∑
i=1


 r

∏
j=1
j 6=i

ϕjx0(x)

ϕix0(x0)

 = (74)

r

∑
i=1


 r

∏
j=1
j 6=i

ϕjx0(x)

Iµ;ψ
x0−

HDα,β;ψ
x0− fi(x)

,

∀ x ∈ [a, x0).
Next integrate (73) and (74) with respect to x ∈ [a, b]. We have

r
∫ b

x0

(
r

∏
λ=1

ϕλx0(x)

)
dx−

r

∑
i=1

ϕix0(x0)
∫ b

x0

 r

∏
j=1
j 6=i

ϕjx0(x)

dx

 =

r

∑
i=1

∫ b

x0

 r

∏
j=1
j 6=i

ϕjx0(x)

(Iµ;ψ
x0+

HDα,β;ψ
x0+

fi(x)
)

dx

, (75)
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and

r
∫ x0

a

(
r

∏
λ=1

ϕλx0(x)

)
dx−

r

∑
i=1

ϕix0(x0)
∫ x0

a

 r

∏
j=1
j 6=i

ϕjx0(x)

dx

 =

r

∑
i=1

∫ x0

a

 r

∏
j=1
j 6=i

ϕjx0(x)

(Iµ;ψ
x0−

HDα,β;ψ
x0− fi(x)

)
dx

. (76)

Finally adding (75) and (76) we obtain the useful and nice identity (64).
Identity (64) implies

∣∣θψ( f1, ..., fr)(x0)
∣∣ ≤ r

∑
i=1


∫ x0

a

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
(Iµ;ψ

x0−

∣∣∣HDα,β;ψ
x0− fi

∣∣∣(x)
)

dx

+
∫ b

x0

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
(Iµ;ψ

x0+

∣∣∣HDα,β;ψ
x0+

fi

∣∣∣(x)
)

dx


 = (77)

r

∑
i=1


∫ x0

a

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
 1

Γ(µ)

(∫ x0

x
ψ′(t)(ψ(t)− ψ(x))µ−1

∣∣∣(HDα,β;ψ
x0− fi

)
(t)
∣∣∣dt
)

dx
]
+∫ b

x0

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
 1

Γ(µ)

(∫ x

x0

ψ′(t)(ψ(x)− ψ(t))µ−1
∣∣∣(HDα,β;ψ

x0+
fi

)
(t)
∣∣∣dt
)

dx
]]
≤

1
Γ(µ + 1)

r

∑
i=1


∥∥∥HDα,β;ψ

x0− fi

∥∥∥
∞,[a,x0]

∫ x0

a
(ψ(x0)− ψ(x))µ

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
dx

 (78)

+

∥∥∥HDα,β;ψ
x0+

fi

∥∥∥
∞,[x0,b]

∫ b

x0

(ψ(x)− ψ(x0))
µ

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
dx


 ≤

1
Γ(µ + 1)

r

∑
i=1


∥∥∥HDα,β;ψ

x0− fi

∥∥∥
∞,[a,x0]

(ψ(x0)− ψ(a))µ

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[a,x0]

+
∥∥∥HDα,β;ψ

x0+
fi

∥∥∥
∞,[x0,b]

(ψ(b)− ψ(x0))
µ

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[x0,b]


 = (79)
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1
Γ(µ + 1)


 r

∑
i=1

∥∥∥HDα,β;ψ
x0− fi

∥∥∥
∞,[a,x0]

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[a,x0]

(ψ(x0)− ψ(a))µ+

 r

∑
i=1

∥∥∥HDα,β;ψ
x0+

fi

∥∥∥
∞,[x0,b]

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[x0,b]

(ψ(b)− ψ(x0))
µ

, (80)

proving (66).
If α /∈ N and α > 1, then n = dαe > 1, and n − 1 ≥ 1 > β(n− α). Hence n −

β(n− α) > 1 and µ > 1. So we have

∣∣θψ( f1, ..., fr)(x0)
∣∣ ≤ r

∑
i=1


∫ x0

a

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
 1

Γ(µ)

(∫ x0

x
ψ′(t)(ψ(t)− ψ(x))µ−1

∣∣∣(HDα,β;ψ
x0− fi

)
(t)
∣∣∣dt
)

dx
]
+∫ b

x0

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
 1

Γ(µ)

(∫ x

x0

ψ′(t)(ψ(x)− ψ(t))µ−1
∣∣∣(HDα,β;ψ

x0+
fi

)
(t)
∣∣∣dt
)

dx
]]
≤ (81)

1
Γ(µ)

r

∑
i=1


∥∥∥HDα,β;ψ

x0− fi

∥∥∥
L1([a,x0],ψ)

∫ x0

a
(ψ(x0)− ψ(x))µ−1

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
dx



+

∥∥∥HDα,β;ψ
x0+

fi

∥∥∥
L1([x0,b],ψ)

∫ b

x0

(ψ(x)− ψ(x0))
µ−1

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
dx


 ≤

1
Γ(µ)

r

∑
i=1


∥∥∥HDα,β;ψ

x0− fi

∥∥∥
L1([a,x0],ψ)

(ψ(x0)− ψ(a))µ−1

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[a,x0]

+ (82)

∥∥∥HDα,β;ψ
x0+

fi

∥∥∥
L1([x0,b],ψ)

(ψ(b)− ψ(x0))
µ−1

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[x0,b]


 =

1
Γ(µ)


 r

∑
i=1

∥∥∥HDα,β;ψ
x0− fi

∥∥∥
L1([a,x0],ψ)

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[a,x0]

(ψ(x0)− ψ(a))µ−1+ (83)
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 r

∑
i=1

∥∥∥HDα,β;ψ
x0+

fi

∥∥∥
L1([x0,b],ψ)

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[x0,b]

(ψ(b)− ψ(x0))
µ−1

,

proving (67).
Let α > 0 with dαe = n ∈ N, and let p, q > 1 : 1

p + 1
q = 1, with α > 1

q . Clearly

n > 1
q . Let 0 < β ≤ 1, then αβ > β

q , furthermore µ = n(1− β) + βα > β
q + n(1− β) ≥

β
q + 1− β = β

q + 1
p + 1

q −
β
p −

β
q = 1

q +
1
p (1− β) ≥ 1

q . That is µ > 1
q .

From (81), by using Hölder’s inequality twice, we have

∣∣θψ( f1, ..., fr)(x0)
∣∣ ≤ 1

Γ(µ)

r

∑
i=1


∫ x0

a

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
 (ψ(x0)− ψ(x))

p(µ−1)+1
p

(p(µ− 1) + 1)
1
p

∥∥∥HDα,β;ψ
x0− fi

∥∥∥
Lq([a,x0],ψ)

dx

+
∫ b

x0

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
 (ψ(x)− ψ(x0))

p(µ−1)+1
p

(p(µ− 1) + 1)
1
p

∥∥∥HDα,β;ψ
x0+

fi

∥∥∥
Lq([x0,b],ψ)

dx


 = (84)

1

Γ(µ)(p(µ− 1) + 1)
1
p

r

∑
i=1


∫ x0

a

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
(ψ(x0)− ψ(x))µ− 1

q
∥∥∥HDα,β;ψ

x0− fi

∥∥∥
Lq([a,x0],ψ)

dx

+
∫ b

x0

 r

∏
j=1
j 6=i

∣∣ϕjx0(x)
∣∣
(ψ(x)− ψ(x0))

µ− 1
q
∥∥∥HDα,β;ψ

x0+
fi

∥∥∥
Lq([x0,b],ψ)

dx


 ≤

1

Γ(µ)(p(µ− 1) + 1)
1
p

r

∑
i=1


∥∥∥HDα,β;ψ

x0− fi

∥∥∥
Lq([a,x0],ψ)

(ψ(x0)− ψ(a))µ− 1
q

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[a,x0]

+ (85)

∥∥∥HDα,β;ψ
x0+

fi

∥∥∥
Lq([x0,b],ψ)

(ψ(b)− ψ(x0))
µ− 1

q

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[x0,b]


 =

1

Γ(µ)(p(µ− 1) + 1)
1
p

 r

∑
i=1

∥∥∥HDα,β;ψ
x0− fi

∥∥∥
Lq([a,x0],ψ)

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[a,x0]

(ψ(x0)− ψ(a))µ− 1
q + (86)
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 r

∑
i=1

∥∥∥HDα,β;ψ
x0+

fi

∥∥∥
Lq([x0,b],ψ)

∥∥∥∥∥∥∥∥
r

∏
j=1
j 6=i

ϕjx0

∥∥∥∥∥∥∥∥
1,[x0,b]

(ψ(b)− ψ(x0))
µ− 1

q

,

proving (68).

Next we present a ψ-Hilfer-Hilbert-Pachpatte left fractional inequality:

Theorem 12. Let i = 1, 2; ψi, fi ∈ Cni ([ai, bi]), with ψi being strictly increasing over [ai, bi],
where ni − 1 < αi < ni, 0 ≤ βi ≤ 1, and γi = αi + βi(ni − αi), xi ∈ [ai, bi]. Assume that
f [ni−ki ]
iψi

(
I(1−βi)(ni−αi);ψi
ai+

fi

)
(ai) = 0, for ki = 1, ..., ni − 1. Let also p, q > 1 : 1

p + 1
q = 1, such

that α1 > 1
q and α2 > 1

p . Then

∫ b1

a1

∫ b2

a2

| f1(x1)|| f2(x2)|dx1dx2(
(ψ1(x1)−ψ1(a1))

p(α1−1)+1

p(p(α1−1)|+1) + (ψ2(x2)−ψ2(a2))
q(α2−1)+1

q(q(α2−1)+1)

) ≤
(b1 − a1)(b2 − a2)

Γ(α1)Γ(α2)

∥∥∥HDα1,β1;ψ1
a1+

f1

∥∥∥
Lq([a1,b1],ψ1)

∥∥∥HDα2,β2;ψ2
a2+

f2

∥∥∥
Lp([a2,b2],ψ2)

. (87)

Proof. By Theorem 2 we have

fi(xi) =
1

Γ(αi)

∫ xi

ai

ψ′i(ti)(ψi(xi)− ψi(ti))
αi−1 HDαi ,βi ;ψi

ai+
fi(ti)dti, (88)

∀ xi ∈ [ai, bi], i = 1, 2.
Then

| fi(xi)| ≤
1

Γ(αi)

∫ xi

ai

ψ′i(ti)(ψi(xi)− ψi(ti))
αi−1

∣∣∣HDαi ,βi ;ψi
ai+

fi(ti)
∣∣∣dti, (89)

i = 1, 2, ∀ xi ∈ [ai, bi].
By Hölder’s inequality we obtain

| f1(x1)| ≤
1

Γ(α1)

(ψ1(x1)− ψ1(a1))
p(α1−1)+1

p

(p(α1 − 1) + 1)
1
p

∥∥∥HDα1,β1;ψ1
a1+

f1

∥∥∥
Lq([a1,b1],ψ1)

, (90)

∀ x1 ∈ [a1, b1],
and

| f2(x2)| ≤
1

Γ(α2)

(ψ2(x2)− ψ2(a2))
q(α2−1)+1

q

(q(α2 − 1) + 1)
1
q

∥∥∥HDα2,β2;ψ2
a2+

f2

∥∥∥
Lp([a2,b2],ψ2)

, (91)

∀ x2 ∈ [a2, b2].
Hence we have

| f1(x1)|| f2(x2)| ≤
1

Γ(α1)Γ(α2)(p(α1 − 1) + 1)
1
p (q(α2 − 1) + 1)

1
q

(ψ1(x1)− ψ1(a1))
p(α1−1)+1

p (ψ2(x2)− ψ2(a2))
q(α2−1)+1

q (92)∥∥∥HDα1,β1;ψ1
a1+

f1

∥∥∥
Lq([a1,b1],ψ1)

∥∥∥HDα2,β2;ψ2
a2+

f2

∥∥∥
Lp([a2,b2],ψ2)

≤
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(using Young’s inequality for a, b ≥ 0, a
1
p b

1
q ≤ a

p + b
q )

1
Γ(α1)Γ(α2)

(
(ψ1(x1)− ψ1(a1))

p(α1−1)+1

p(p(α1 − 1) + 1)
+

(ψ2(x2)− ψ2(a2))
q(α2−1)+1

q(q(α2 − 1) + 1)

)
(93)

∥∥∥HDα1,β1;ψ1
a1+

f1

∥∥∥
Lq([a1,b1],ψ1)

∥∥∥HDα2,β2;ψ2
a2+

f2

∥∥∥
Lp([a2,b2],ψ2)

,

∀ xi ∈ [ai, bi]; i = 1, 2.
So far we have

| f1(x1)|| f2(x2)|(
(ψ1(x1)−ψ1(a1))

p(α1−1)+1

p(p(α1−1)+1) + (ψ2(x2)−ψ2(a2))
q(α2−1)+1

q(q(α2−1)+1)

) ≤ (94)

∥∥∥HDα1,β1;ψ1
a1+

f1

∥∥∥
Lq([a1,b1],ψ1)

∥∥∥HDα2,β2;ψ2
a2+

f2

∥∥∥
Lp([a2,b2],ψ2)

Γ(α1)Γ(α2)
,

∀ xi ∈ [ai, bi]; i = 1, 2.
The denominator in (94) can be zero only when x1 = a1 and x2 = a2.
Therefore we obtain (87), by integrating (94) over [a1, b1]× [a2, b2].

It follows the right side analog of last theorem.

Theorem 13. Let i = 1, 2; ψi, fi ∈ Cni ([ai, bi]), with ψi being strictly increasing over [ai, bi],
where ni − 1 < αi < ni, 0 ≤ βi ≤ 1, and γi = αi + βi(ni − αi), xi ∈ [ai, bi]. Let also p, q > 1 :
1
p + 1

q = 1, such that α1 > 1
q and α2 > 1

p . Assume that f [ni−ki ]
iψi

(
I(1−βi)(ni−αi);ψi
bi− fi

)
(bi) = 0, for

ki = 1, ..., ni − 1. Then∫ b1

a1

∫ b2

a2

| f1(x1)|| f2(x2)|dx1dx2(
(ψ1(b1)−ψ1(x1))

p(α1−1)+1

p(p(α1−1)|+1) + (ψ2(b2)−ψ2(x2))
q(α2−1)+1

q(q(α2−1)+1)

) ≤
(b1 − a1)(b2 − a2)

Γ(α1)Γ(α2)

∥∥∥HDα1,β1;ψ1
b1− f1

∥∥∥
Lq([a1,b1],ψ1)

∥∥∥HDα2,β2;ψ2
b2− f2

∥∥∥
Lp([a2,b2],ψ2)

. (95)

Proof. Similar to Theorem 12, by the use of (30).

We continue with other Hilfer-Hilbert-Pachpatte fractional inequalities.

Theorem 14. Let i = 1, 2; αi > 0, αi /∈ N, dαie = ni, 0 < βi < 1, fi ∈ Cni ([ai, bi]), [ai, bi] ⊂ R
and set γi = αi + βi(ni − αi). Assume further that ∆γi

ai+
fi ∈ C([ai, bi]) : ∆γi−ji

ai+
fi(ai) = 0, for

ji = 1, ..., ni. Let also αi > 0 : dαie = ni, with γi = αi + βi(ni − αi), and assume that αi > αi
and γi > γi. Furthermore let p, q > 1 : 1

p + 1
q = 1, such that α1 > 1

q and α2 > 1
p . Then

∫ b1

a1

∫ b2

a2

∣∣∣HDα1,β1
a1+

f1(x1)
∣∣∣∣∣∣HDα2,β2

a2+
f2(x2)

∣∣∣dx1dx2(
(x1−a1)

p(α1−α1−1)+1

p(p(α1−α1−1)|+1) + (x2−a2)
q(α2−α2−1)+1

q(q(α2−α2−1)+1)

) ≤
(b1 − a1)(b2 − a2)

Γ(α1 − α1)Γ(α2 − α2)

∥∥∥HDα1,β1
a1+

f1

∥∥∥
Lq([a1,b1])

∥∥∥HDα2,β2
a2+

f2

∥∥∥
Lp([a2,b2])

. (96)

Proof. Similar to Theorem 12, by the use of Theorem 4.

It follows
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Theorem 15. Let i = 1, 2; αi > 0, αi /∈ N, dαie = ni, 0 < βi < 1, fi ∈ Cni ([ai, bi]), [ai, bi] ⊂ R
and set γi = αi + βi(ni − αi). Assume further that ∆γi

bi− fi ∈ C([ai, bi]) : ∆γi−ji
bi− fi(bi) = 0, for

ji = 1, ..., ni. Let also αi > 0 : dαie = ni, with γi = αi + βi(ni − αi), and assume that αi > αi
and γi > γi. Furthermore let p, q > 1 : 1

p + 1
q = 1, such that α1 > 1

q and α2 > 1
p . Then

∫ b1

a1

∫ b2

a2

∣∣∣HDα1,β1
b1− f1(x1)

∣∣∣∣∣∣HDα2,β2
b2− f2(x2)

∣∣∣dx1dx2(
(b1−x1)

p(α1−α1−1)+1

p(p(α1−α1−1)|+1) + (b2−x2)
q(α2−α2−1)+1

q(q(α2−α2−1)+1)

) ≤
(b1 − a1)(b2 − a2)

Γ(α1 − α1)Γ(α2 − α2)

∥∥∥HDα1,β1
b1− f1

∥∥∥
Lq([a1,b1])

∥∥∥HDα2,β2
b2− f2

∥∥∥
Lp([a2,b2])

. (97)

Proof. Similar to Theorem 12, by the use of Theorem 5.

We finish with two applications:

Corollary 1. All as in Theorem 12, with ψ1(x1) = ex1 , ψ2(x2) = ex2 . Then

∫ b1

a1

∫ b2

a2

| f1(x1)|| f2(x2)|dx1dx2(
(ex1−ea1 )p(α1−1)+1

p(p(α1−1)|+1) + (ex2−ea2 )q(α2−1)+1

q(q(α2−1)+1)

) ≤
(b1 − a1)(b2 − a2)

Γ(α1)Γ(α2)

∥∥∥HDα1,β1;ex1
a1+

f1

∥∥∥
Lq([a1,b1],ex1 )

∥∥∥HDα2,β2;ex2
a2+

f2

∥∥∥
Lp([a2,b2],ex2 )

. (98)

Proof. By Theorem 12.

Corollary 2. All as in Theorem 13, with [ai, bi] ⊂ (0,+∞), i = 1, 2; and ψ1(x1) = ln x1,
ψ2(x2) = ln x2. Then

∫ b1

a1

∫ b2

a2

| f1(x1)|| f2(x2)|dx1dx2 (
ln b1

x1

)p(α1−1)+1

p(p(α1−1)|+1) +

(
ln b2

x2

)q(α2−1)+1

q(q(α2−1)+1)

 ≤

(b1 − a1)(b2 − a2)

Γ(α1)Γ(α2)

∥∥∥HDα1,β1;ln x1
b1− f1

∥∥∥
Lq([a1,b1],ln x1)

∥∥∥HDα2,β2;ln x2
b2− f2

∥∥∥
Lp([a2,b2],ln x2)

. (99)

Proof. By Theorem 13.
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