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Abstract: The information entropy for Smoluchowski coagulation equation is
proposed based on statistical mechanics. And the normalized particle size distribution
is a lognormal function at equilibrium from the principle of maximum entropy and
moment constraint. The geometric mean volume and standard deviation in the
distribution function are determined as simple constant. The results reveal that the
assumption that algebraic mean volume be unit in self-preserving hypothesis is
reasonable in some sense. Based on the present definition of information entropy, the
Cercignani’s conjecture holds naturally for Smoluchowski coagulation equation.
Together with the proof that the conjecture is also true for Boltzmann equation,
Cercignani’s conjecture will holds for any two-body collision systems, which will
benefit the understanding of Brownian motion and molecule kinematic theory, such as
the stability of the dissipative system, and the mathematical theory of convergence to
thermodynamic equilibrium.
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Introduction

Population balance equation (PBE) are general mathematical framework for
modeling of particulate system. In the framework of mono-variants internal coordinate
and time for each particle, the PBE characterized as Smoluchowski coagulation
equation (SCE), which takes the form [1]:

an V,t 1,v 0

% = E‘L L, v—=v)n(v, t)n(v—-v,,t)dv, — IO L, v)n(v, Hn(v,, t)dy, (1)
in which n(v,t)dv is the number of particles per unit spatial volume with particle volume
from v to v+dv at time t; and f is the collision frequency function of coagulation. In the

free molecule regime, the collision frequency function for Brownian coagulation is
B =B A/v+1/v)2 (v +vi?)? ()

where the constant B1=(3/4m)"%(6ksT/p,)'"?, ks is the Boltzmann constant; T is the
temperature; and p, is the particle density. In the continuum regime, the corresponding
collision frequency function is

B =B,V +1/v ) (v +v, (3)
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where the constant B> = 3kp7/2u, and u is the gas viscosity.

For the nonlinear partial integrodifferential structure of SCE, only a limited number
of known analytical solution exist for simple coagulation kernel [2-5], If the collision
frequency function is a homogeneous function of its arguments, the SCE can be
converted into an ordinary integrodifferential equation by a similarity transformation
[6]. The previous studies indicate that the particle size distribution (PSD) of an aged
coagulating system approaches a universal asymptotic form called the self-preserving
PSD [7-11]. If the self-preserving hypothesis can be firmly established, the tedious job
of the determination of PSD can be reduced to the determination of only a few
parameters for aged system [12-16]. Although the self-preserving hypothesis has been
verified by some experiments and numerical methods [17-19], it is unfortunately that
the algebraic mean volume of PSD is assumed to be unit in the derivation. This
assumption turns the similarity transformation into a simple separated variable method,
which makes the self-preserving hypothesis subject to great constraints in theoretically.

Because of the relative simplicity of implementation and low computational costs,
the moment method has become a powerful tool for investigating the SCE [20-24].
Recently, Yu et al. [25] proposed a moment-based approach called the Taylor-series
expansion method of moment (TEMOM) to analyze the evolution of particle number
density function due to Brownian motion. The main idea of the TEMOM is that the
nonlinear collision kernel is approximated by a Taylor-series polynomial, and the higher
and fractional order moments based on PSD are approximated by the first three integer
order moments, and the original TEMOM model achieves self-closure. In addition, the
derivation of the TEMOM is completely based on a mathematical method, and no
artificial assumption is introduced. The estimated truncation error of TEMOM model
for Brownian coagulation has been examined [26], and the particle dimensionless
moments corresponding to the deviation of PSD tends to a constant at long time [27],
which is consistent with the self-preserving hypothesis. This method provides a new
way for analyzing the coagulation problem theoretically. The moment method can only
get finite moments, but the PSD is equivalence with the infinite moments. How to get
the PSD from the finite moments is still a hot issue and challenge in science and
engineering [28]. In addition, the expansion point is usually selected as the algebraic
mean volume, whose value increases with time according to the asymptotic solution
[27]. Whether there is an equilibrium state cannot be determined by the TEMOM itself.

According to the rule of statistical physics, Shannon information entropy is
interpreted as a state function of a thermodynamic system and is proportional to the
total number of particles [29]. The reduction in the total number of particles corresponds
to a reduction in the information entropy of a particle system, which must be
accompanied by a change of system energy in a dissipative system in accordance with
the second law of thermodynamics. Brownian coagulation can be considered as a
perfectly inelastic collision process, in which the colliding particles stick together and
the maximum amount of kinetic energy of the system is lost. Then the thermodynamic
constraint of Brownian coagulation can be proposed based on the binary perfectly
inelastic collision theory and principle of maximum entropy [30, 31], which can be
regarded as an adjoint equation of the SCE. The thermodynamic constraint can be used
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to explain the meaning of Eotvos constant in statistical mechanics [32], and its value
can be quantitatively calculated by the equality at equilibrium. The constraint also gives
the expression of the critical time to reach the thermodynamic equilibrium, which can
be used to determine whether the PSD reaches the self-preserving form. In addition, the
critical time is proportional to temperature, which can explain the long-time existence
of urban fine particulate matter in northern China [33], and the structure of macroscopic
agglomerates [34]. However, many other physical quantities are introduced into the
thermodynamic analysis, such as specific surface free energy, internal energy and
chemical potential, etc. These physical quantities are not strongly related to the SCE
itself, and makes the analysis more complicated and quasi-empirical.

In this study, the definition of information entropy is proposed based on the SCE
itself. According to the principle of maximum entropy and moment method, it is tried
to give the PSD of SCE at equilibrium, and determine the expression for the algebraic
mean volume and standard deviation of PSD.

Moment method and its asymptotic solution

In the moment method, the k-th order moment M; of PSD is defined as
M, = jokan(v)dv 4)

Using the moment transformation, the SCE turns to a series of equations related to the
evolution of particle moments:
dM,
dt

_ % 7 I T+ w) v =] Avn(v,oney Hava, (5)

The minimum set of moments required to close the particle moment equation is the first
three, Mo, M1 and M.. The zeroth order moment represents the total particle number
concentration; the first order moment is proportional to the total particle mass
concentration, which remains constant due to the rigorous mass conservation
requirement; and the second order moment describes the dispersion of PSD. In the free
molecular regime, the TEMOM maodel is

dM, _ \/EBl(BSMCZ ~1210M, _9223)M02 M,”

dt 5184 M,
dM

rraiall (6)
M, V2B, (701M* - 4210M ; —6859)M,* \ o

dt 2592 M,

In the continuum regime, the corresponding model is
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where the dimensionless particle moment is defined as
M =g ®)

Which corresponds to the variance of distribution function. For the TEMOM model of
Brownian coagulation, the scaling asymptotic growth rate can be found as [27]

LM, 1am, C o

M, dt M, dt t

where the constant C = 6/5 in the free molecule regime, and C = 1 in the continuum
regime, respectively. It can be found that the particle dimensionless moment tends to a
constant with the asymptotic solution, i.e.,

M, _df MM, |_, (10)
dt dtl M,

The asymptotic solution reveals that the zeroth order particle moment tends to zero
as time advances. Is this solution the reality? This question cannot be answered by the
moment method itself. The traditional way to solve this problem is to propose the
constraint condition based on the second law of thermodynamics. However, this
approach is quasi-empirical. Another way is to define the entropy of SCE itself, and the
PSD at equilibrium is given according to the principle the maximum entropy. But how
to give an appropriate definition of entropy is a problem in itself. There are two main
definitions of entropy of SCE in the literatures, one is the definition of entropy based
on the PSD, and the other is that based the coagulation probability. The latter seems to
be more complex than the former, and can provide more information to get the best
fractal dimension of agglomerates with simple collision kernel at equilibrium. In our
previous work, the two kinds of definitions of entropy are equivalent with asymptotic
analysis for Brownian coagulation, and both can only solve the problem partially. In
this work, the entropy will be defined based on statistical mechanics, which overcomes
the shortcomings of the previous definition of entropy and successfully determines the
algebraic mean volume.

Information entropy of SCE

Smoluchowski coagulation equation is deferent from the Boltzmann equation [35].
In the former, the collision between particles is perfectly inelastic, the mass and
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momentum are conserved while the maximum amount of kinetic energy of system is
lost, and the total particle number density is reduced. Therefore, Smoluchowski
coagulation equation is a soft spheres collision model. However, the Boltzmann
equation is a hard spheres collision model, the conservation of mass and momentum
together with the conservation of kinetic energy makes possible the calculation of final
velocities in two-body collision, and the particle number density remains constant.
Therefore, the definition of information entropy for SCE is also deferent from that for
Boltzmann equation. In the latter, the information entropy is the only the function of
the integral of the product of the distribution function and its logarithm.

In the literatures, there are several definitions of information entropy for SCE, such
as the definition based on the coagulation probability [36], but the effect of particle
number density on the entropy is not considered. Another way to define the entropy for
SCE based on thermodynamics can be found in our previous work [30,31], the
properties and evolution of entropy for SCE are studied from the perspective of energy
balance and conversion, not from the SCE itself.

Starting from the original definition of information entropy [29], which is a function
of the total number of microscopic states (€2) in a disperse system, i.e., S = kzlnQ , and
Q can be calculated for SCE as

Q:

M, ! (11)
n!

2

According to the Sterling formula, then the information entropy can be expressed as
S=ks(MyInM,—M;)-k; D (nIinn—n) (12)

Therefore, the information entropy for SCE can be considered as a function of PSD and
the total number of particles. Let the normalized PSD as

n(vit)  n(vt)

p(v.t)=— = (13)
I n(v,t)dv Mo
0
Then the information entropy can be simplified as form of continuity function
S =—k,M, j: p(v,t)In p(v,t)dv (14)

Principle of maximum entropy

In mathematics, the principle of maximum entropy can be expressed as that the
normalized PSD makes the information entropy approach to the extremum, i.e.,

max[S(MO, p):—kBMOI: p(v,t)In p(v,t)dv} (14"

with the moment constraints as
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I: p(v,t)dv =1,

. M,
.[0 vp(v,t)dv:M—, (15)

0

o M
vip(v,t)dv = —2,
[ Vet v

Based on the variational principle and Lagrange multiplier method, the normalized PSD
under the condition of maximum entropy can be obtained as a lognormal function:

1 In? (v / vg) 1
Vi) =——exp| ————= |- 16
p(v.) SJZIno- p[ 18In%c |v (16)
In which the geometric mean volume v, and standard deviation ¢ can be expressed as
the functions of particle moments
M,

1
VQZW,MZO':§|I‘IMC (17)

Then the information entropy at equilibrium can be expressed as

Seq:MO|:1+1|n(2”In—NICJ+|n[&j:| (18)
2" 2 M, M,

Which are the functions of particle dimensionless moment Mc and zeroth order moment
Mo. Using the extreme condition again, 1.e.,

eq eq
os™ _ 0 oS™ _ 0 (19)
oM oM,

The parameters of PSD can be determined as

M. =e, M, =M,~/27 /e (20)
Or

o =3e,v, =el2n @21
And the information entropy at equilibrium is simplified as

S =k;M,™ (22)

And algebraic mean volume at equilibrium is
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(ﬂj __° 10844 (23)

M) er

The result reveals that the assumption that (M1/Mo)*® = 1 in the self-preserving
hypothesis is reasonable in some sense.

Cercignani’s conjecture for SCE

Cercignani’s conjecture is based on the entropy-entropy production method, which
was first used in kinetic theory for the Fokker-Planck equation [37], it has been at the
core of the renewal of the mathematical theory of convergence to thermodynamically
equilibrium for Boltzmann equation over the past decade [38]. In explicitly,
Cercignani’s conjecture assumes a linear inequality between the entropy and the
entropy production functional for Boltzmann integral operator as

ds .
EZK(S“—S) (24)

In which K is the proportional coefficient. Recently, Cercignani’s conjecture for
Boltzmann equation with hard sphere collision has been proved by Villani [39].
Brownian coagulation is a similar dissipative system as that described by Boltzmann
equation. Is this conjecture still true for the SCE?

In 2019, Xie and Liu [40] have proposed a similar equality of the relationship
between entropy and entropy production for SCE as the structure of Cercignani’s
conjecture according to the thermodynamic constraint. In their derivation process, a
similar H function as that in Boltzmann equation is defined, but the relationship
between the new H function and entropy S remains unknown. Because the entropy in
that work is based on thermodynamics, it is difficult to answer this question
theoretically. Can the definition of information entropy in present work solve this

problem?
The entropy production can be calculated from the definition of entropy in Eq.(12)
as
S __ L dMyf e d (S ) o (25)
dt M, dt dM, ( M,

According to the principle of maximum entropy, the entropy is less than that at
equilibrium, i.e., S < S°. In this way, the following inequality will hold,

eq
S, 1AMy 2 d [S7) g =K(5%-5) (26)
dt - M, dt am, | ™,

In which the constant K is obtained

1 am,
M, dt

27
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And the scaling growth rate of entropy can be obtained as

2 eq
1ds 1 dMy| My d (§7) | 1 dM, (28)
Sdt M, dt S dM, |\ M, M, dt

Therefore, the Cercignani’s conjecture is true for SCE due to Brownian motion, which
means that the effect of molecular collisions is to force a non-equilibrium distribution
function at a point in physical space back to a lognormal distribution function, and SCE
for Brownian motion is convergence in mathematically.

Discussions and conclusions

In this study, the information entropy for SCE is proposed from the point of view of
total number of microscopic states in a disperse systems. Based on the variational
principle and Lagrange multiplier method, the normalized PSD can be obtained as a
lognormal function under the condition of maximum entropy and moment constraints.
The information entropy at equilibrium are the functions of particle dimensionless
moment and zeroth order moment. Using the extreme condition, the geometric mean
volume and standard deviation are both determined as simple constants. The results are
consistent with the self-preserving hypothesis. It should be pointed out that the
geometric mean volume has not been determined in the previous literatures.

With the present definition of information entropy, the Cercignani’s conjecture for
SCE holds naturally. The result reveals that the SCE for Brownian motion is
convergence in mathematically. As mentioned above, Cercignani’s conjecture are both
true for elastic and perfectly inelastic collision theory. Moreover, a general two-body
collision can be decomposed into the weighted sum of elastic and perfectly inelastic
collision. Therefore, Cercignani’s conjecture holds for any two-body collision systems,
which will explain many unknown problems. For example, the Navier-Stokes equation
can be derived from the Boltzmann equation using Chapman-Enskog asymptotic
expansion method, meanwhile, there is a dissipation of turbulent kinetic energy in
turbulence flow. The question is that how can the dissipation of turbulent kinetic energy
be realized in elastic collision system? Perhaps the combination of elastic and perfectly
inelastic collision theory can solve this theoretical inconsistent problem.
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Appendix: Lagrange multiplier method and variational principle
When the total number of particles is fixed, the principle of maximum entropy can be
expressed as

max[Entropy(p) :—I p(x)In p(x)dx] (A1)
With the mathematical and physical constraint

J pO9dx=1;

pr(x)dx =In y; (A2)

[(x=u)" p(ydx=(Ino)’

According to the Lagrange multiplier method, three parameters are introduced as

L(p.cx, B.7) =] PO I px)dx +ar([ p(x)dx -1

(A3)
+ﬂ(jxp(x)dx— In ,u)+y(j(x— In ,u)2 p(x)dx —(In 0)2)
Using the extreme condition, it can be found the following relationship
oL 2
%:In P(X)+1-a—px—y(X—Inu) =0 (A4)

And the distribution function can be expressed as
p(x) :exp(a—l)exp[ﬁx+y(x—ln #)2} (A5)

By rearrangement, it becomes

p(x)—exp{a—lw(lnﬂ)z—7(—(27"]”ﬁ)j }exp{y(x_Zylnyﬂ] }

2y 2y
(A6)
From the integrability condition, it can be found
y<0 (A7)
From the expectation condition, it can be found
E(X)zln,u—gzln,u and =0 (A8)

From the constraint that the integral of distribution is unit, it can be found

exp(a—l)\/z:l (A9)
v
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From the constraint of variance, it can be found that

emxa—n(%/i%}zanaf (A10)

Then the solution can be found

1
=_ All
" oIne)? (Al
And the distribution function is obtained as
1 (x—In ,u)2
X)=————exp| —~———=— Al2
PR V2zIno p{ 2(Inc)? (A12)
Using the coordinate transformation
x=Iny (A13)
And the distribution function becomes
1 1 In*(y/u)|1
X)dx = —dy=—exp| ————~*|—d Al4
p(x) |0(y)y Y= o p[ e |y (Al4)
With the relationship between volume and particle size,
v=%nf (A15)
And the distribution function with particle volume is obtained as
1 In? (v /v, ) 1
V,t)=——exp| ————= |- Al6
p(v.) SJZIno- p[ 18Inc |v (A16)

Which is the lognormal function listed in Eq.(16) of the paper.
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