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Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy
efficiency. We report a novel approach to ONNs that uses integrated Kerr optical micro-combs. This approach is
programmable and scalable and is capable of reaching ultra-high speeds. We demonstrate the basic building block ONNs
— a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve an operating speed of 11.9 x 10°
operations per second, or Giga-OPS, at 8 bits per operation, which equates to 95.2 gigabits/s (Gbps). We test the
perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy,
respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve
high throughput operation for matrix multiplication for real-time massive data processing.

I. INTRODUCTION

Artificial neural networks (ANNSs) have achieved significant success in making predictions and achieving simple
representations of complex and high dimension data. When sufficient data are used for training, ANNs can outperform
computational algorithms [1-5] and even humans for many tasks ranging from the recognition of images to translation of
languages, risk assessment and intriguingly, complex board games [6]. The speed and computational power of ANNS is
determined by matrix multiplication operations, or multipy-and-accumulate (MAC) operations. Electronic ANN chips
include the IBM TrueNorth and Google TPU chips [7, 8]. They use extremely large-scale processor arrays that include the
systolic array [8], to enhance the parallelism to achieve operational speeds greater than 180 x 102 operations per second
(Tera-OPS). However, in spite of this performance, since they are electronically based they are still subject to relatively
inefficient digital protocols and bandwidth bottlenecks due to the von Neuman effect [9]. In fact, each individual processor
is limited in speed to only about 700 MHz [10 9].

Photonic approaches towards ANNSs, or optical neural
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Figure 1. Mathematical model of perceptron.
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ONNSs have achieved substantial success by using a number of approaches to multiplex synapses in parallel. Schemes
based on spatial multiplexing include coherent integrated photonic chips [3] and diffractive bulk optics [17]. These have
successfully achieved classification of alphabetic-numeric characters including handwritten digits and vowels.
Furthermore, they have achieved low power levels, although they have tradeoffs between the system footprint and
processing power, determined by the number of synapses or degree of parallelism. There are a number of ways to realise
ONNs, including reservoir computing [18-21] as well as spike processing [22-25]. These both use sophisticated schemes to
multiplex the synapses and are both very compact. Photonic reservoir computing multiplexes the synapses in time to
achieve very large scale systems with hundreds of input layer nodes. Conversely, spike processors have successfully
achieved pattern recognition by using phase change materials in integrated devices [24]. This approach operates via
wavelength division multiplexing (WDM) and also benefits from a dynamically reconfigurable operation bandwidth
[17-19]. Despite the success of these approaches, they still face limitations. Temporal multiplexing is challenging to
dynamically train and to scale up to deep learning systems with multiple layers. Spike processing is limited in the degree of
parallelism it can achieve because it relies on arrays of discrete laser diodes. The combined use of temporal, wavelength,
and spatial multiplexing has the greatest potential to achieve the highest combination of processing power, operation speed
and scale of the network, and this is what our approach uses.

Il. PERCEPTRON

Here, we propose [11, 12] a novel scheme for ONNs based on integrated micro-combs to achieve simultaneous
temporal, spatial, and wavelength multiplexing, which we then use to perform the dot product of vectors. We perform
matrix operations by first flattening the matrices to convert them into vectors at high data rates. Our system is capable of
dynamic training and its network structure is highly scalable. We demonstrate a single photonic neuron perceptron with 49
synapses, or wavelengths using the microcomb. Our fundamental building block for ONNs achieves a speed for matrix
multiplication at 11.9 billion (Giga) operations/s (OPS) — or GOPs - that equates to 95.2 Gigabits/s for 8 bit operations. We
do this via simultaneous synapse weighting in the wavelength domain and the temporal domain, scaling the input data. The
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device is applied to benchmark tests that include handwritten digit classification, where we obtain an accuracy greater than
93%, and to the prediction of cancer classes to distinguish malignant from benign cases based on an extracted feature set
from microscope images from biopsied tissue. We obtain an accuracy of greater than 85% for cancer classification.

Figure 1 depicts the neuron perceptron mathematical model [25] and Figure 2 outlines the experiment setup that uses a
Kerr optical micro-comb source. The perceptron is based on wavelength multiplexing of 49 microcomb wavelengths, done
simultaneously with temporal multiplexing, in order to form a single synapse. The main operation consists of matrix
multiplication with vectors formed from flattened matrices. The matrix multiplication occurs between the electronic image
input data and the synaptic weights, and this is performed with multiple steps using photonics. The input data for
classification consists of 28 x 28 electronic digital matrices with 8-bit grey-scale intensity resolution, which is initially
down sampled digitally into 7x7 matrices that are then reorganized into 1D vectors: X(i) = [X(1), X(2) ... X(49)], which
are then multiplexed sequentially in the temporal domain by an electronic high speed D/A converter at 11.9 Gigabaud.
Here, each symbol corresponds to the 8-bit pixel input data images and takes up one time slot 84 ps in length. Hence, the
whole duration of the waveform is N x t = 4.12 ns with N=49. In approaches based on digital electronics, the neural
network input nodes usually reside in electrical memory and are routed according to memory address. By comparison, the
input nodes for the ONN are temporally defined by multiplexing the symbols that are then routed according to their
location in time.

Following this, the electrical input waveform that is a temporally multiplexed signal is broadcast via an electro-optic
modulator on to all 49 wavelengths (equal to the number of elements of the vector X), the wavelengths being generated by
the micro-comb. Here, each comb line contains an equal copy of X, the time domain multiplexed input data waveform.
Every comb line’s power is then adjusted by an optical waveshaper with the weights being determined by the theoretical
synaptic weight vector W = [w(1), w(2), ..., w(49)] obtained during training. This effectively multiplexes the synaptic
weights in wavelength. If W and X are both 1x49 column vectors, then the weighted input X vector replicas are

wlD-x@ w@d-x@2  w@-x3) - w@)-x(49)
w(2)-x@) w(2)-x(2) w(2)-x(3) -+ w(2)-x(49)

XxW'=| w3d)-x@1) w®)-x(2) wd)-x@3) - W(3)-x(49) @)

W(495-X(1) W(49)'~X(2) W(49)‘-X(3) w(49).-x(49)

where the nth row (where ne (1, N)) corresponds to the temporal weighted waveform replica of the n' wavelength.
Therefore, the diagonal components reflect the input N weighted nodes, so that the n®"weighted input node is reflected in
the 8-bit symbol w(n)-x(n) that exists in the n™ time slot for the n™ wavelength. After this, the replicas are transmitted
through a medium that provides a dispersive delay equivalent to 2" order dispersion, to sequentially delay the weighted
replicas in order to align the diagonal components into the same time window, with the delay step given by t = delay(\)
— delay(A+1). Therefore, the dispersive delay is an addressable time-of-flight memory that lines up the progressively
weighted time-dependent symbols w(1) - x(1), w(2) - x(2) ... w(49) - x(49) over all wavelengths as

w(l) - x(1) - w@)-x(47)  w(l) - x(48)  w(l) - x(49)
w(2) - x(2) w(2) - x(2) < wW(2)-x(48)  w(2) - x(49)
w(3) - x(1) w3 x(2)  w(@)-x(3) - w(3)-x(49) (2)
w(49)-x() -+ w(49)-x(47) w(49)-x(48) w(49)-x(49)

While this process, as it is implemented here, does not enhance the network speed because it only uses diagonal
components, in principle a significant increase in speed can be obtained by scaling the network to deep (multiple level)
structures through the use of parallel wavelengths as well as time and spatial multiplexing.

Finally, the intensity of all of the optical signals in each time bin are summed via sampling and detection to produce the
resulting matrix multiplication (equivalent to a dot product of 49x1 vectors for the case of 7x7 matrices) of the neuron,
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given by:
49
X-W= Zw(k) -X(k) ®)
k=1

After matrix multiplication, the summed, weighted output is then modulated in order to map it into a desired range by using
a nonlinear sigmoid function. In this initial demonstration we achieve this last function using digital electronics, which
generates the output of the single neuron perceptron. In principle, however, this can easily be achieved all-optically.
Finally, the input data prediction category is produced through comparison between the decision boundary with the neuron
output. The decision boundary is a 49 dimensional hyperplane, generated during digital learning carried out offline prior to
the experiments. Thus, the input data can be separated into two categories.

f Wavelength (nm)
1500 1520 1540 1560 1580 1600

Pump wavelength (nm)
3B 1550.3 1550.35 1550.4 1550.45 1550.5

Step 1, Primary comb P
06| spacing changing s

39 FSRs i
-20¢ — -

04
Step:2, soliton crystai'fo;matlon
02 i ;

Intra-cavity power (a.u.) @

£
e 1530 &
I}
; 2
- 2
— 3um —> 15 w
High-index g
doped silica (o)
glass £ 1540
E
Silica b4
=y
80 k5
c 0 Y v 1 %
\ f] ¢
N 40 Mode y
3 |
£0 \ crossing 1?', | 5 FSR=48.9 GHz
e j 4” 1 |<—38 FSRs —>
S 4 |
& Df2rm :\\" o | ’ ” !
e LTV
-400——750 0 100 0 5000 10000 15000 i
Relative mode number 1530 1540 1550 1560

Sweep lime (s) Wavelength (nm)

Figure 3 | a. Schematic diagram of the soliton crystal microcomb, generated by pumping an on-chip high-Q nonlinear micro-ring
resonator with a continuous-wave laser. b. Image of the MRR and a scanning electron microscope image of the MRR’s waveguide cross
section. c. Measured dispersion of the MRR showing the mode crossing at ~1552 nm. d. Measured soliton crystal step of the intra-cavity
power, and e. optical spectrum of the microcomb when sweeping the pump wavelength. f. Optical spectrum of the generated coherent
microcomb at different pump detunings at a fixed power.
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Figure 4 | a, Different states and measured RF intensity noise of the microcomb. b, Measured low intensity noise states.

I11. MICRO-COMBS BASED ON SOLITON CRYSTALS

Kerr optical micro-combs [26-33] have achieved many ground-breaking breakthroughs including optical frequency
synthesis [29], ultra-high bit rate data transmission [30], generation of advanced quantum states [31], high level RF signal
processing [32], and more. They provide the full capability of mainframe optical frequency combs [34] although in a fully
integrated form that has a much more compact footprint as well as the potential to scale the network in power, reliability,
and performance [35-42]. The new platforms developed for optical microcombs [27,43,44] have much lower nonlinear
absorption than other nonlinear platforms such as chalcogenide glass and semiconductors [45-67].

We use a microcomb that operates via soliton crystal states [68, 69], produced in integrated ring resonators. Soliton
crystals display deterministic generation induced by mode crossings that produce a background wave, with all of these
processes sustained by the Kerr nonlinearity. For soliton crystals, there is very little nonlinear pump-induced shift in the
resonance that otherwise would require difficult dynamic pumping schemes like DKS solitons require [26]. This is because
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the intracavity soliton crystal state power is virtually the same as the power for the chaotic state from which it is formed.
Hence, very little power jump occurs when they are generated and this allows a reliable and simple method of initiation
achievable by simple adiabatic, even manual, tuning of the pump wavelength [68]. This same effect also yields a much
higher energy conversion efficiency from pump to comb-line [63]. Soliton crystals have demonstrated a multitude of RF or
microwave signal processing based on photonics [11,12,32,70-94]. The integrated ring resonators were made from Hydex
glass, a platform that is CMOS compatible [27] (Figure 3). They had a high Q factor of 1.5 million and a 48.9 GHz FSR
with a chip to fibre coupling loss of 0.5 dB / facet achieved by on-chip mode converters. The waveguide cross-section of
3um x 2um produced anomalous dispersion with a mode crossing near 1552 nm. A 30dBm CW pump laser generated the
soliton crystals when its wavelength was swept manually from short to long wavelengths (blue to red) near a resonance.
To generate coherent micro-combs, a CW pump laser (Yenista Tunics — 100S-HP) was employed, with the power
amplified to 30dBm by an optical amplifier (Pritel PMFA-37) and the wavelength subsequently swept from blue to red.
The acquired soliton crystals optical spectra are shown in Figures 3 and 4. We note that when locking the pump wavelength
to the resonance of the MRR, the stability of the microcomb can be further enhanced that could even serve as frequency
standards [29]. Figures 3f and 4a show the progression from the initial onset of primary combs, to chaotic combs that are
not modelocked, to finally soliton crystal combs. Also shown in Figure 4b are the range of different soliton crystal states
that can be obtained by adjusting the pump offset (to the nearest resonance) as well as the overall pumping wavelength.
Figure 3 also indicates that the power jump in transitioning from the chaos state to soliton crystal state is extremely small.
This arises because the two states have very similar power levels. This is a key reason for the stability of soliton crystals.

1V. EXPERIMENT

As discussed above, the multicasting of the waveform was achieved via intensity modulation of all of the wavelength
channels supplied by the shaped comb lines, simultaneously. Hence, the optical signal at the kth (k=1, 2, ..., 49) channel
was w(k)-X. The delay that we used for the optical signals at all wavelength channels was 13-km of dispersive single mode
fibre which generated a time delay of (49 — k )xzt for the kth channel, and t was measured to be 84 ps. Thus, the optical
signals were progressively shifted in the time domain. The optical signal after the single mode fibre was converted to the
electrical domain by a photodetector (Finisar VPDV2120), and the waveform was then measured by a high-speed
oscilloscope (Keysight DSOZ504A). The sampled output of the photodetector was added to the bias symbol and rescaled
in intensity by the reference symbol to extract the recovered output of the ONN and locate the hyper-plane (a trained
subspace in the high-dimension space of the input data, which serves as a decision boundary that separates different classes
of data).

During the experiment, the 7x7 gray scale data of the handwritten digit figures were first converted into a one dimension
array X=[x(1), x(2), ..., x(49)] by assembling each column head-to-tail. Then a 49-symbol waveform was generated and
coded with the intensities at each time slot in proportion to the values of X at corresponding sequences, thus the input data
X were multiplexed in the time domain. The 49-symbol waveform was generated by an arbitrary waveform generator
(Keysight M8195A), which supported a sample rate of 65 Giga-Samples/s and an analog bandwidth of up to 25 GHz. To
acquire stepwise waveforms for the input nodes, we used 5 sample points at 59.421642 Giga Samples/s to form each single
symbol of the input waveform, which also matched the progressive time delay t (84 ps) of the dispersive buffer.

The optical power of the 49 microcomb lines was shaped according to the intensity of pre-trained neuron weights
W=[w(1), w(2), ..., W(49)]. We shaped the comb lines’ power with a programmable optical spectral shaper using liquid
crystal on silicon techniques (Finisar WaveShaper 4000S), which could dynamically reconfigure the ONN connections
within 500 ms with a resolution of 1 GHz. Two stages of programmable optical spectral shapers were employed for a larger
loss dynamic range. The first WaveShaper was used to flatten the microcomb, while the second one was used to achieve
pre-trained neuron weights. A feedback loop was used to enhance the shaping accuracy, where the comb lines’ power after
shaping was measured by an optical spectrum analyser (Anritsu MS9710C) and compared with the pre-trained weights to
generate an error signal for the calibration of the WaveShapers’ loss characteristics.

Figure 5 shows the time-domain multiplexed input layer for the cancer diagnosis test. The generated 11.9 Giga-baud data
stream of the encoded 75 sets of features shows the 30-symbol encoded data for each set and 3 symbols padded for post
measurement, including a trigger symbol to trigger the oscilloscope, a reference symbol to calibrate the reference level, and
a bias symbol encoded with the pre-trained bias to locate the decision boundary. Figure 6 shows the experimental
recognition of cancer diagnosis. Figure 6a shows the optical spectrum of the shaped (soliton crystal) micro-comb measured
by an optical spectrum analyser, while Figure 6b shows the measured and sampled output waveform from the


https://doi.org/10.20944/preprints202103.0033.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 March 2021 d0i:10.20944/preprints202103.0033.v1

photodetector. Figure 6¢ shows the recovered ONN predictions XxW+b acquired by rescaling the sampled results via the
reference symbol, and the hyper-plane XxW+b=0 (black line).

V. DATASETS AND PRE-TRAINING

The datasets we employed was from MNIST (Modified National Institute of Standards and Technology) handwritten digit
database [95] and part of the publicly available Wisconsin Breast Cancer dataset [96]. The datasets of recognition tasks
were first separated as training sets and test sets. The training sets were used for the offline training with the Back
Propagation algorithm [97], performed on an electronic computer using Matlab™, to acquire pre-trained weights and bias.
The test sets were tested with both the ONN and an electronic computer for comparison. We note that, since the number of
training sets is sufficiently large compared with the number of synaptic connections, the cross validation process was not
employed in this work—and in any case, it could be performed offline before the pre-training.

We note here that the accuracy of the ONN predictions was experimentally limited by the performance of the arbitrary
waveform generator, which introduced errors to the symbols’ intensities and thus deteriorated the correctness of the matrix
multiplication. This can be addressed by using an arbitrary waveform generator with a larger analog bandwidth, or a higher
sampling rate. Addressing this issue would result in higher levels of correctness than reported here.
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Figure 5 | Time-domain multiplexed input layer of cancer diagnosis test. Generated 11.9 Giga-baud data stream of the encoded 75 sets of features
showing 30-symbol encoded data for each set and 3 symbols padded for post measurement, including a trigger symbol to trigger the oscilloscope, a
reference symbol to calibrate the reference level, and a bias symbol encoded with the pre-trained bias to locate the decision boundary.
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VI. RESULTS

First, we evaluated the performance of the network using a number of handwritten digit pairs from a body of 500 images
for each digit, from which we randomly selected 920 images for prior off-line training, which left 80 figures to evaluate the
system performance. The handwritten digital images were electronically down-sampled to reduce the size of the images to
7x7 from 28x28. Next, this was transformed into a 49 symbol one dimensional array, following which the array was
temporally multiplexed with each symbol occupying an 84ps time slot, yielding a modulation rate of 11.9 Gigabaud. The
data vector dimension of our perceptron needed to match the weight vector dimension, given by number of wavelength,
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down-sampling method on the image to

d o Digit0 Decision 3 * Malignant __ Decision reduce the length of the vector to 49.
7 02 cc?g:.is% HDURREY T Beuon 'Ac!():o;;d:;y% _ The optical power for each of the 49 comb
o T s : lines was weighted according to the
£ 0 IO e s 2 4 ' pre-learned synaptic weights in order to
S & Louw, @ Tl — - enhance the parallelism to form the neuron
2 Ofeea o ] 3 W R oy synapses. Next, the data input stream was
g P e L PG I R R WA S simultaneously imprinted onto all of the 49
5 g e °° 2 P e T ORS ce " weighted microcomb lines, which were then
= oa xm B B o O A linearly progressively delayed in wavelength
“““““““““““““““““““““““““““ by 13km of single mode fibre that generated a
S 92(acco8.75% N ECER time-of-flight optical buffer via its 2" order
= Pns T N e < 02| . P dispersion of 17 ps / nm / km. Therefore, the
5 e L b oo S S - . et weighted symbols for each wavelength were
2 - o e o % [Pef 0% 00w 0v O aligned in time, thereby enabling them to be
BRI e W o B 0 '._‘_ PR E summed by simple sampling of the centre
g L|%e SERL R LN B oL s e timeslot and subsequent detection. This
5 = 0§ | yielded the matrix multiplication result, a
20 40 60 80 0 20 40 60 product of the multiply and accumulate
e el (MAC) operation. The output was finally
Figure 8 3. Results. d, Predictions for handwritten digit recognition showing compared a_lgalnst the decision boundary
an accuracy of 93.75% vs 98.75% for theory. e, Predictions for benign versus | Which consists of a hyper-plane that was
malignant tumor cells with an accuracy of 86.67%. generated during prior network training that

classified the input samples arranged in a
49-dimensional hyperspace. The resulting
matrix multiplication computations on the multiple input data samples were then compared in intensity against this
decision boundary, finally producing the predictions of the perceptron (Figures 7, 8). We tested the perceptron
performance for classifying 2 benchmark tests delineated by the decision boundary — first for two handwritten digits (0 and
6), followed by determining whether cancer cells are benign or malignant. For the handwritten digits the perceptron
produced an accuracy of 93.75%, versus 98.75% that can be achieved with an electronic digital neural network. For the
tissue biopsy data classification for cancer cells (Figure 8), individual cell nuclei were extracted from breast mass tissue via
fine needle aspirate and then imaged with a microscope. These images were previously characterized to distinguish 30
different features including texture, perimeter, radius, etc.. For our experiments, the data for 521 cell nuclei were used for
pre-training the network, with a further 75 used as the basis for the testing diagnosis. This follows a very similar process to
that used for the handwritten digit tests discussed above. We obtained an 86.67% accuracy versus 98.67% that can be
achieved with a digital electronic neural network.

In our experiments we used Intel’s approach of evaluating digital microprocessors [98]. Since our system is rather more
complex in that it uses input data and weight vectors for the MAC calculations that come from different sources that are
multiplexed in time and wavelength, we define the throughput speed based on the temporal data sequence of the electronic
output port, in order to be unambiguous. According to the protocol of broadcast-and-delay, each computation cycle
consists of one vector dot product between the 49 symbol data and the weighted vectors, resulting in a time data sequence
having a length of 48+1+48 symbols, yielding a total duration time of 97 x 84ps. The 49" symbol represents the desired
result —ie., the vector dot product resulting from 49 MAC operations, and hence the perceptron throughput is given by 49
/ (84ps x 97) = 5.95 Giga-MACs/s. Since each MAC operation consists of two operations — a multiply followed by an
accumulate operation —our throughput measured in operations (OPS) is twice that measured in MACs/s, or (49x2)/(84
psx97) = 11.9 Giga-OPS.
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The input data sequence contained 8-bit symbols of 256 discrete levels, reflecting the pixel values of the grey scale
image. The 8 bits was limited by our electronic arbitrary waveform generator’s intensity resolution. The Waveshaper had a
range in attenuation of 35 dB, which is equivalent to a resolution of 11 bits or 33 dB (=10xlog1 [2%!]). Therefore, every
computing cycle had an effective throughput bit rate of (49x2) x 8/ (84 ps x 97) = 95.2 Gigabits/s. For analogue systems
such as ours, both the intensity resolution and the bit rate are limited by the system SNR (signal-to-noise ratio). Therefore,
in order to have a full resolution of 8-bits, our system needed to have a SNR greater than 20-1og10(28) = 48 dB in terms of
electric power. This is well within the capability of analogue photonic microwave links, such as the perceptron system that
we reported here which had an OSNR > 28 dB.

Our perceptron is the fastest optically based neuromorphic processor ever reported, although making direct comparisons
with all of the different approaches is challenging since they vary so widely. As an example, on the one hand systems based
on static or continuous sources that perform one-off or single-shot measurements [11, 17, 24] can have a very low latency.
However, on the other hand, they also suffer from an extremely low throughput since the input data cannot be in any rapid
manner. While our perceptron did have a relatively large latency of ~64 us, this was purely due to the dispersive delay
component which in our case was a simple spool of optical fibre. This did not, however, have any effect on the speed or
throughput of our system. Moreover, in fact this can be dramatically reduced or virtually eliminated — easily to less than
200 ps — just by using any type of compact device that can replace the dispersive delay of the fibre, such as sampled Bragg
gratings or etalon based tuneable dispersion compensators [99-103].

VII. SPEED CALCULATION

Following our definition of throughput and latency introduced in the manuscript, the overall throughput of the deep ONN
is roughly the product of each hidden layer’s speed and the number of hidden layers, although we note that rigorous and
accurate calculation of the throughput is only possible with specific configurations of the network.

Here is a simple example of calculation (this example is just to show the calculations of throughput and latency, the actual
performance in terms of prediction accuracies is not the focus of our discussion here): the input waveform/layer is the same
as the demonstrated perceptron (49x%1 vector at 11.9 Giga Baud with 8-bit resolution, t= 84ps), the network has a hidden
layer that each has 7 fully connected neurons, and an output layer that has 10 fully connected neurons (to match with the
number of categories for digits from 0 to 9). As a result, 343 (49x7) and 70 (7x10) wavelengths would be needed in the
hidden and output layer, respectively. This can be achieved by using smaller FSR microcombs such as 25GHz across the
wide optical band (the C + L bands already reach >11THz wide).

In the hidden layer, each initial electrical output waveform (right after the photodetection and before the digital signal
processing) corresponds to the output of a single neuron and has a duration of (49x2—-1)x84ps=8.148 ns. Only one time slot
of each group of symbols represents the result of matrix multiplication between the input vector and the weight vector that
constitutes of 49x2=98 floating point operations. As a result, the throughput of each neuron is given as 98/8.148=12.0275
Giga-OPS. Since different neurons are multiplexed in both the spatial and wavelength domain and detected in parallel, the
total throughput of the hidden layer would be 12.0275x7=84.1925 Giga-OPS.

In the output layer, the generated electrical waveform of each neuron has a duration of (7x2-1)x84ps=1.092 ns. Only one
time slot of each group of symbols represents the result of matrix multiplication between the input vector (sampled and
re-multiplexed waveform from the hidden layer) and the weight vector that constitutes of 7x2=14 floating point operations,
thus the throughput would be 14/1.092=12.8205 Giga-OPS for each neuron and the total throughput of output layer would
be 12.8205x10=128.205 Giga-OPS. As such, the total peak throughput of the network would be 84.1925+128.205
=212.3975 Giga-OPS. In addition, the latency of the overall network is the sum of each layer’s latency, which mainly
comes from the dispersive optical buffer and the electrical sampling and multiplexing module. We assume the latency to be
200 ps for the buffer in integrated forms and to be twice of the waveform duration for the re-sampling unit (2x8.148 ns and
2x1.092 ns for the hidden and output layer, respectively), the total latency of the example network would roughly be 18.68
ns. We note that the latency is just a very rough estimation showing how to calculate or measure the performance of our
approach, the practical calculations of the latency are subject to more detailed parameters.

The speed of the network has the potential to reach 10 Tera-OPS [12], determined as follows. With 20 layers, each layer
featuring 20 neurons and a modulation rate of 25 Giga baud, the overall throughput should be around 20x20x25=10
tera-OPS, according to the discussion in the above section. With 8-bit resolution, the total potential throughput in terms of
bit rate could reach 10x8=80 Thps. We note that other widely used techniques in telecommunications such as polarization


https://doi.org/10.20944/preprints202103.0033.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 March 2021 d0i:10.20944/preprints202103.0033.v1

multiplexing and coherent modulation formats could also potentially boost the computing speed of the proposed neuron
network in this work.

Table 1 shows the performance matrices of state-of-art ONNs. We note that it is difficult to directly compare different
kinds of ONNSs, since on one hand, there are no universal and specific definitions of ONN’s parameters. On the other hand,
the operation principles of existing ONNs are quite different and have their unique advantages. As such, here we highlight
the decent advances of existing works and focus on the speed parameters, including the latency and throughput, to reflect
our ONN’s advantages in this aspect.

Table 1 Performance comparison of state-of-the-art ONNs

| Approach\Parameter cOmp?tibility with Latenc Throughput speed per unit
| digital electronics y OPS bits/s
Diffraction devices [17] — <10ns — —
Integrated couplers [3] — <0.1ns — —
Reservoir computing [20] Yes <1lps 176G —
Spike computing [23] Yes <1lps 8G 8G
Spike computing [24] — <0.1ps — —
[11] Single Perceptron Yes 64 ps 119G 95.2G
Deep ONN Yes >18.68 ns >10T >80T
[12]

“—>" denotes the corresponding parameter is either not demonstrated or not indicated in the work.

VIIl. CONCLUSIONS

We report an optical neural network consisting of a single perceptron that operates with an integrated optical Kerr
micro-comb source. The system achieves a single processor throughput speed of 11.9 Giga-OPS/s, equivalent to 95.2
Gigabits/s. We demonstrate benchmark tests including cancer cell diagnosis and handwritten digit recognition. We outline
different approaches to scale the network to deep learning ONN architectures that have significantly increased processing
power and throughput speed. This is possible because of the high level of parallelism that can be realized via simultaneous
time, spatial, and wavelength multiplexing. Our results are a consequence of the superior stability, reliability and efficiency
of optical Kerr soliton crystal microcombs [104-106]. Our approach has significant possibilities for real-time analysis of
high dimensional data for advanced applications.
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