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Abstract: (1) Background: Fetal Growth Restriction (FGR) has been associated with    
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adverse perinatal outcomes and epigenetic modifications that impact gene expression 

leading to permanent changes of fetal metabolic pathways and thereby influence 

development of disease in childhood and adult life. Both clinical and experimental studies 

showed that maternal nutrition during pregnancy is critical since malnutrition adversely 

affects fetal growth and physiology. In this study, we investigated the result of maternal 

food restriction on liver protein expression in Wistar male newborn pups. (2) Materials & 

methods: Pups born to food restricted mothers were subdivided to FGR and non-FGR 

groups. Livers of control, FGR and non-FGR groups were analyzed using quantitative 

proteomics. (3) Results: In total 6665 proteins were profiled. Of these, 451 and 751 were 

differentially expressed in FGR and non-FGR vs. control respectively, whereas 229 were 

common between the two groups. Bioinformatics analysis of the differentially expressed 

proteins (DEPs) in FGR vs. control revealed: induction of the super-pathway of cholesterol 

biosynthesis and inhibition of thyroid hormone metabolism, fatty acid beta oxidation and 

apelin liver signaling pathway. In the DEPs of non-FGR vs. control groups there was 

inhibition of thyroid hormone metabolism, fatty acid beta oxidation and apelin liver 

signaling pathway as well. (4) Conclusion: This study demonstrates the impact of prenatal 

food restriction on the proteomic liver profile of FGR and non-FGR offspring underlying 

the importance of both prenatal adversities and birth weight on liver dependent postnatal 

disease.  
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1. Introduction 
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    Fetal Growth Restriction (FGR) refers to a fetus that has failed to achieve its 

biological growth potential due to pathological conditions such as maternal / fetal 

disease and placental dysfunction. Fetal growth impairment is associated with 

perinatal morbidity and mortality, a 5 to 10-fold risk of in utero demise [14] and 

adverse neonatal outcomes [28]. Furthermore, according to Barker’s hypothesis, 

an unfavorable intrauterine environment may have negative long-term effects in 

adult life [1]. According to the thrifty phenotype hypothesis [2], FGR impairs the 

growth of organs such as the liver in order to maintain homeostasis of other crucial 

for survival organs and systems. These metabolic adaptations, enable fetuses to 

survive in a malnourished intrauterine environment. However, the cost of these 

adaptations is permanent physiological and epigenetic phenotypical alterations 

that are responsible for development of disease later in life such as obesity, 

diabetes and cardiovascular disease.  

    Nutrition is one of the environmental variables with the widest range of effects 

on both physical growth and metabolism [3,33]. An expanding body of 

epidemiological evidence suggests that the nutritional environment experienced in 

fetal life increases the risk of chronic non-communicable diseases associated with 

human ageing. Maternal undernutrition constitutes a serious public health problem 

exhibiting large regional and within-country variations across the globe. Proper 

nutrition from preconception to delivery is critical for avoiding poor pregnancy and 

long-term outcomes for both the mother and child [51]. To date, many 

experimental approaches have been designed to study the impact of FGR 

intervening either in maternal nutrition, placental blood flow or fetal wellness. 

Restricting maternal food intake is advantageous since it leads to an altered 

intrauterine nutritional milieu and growth impairment avoiding surgical 

intervention. Moreover, this type of animal model is closer to pregnancy 

malnutrition effects observed in humans [35,45]. Although a large number of 

animal models of FGR have investigated the impact of intrauterine environment 

on fetal epigenetic programming, there is little knowledge about the effects of 
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maternal undernutrition on liver growth and physiology of appropriately grown 

(non-FGR) offspring of undernurished pregnancies. 

   Liver plays a major role in nutrients’ absorption and metabolism. During 

pregnancy, fetal growth restriction not only affects adversely liver’s growth but 

also its physiological function [43]. Metabolic disorders namely, reduced 

oxidative phosphorylation, impaired mitochondrial function, antioxidant capacity 

and altered nutrient metabolism are commonly found in FGR livers [42,34,22]. It 

has been demonstrated that liver of FGR offspring seems to have an abnormally 

increased rate of glyconeogenesis contributing to insulin resistance and 

hyperglycemia [24,39]. Nevertheless, the exact mechanisms which are 

responsible for alterations in development, growth and liver function leading to 

hepatic diseases are not adequately described.  

   Our aim was to investigate the impact of maternal food deprivation on liver 

proteomic profile in three groups of newborn male Wistar rats: a) offspring of 

mothers that received standard laboratory diet (control group) , b) offspring of food 

restricted mothers with low birth weight (FGR group) and c) appropriately grown 

offspring of food restricted mothers (non – FGR group).  

  Furthermore, the aim of this study was to examine whether prenatal food 

restriction during late gestation affects offspring liver proteome irrespective of birth 

weight and propose possible underlying pathophysiological mechanisms of liver 

fetal programming   

 

 

 

 

 

2. Results 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 March 2021                   doi:10.20944/preprints202103.0023.v1

https://doi.org/10.20944/preprints202103.0023.v1


 

 

Experimental model  

    There was no statistical difference in post-delivery maternal bodyweight in 

both diet groups (control: 265±25 gr, starved 270±20gr p=0.769). Control group 

mothers (ad libitum food access) gave birth to control pups with mean body weight 

of 6.419 gr (SD: 0.436). The mean birthweight of the food restricted group was 

5.423 gr, significantly different compared to controls (5.423 ± 0.610 gr vs. 6.419 ± 

0,436gr; p<0,001). Male neonates were heavier compared to females in the control 

group (6.659g vs 6.2g, p<0.001) but there was no statistically significant difference 

between them in the starved group (p=0.666).   

   Newborn pups delivered by starved mothers, were further divided to Fetal 

Growth Restricted (FGR) group when birthweight was < - 2SDs of the mean BW 

of the control offspring and non-FGR group when birthweight was > - 2SDs of the 

mean BW of the control. The cut-off between FGR and non-FGR neonates was 

set at 5.547gr according to the aforementioned definition. Furthermore, there was 

statistically significant birthweight difference between FGR (4.796 gr ± 0.479gr) 

and non-FGR (5.914gr ± 0,479 gr) groups (p<0,001).  

Although liver weight of the non-FGR group was statistically significant higher 

compared to FGR pups (0.211±0.047 vs. 0.280±0.073 ,p<0.0014), there was no 

difference in the liver weight to body weight ratio between groups 

(0.04274±0.00743 vs. 0.04721±0.01220, p=0.10337) (Table 1) 

 

 

 

 

 

 

 

Table 1. Mean values for all experimental outcomes and comparisons between study groups 
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 Group Mean SD p-value 

Length of 
gestation (days) 

Starved  
control 

21.22 
20.73 

0.47 
0.06 

0.081 

Litter size (pups) 
Starved  
control 

10.83 
11.50 

1.72 
1.29 

0.530 

Post delivery 
maternal 
weight(g) 

Starved  
Control  

268.83 
264.50 

26.75 
10.47 

0.304 

Birth weight (g) 
Starved  
control 

5.423 
6.419 

0.610 
0.436 

< 0.001 

Liver weight (g) 

Starved  
Control 

 
Fgr 

non-Fgr  

0.245 
0.266 

 
0.211 
0.280 

0.070 
0.057 

 
0.047 
0.073 

0.117 
 
 

<0.001 

Liver to body 
weight (g) 

Starved  
Control  

 
Fgr 

non-Fgr 

0.04498 
0.41753 

 
0.04274 
0.04721 

0.01026 
0.00946 

 
0.00743 
0.01220 

 

0.112 
 
 
 

0.103 

Brain weight (g) 

Starved  
Control  

 
Fgr 

non-Fgr 

0.150 
0.180 

 
0.151 
0.148 

0.045 
0.044 

 
0.058 
0.043 

<0.001 
 
 

0.783 

Brain to body 
weight (g) 

Starved  
Control  

 
Fgr 

non-Fgr 

0.02826 
0.02806 

 
0.03157 
0.02496 

0.00968 
0.00598 

 
0.01093 
0.00698 

 

0.905 
 
 

0.009 
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Proteomic Analysis 

 

    Proteomic analysis of male offspring livers ended up in the profiling of 6,665 

proteins (peptide level q<0.05) (Supplementary Table 1). Among the quantified 

proteins, 451 proteins were differentially expressed in FGR vs. control 

(Supplementary Table 2) and 782 in non-FGR vs. control group (Supplementary 

Table 3). Of these, 76 were commonly up-regulated and 153 commonly down-

regulated in both FGR and non-FGR compared to control (Supplementary Table 

3).  

Principal component analysis (PCA) of all quantified proteins showed a 

distinct proteomic liver profile of FGR compared to non-FGR rats (figure 1).     

Bioinformatics analysis of differentially expressed proteins (DEPs) in FGR 

compared to control groups using Ingenuity Pathway Analysis (IPA) showed: a. 

induction of the super pathway of cholesterol biosynthesis (z=2.2; p=1.5e-4) 

(figure 2), and b. inhibition of thyroid hormone metabolism (figure 3) (z=-2.0; 

p=4.6e-3), fatty acid beta oxidation (z=-2.0; p=2.7e-3) (figure 4) and apelin liver 

signaling pathway (figure 5) (z=-2.2; p=8.5e-5).  Enrichment analysis of the 

DEPs in non-FGR vs. control groups using IPA showed: a. induction of immune 

cell adhesion (z=2.9; p= 1.1e-7) and b. inhibition of thyroid hormone metabolism 

(z=-2.0; p=2.5e-2), fatty acid beta oxidation (z= -2.0; p=1.6e-2) and apelin liver 

signaling pathway (z=-2.0; p=6.7e-3) (figure 6).  
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Figure 1. Principal component analysis (PCA) of all quantified proteins revealed that liver of fetal 

growth restrictes pups had a heterogeneous proteomic profile compared to non-FGR ones.  
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Figure 2. Ingenuity Pathway Analysis of 

DEPs between FGR vs. Control group. 

Induction of the super pathway of 

cholesterol biosynthesis. 

z= 2.2  p=1.5e-4 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 March 2021                   doi:10.20944/preprints202103.0023.v1

https://doi.org/10.20944/preprints202103.0023.v1


 

 

 

 

 

 

 

 

 

 

Figure 4. Ingenuity Pathway Analysis of 

DEPs between FGR vs. Control group. 

Inhibition of fatty acid beta oxidation 

     z= -2.0  p=2.7e-3 

Figure 3. Ingenuity Pathway Analysis of  

DEPs between FGR vs. Control group. 

Inhibition of thyroid hormone metabolism 

         z= -2.0  p=4.6e-3 
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Figure 5. Ingenuity Pathway Analysis of DEPs between FGR vs. Control group. Inhibition of apelin 

liver signaling pathway  

z= -2.2  p=8.5e-5 
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3. Discussion 

   Numerous studies have shown the impact of adverse early-life environment 

on disease during infancy, childhood and adult life [5]. FGR is associated with 

significant perinatal and subsequent long-term morbidity and mortality. FGR 

neonates and infants demonstrate a variety of complications involving multiple 

organs and systems such as pulmonary, gastrointestinal, immune and central 

nervous system. Regarding the endocrine system, FGR is associated with altered 

glucose metabolism, transiently low thyroxin levels and cortisol deficiency.  

Figure 6. Ingenuity Pathway Analysis of differentially expressed proteins in non-FGR compared to control group 

showed inhibition of thyroid hormone metabolism( z= -2.0  p= 2.5e-2), fatty acid beta oxidation (z= -2.0 p= 1.6e-2)  

and apelin liver signaling pathway (z= -2.0  p= 6.7e-3) 

 

 

thyroid hormone metabolism 

apelin liver signaling pathway 

fatty acid beta oxidation 
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Furthermore, FGR programs both childhood and adult disease, associated with 

increased risk of obesity, insulin resistance and cardiovascular disease.  

   Using a well-defined FGR rat model, this study shows that maternal food 

restriction plays a crucial role, impairing liver intrauterine growth and altering its 

proteomic expression. In our study liver weight was reduced in proportion to body 

weight in FGR compared to non-FGR pups.  On the contrary, brain weight did 

not differ significantly between the abovementioned two groups (Table 1) 

indicating a late-onset FGR model resembling to the commonest FGR phenotype 

in human population [23]. This study aimed to a better understanding of the 

proteomic mechanisms of liver developmental dysfunction induced by prenatal 

food restriction investigating possible differentiations in liver proteomic expression 

in both growth restricted (FGR) and appropriately grown (non-FGR) offspring born 

to starved mothers.  

   Bioinformatics analysis of DEPs in the FGR group vs. control showed induction 

of cholesterol biosynthesis. Regarding cholesterol biosynthesis, metabolomic 

studies have shown that FGR fetuses have higher concentrations of cholesterol 

such as VLDL and LDL, lipoproteins and triglycerides [29]. Lipids are vital 

molecules for life, providing energy for metabolic processes. Furthermore, 

cholesterol is a key element for brain neurodevelopment and a precursor of many 

hormones like sex steroids [6,20]. Fetal liver is the main source of circulating 

lipoproteins, as in adults. Alterations of VLDL concentrations, which is mostly 

synthesized in fetal liver, implies an altered hepatic synthesis of lipoproteins 

caused by FGR. Remarkably, the lipid profile of FGR fetuses resembles to adults 

presenting with atherosclerosis and dyslipidemia [48].  

The apelin signaling pathway, thyroid metabolism and fatty acid beta oxidation 

were inbibited in both FGR and non-FGR neonate rats, indicating these might be 

a result of maternal undernutrion regardless the fetus’ growth. 

   Apelin is a regulatory peptide and in conjunction with its receptor, are both 

expressed in a wide range of tissues such as central nervous system, heart and 
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liver. Apelin is also produced by adipocytes and latest studies proposed its crucial 

role in energy metabolism and enhancement of insulin sensitivity [27]. Our study 

in accordance with previous ones, have shown inhibition of apelin signaling and 

reduced plasma concentrations as a potential response to undernutrition [7]. 

Recent studies have highlighted the paramount importance of apelin and its 

receptor, since they have been proposed as a valuable new treatment target in 

type 2 diabetes [10,30] . 

 

     Our study showed that in both FGR and non-FGR offspring of calorie 

restricted mothers, liver thyroid hormones’ metabolism is inhibited. Thyroid 

hormones play a key role to thermoregulation, specifically in norepinephrine (NE) 

controlled thermogenesis [44]. Brown adipose tissue thermogenic activity which 

is triggered by NE is under triiodothyronine (T3) control [32]. Low T3 plasma levels 

are associated with  impaired thermogenesis and  predisposition to diet-

induced obesity in neonatal and adult life despite later normalization of T3 plasma 

concentrations [9,37]. Hypothermia and transiently low thyroxine levels are  

common neonatal complications of FGR however no information is available in 

appropriately grown neonates born to undernourished mothers [36].  

    Our model suggests inhibition of fatty acid metabolism not only in FGR liver 

but in non-FGR liver as well. Liver is the central organ of fatty acid metabolism. 

Both obesity and insulin resistance are close related with disrupted fatty acid 

metabolism [40]. Inhibition of this metabolic process leads to non-alcoholic fatty 

liver, liver steatosis and subsequent insulin resistance deterioration. In a previous 

study of our team where NEFA (Non Esterified Fatty Acids) concentrations were 

compared between FGR and non-FGR rats at one year of age there was no 

statistical difference between groups. It seems that food restriction produces the 

same adipose tissue response in both the FGR and non-FGR groups, suggesting 

that it is the adverse prenatal event that determines certain metabolic profiles 

rather than birthweight [12].   
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4. Materials and Methods 

Animal model 

Ten (n=10) timed pregnant Wistar rats, on their 12th day of gestation 

(Janvier Labs – Rodent research models & associated services, France), were 

hosted individually in 36 × 20 × 14 cm breeding boxes at the Laboratory of 

Experimental Surgery of the Second Department of General Surgery at Aretaieion 

Hospital, National and Kapodistrian University of Athens, Athens, Greece. Animals 

were housed under  standard conditions (temperature between 22° and 23° C, 

humidity 55-65% and 12-hour light/dark cycles). All animals were fed with standard 

formula diet containing 18.5% protein (Mucedola S.r.l., Settimo Milanese, Italy) 

with ad libitum access to food and water as well, until day 14. Following 

randomization, pregnant dams were assigned to starved group (n=6, diet restricted 

by 50%) and control group (n=4 ad libitum access to food). Both groups had free 

access to fresh water. Control group’s food intake was measured on a daily basis. 

During the experimental period (from day 15th onwards), rats of the starved group, 

were given half the amount of food that was on average consumed by the control 

group, based on measurements taken place the day before. Food restriction of the 

starved group lasted from 15th gestational day to delivery. All rats delivered 

spontaneously on the 21st gestational day and neonates were immediately 

weighted (figure 7). 

 

 

 

Figure 7.  Experimental design of the study. 
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     Starved group’s offspring were categorized according to their birth weight as 

FGR (birth weight < mean birth weight of control group’s offspring – 2 × Standard 

Deviation) and non FGR (birth weight > mean birth weight of control group’s 

offspring – 2 × Standard Deviation) as previously described [11,38,50,52]. 

Immediately after delivery, offspring were separated from their mothers and 

weighted. Neonates were anesthetized using inhaled sevoflurane, and euthanized. 

Liver tissues were rapidly removed.  The time interval between rat’s sacrifice and 

specimens’ storage at -80ºC did not exceed 15 minutes.  

All liver tissues were cleaned from blood with PBS (phosphate buffered saline). 

Specimens were stored at -80ºC and sent packed in dry ice to the Centre for 

Proteomic Research, Institute for Life Sciences, University Southampton for 

proteomic analysis.  

Growth characteristics of mothers, gestation duration, litter size, birth weight of the 

pups and organ weight were compared using the independent-samples t-test (IBM 

SPSS Statistics 22.0). Statistical significance was considered at p < 0.05. 

All experimental procedures were approved by the Greek Directorate of Veterinary 

Services (1211/19-03-2018) and the Ethical Committee of Aretaieion Hospital 
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(011/21-11-2017) and were in accordance with both European Union and National 

legislation.     

 

Quantitative proteomics: 

Each liver tissue was dissolved in 200 μL of 0.5 M triethylammonium 

bicarbonate, 0.05% sodium dodecyl sulfate and homogenised using the 

FastPrep®-24 Instrument (MP Biomedicals, Santa Ana, CA, USA). Lysates were 

subjected to pulsed probe sonication (Misonix, Farmingdale, NY, USA) and 

centrifuged (16,000 g, 10 min, 40C). The supernatant had been measured for its 

protein content using the Direct DetectTM system (Merck Millipore, Darmstadt, 

Germany). From each lysate, 100 μg of protein subjected to reduction, alkylation, 

trypsin proteolysis and 11-plex TMT labelling according to manufacturer’s 

instructions.  

The resulting TMT peptides were initially fractionated with alkaline C4 

reversed phase (RP) liquid chromatography. Each peptide fraction further 

separated with on-line nano-capillary C18 reverse phase liquid chromatography 

under acidic conditions, subjected to nanospary ionization and measured with 

ultra-high resolution mass spectrometry using the hybrid ion-trap / FT-Orbitrap 

Elite platform.  

The unprocessed raw data files were submitted to Proteome Discoverer 1.4 

for target decoy searching with SequestHT against the TREMBL Uniprot database 

for rattus norvegicus (release date: January 2018). Reporter ion ratios derived from 

unique peptides only were used for the relative quantitation of each respective 

protein. Quantification ratios were median-normalized and log
2
transformed. The 

threshold of percent co-isolation excluding peptides from quantification was set at 

50. A one-sample T-Test was performed to identify proteins that were differentially 

expressed in the tissue from FGR and non-FGR compared to control rats. The two-

stage step-up method of Benjamini, Krieger and Yekutieli was used for multiple 

hypothesis correction. A q-value ≤ 0.05 was considered significant. Proteomics 
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data have been deposited to the ProteomeXchange Consortium via the PRIDE 

partner repository. 

 

5. Conclusions 

      According to fetal programming theory,  fetal malnutrition induces adaptive 

processes that permanently change growth, physiology and metabolism of the 

offspring. Maternal undernutrition alters the proteomic profile of the neonatal liver 

which is a key organ of many metabolic processes  supporting homeostasis. In 

our study,  FGR (representing a model of human neonates with growth restriction) 

and non-FGR pups (representing a model of human infants having experienced 

adverse intrauterine conditions but born with normal body weight) have developed 

both common and different metabolic phenotypes. Thus suggesting that both 

intrauterine adversities and birthweight determine the metabolic profiles of the 

offspring. This study contributes to a better understanding of the proteomic 

mechanisms of liver developmental dysfunction induced by prenatal food 

restriction and helps to explain the intrauterine origin of adult metabolic disease. 
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