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Abstract: The information entropy for Smoluchowski coagulation equation is 

proposed based on statistical mechanics. And the normalized particle size distribution 

is a lognormal function at equilibrium from the principle of maximum entropy and 

moment constraint. The geometric mean volume and standard deviation in the 

distribution function are determined as simple constant. The results reveal that the 

assumption that algebraic mean volume be unit in self-preserving hypothesis is 

reasonable in some sense. Based on the present definition of information entropy, the 

Cercignani’s conjecture holds naturally for Smoluchowski coagulation equation. 

Together with the proof that the conjecture is also true for Boltzmann equation, 

Cercignani’s conjecture will holds for any two-body collision systems, which will 

benefit the understanding of Brownian motion and molecule kinematic theory, such as 

the stability of the dissipative system, and the mathematical theory of convergence to 

thermodynamic equilibrium. 
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Introduction 

Population balance equation (PBE) are general mathematical framework for 

modeling of particulate system. In the framework of mono-variants internal coordinate 

and time for each particle, the PBE characterized as Smoluchowski coagulation 

equation (SCE), which takes the form [1]: 
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in which n(v,t)dv is the number of particles per unit spatial volume with particle volume 

from v to v+dv at time t; and β is the collision frequency function of coagulation. In the 

free molecule regime, the collision frequency function for Brownian coagulation is 
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where the constant B1=(3/4π)1/6(6kBT/ρp)
1/2, kB is the Boltzmann constant; T is the 

temperature; and ρp is the particle density. In the continuum regime, the corresponding 

collision frequency function is 
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where the constant B2 = 3kBT/2μ, and μ is the gas viscosity. 

For the nonlinear partial integrodifferential structure of SCE, only a limited number 

of known analytical solution exist for simple coagulation kernel [2-5], If the collision 

frequency function is a homogeneous function of its arguments, the SCE can be 

converted into an ordinary integrodifferential equation by a similarity transformation 

[6]. The previous studies indicate that the particle size distribution (PSD) of an aged 

coagulating system approaches a universal asymptotic form called the self-preserving 

PSD [7-11]. If the self-preserving hypothesis can be firmly established, the tedious job 

of the determination of PSD can be reduced to the determination of only a few 

parameters for aged system [12-16]. Although the self-preserving hypothesis has been 

verified by some experiments and numerical methods [17-19], it is unfortunately that 

the algebraic mean volume of PSD is assumed to be unit in the derivation. This 

assumption turns the similarity transformation into a simple separated variable method, 

which makes the self-preserving hypothesis subject to great constraints in theoretically. 

Because of the relative simplicity of implementation and low computational costs, 

the moment method has become a powerful tool for investigating the SCE [20-24]. 

Recently, Yu et al. [25] proposed a moment-based approach called the Taylor-series 

expansion method of moment (TEMOM) to analyze the evolution of particle number 

density function due to Brownian motion. The main idea of the TEMOM is that the 

nonlinear collision kernel is approximated by a Taylor-series polynomial, and the higher 

and fractional order moments based on PSD are approximated by the first three integer 

order moments, and the original TEMOM model achieves self-closure. In addition, the 

derivation of the TEMOM is completely based on a mathematical method, and no 

artificial assumption is introduced. The estimated truncation error of TEMOM model 

for Brownian coagulation has been examined [26], and the particle dimensionless 

moments corresponding to the deviation of PSD tends to a constant at long time [27], 

which is consistent with the self-preserving hypothesis. This method provides a new 

way for analyzing the coagulation problem theoretically. The moment method can only 

get finite moments, but the PSD is equivalence with the infinite moments. How to get 

the PSD from the finite moments is still a hot issue and challenge in science and 

engineering [28]. In addition, the expansion point is usually selected as the algebraic 

mean volume, whose value increases with time according to the asymptotic solution 

[27]. Whether there is an equilibrium state cannot be determined by the TEMOM itself.  

According to the rule of statistical physics, Shannon information entropy is 

interpreted as a state function of a thermodynamic system and is proportional to the 

total number of particles [29]. The reduction in the total number of particles corresponds 

to a reduction in the information entropy of a particle system, which must be 

accompanied by a change of system energy in a dissipative system in accordance with 

the second law of thermodynamics. Brownian coagulation can be considered as a 

perfectly inelastic collision process, in which the colliding particles stick together and 

the maximum amount of kinetic energy of the system is lost. Then the thermodynamic 

constraint of Brownian coagulation can be proposed based on the binary perfectly 

inelastic collision theory and principle of maximum entropy [30, 31], which can be 

regarded as an adjoint equation of the SCE. The thermodynamic constraint can be used 
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to explain the meaning of Eotvos constant in statistical mechanics [32], and its value 

can be quantitatively calculated by the equality at equilibrium. The constraint also gives 

the expression of the critical time to reach the thermodynamic equilibrium, which can 

be used to determine whether the PSD reaches the self-preserving form. In addition, the 

critical time is proportional to temperature, which can explain the long-time existence 

of urban fine particulate matter in northern China [33], and the structure of macroscopic 

agglomerates [34]. However, many other physical quantities are introduced into the 

thermodynamic analysis, such as specific surface free energy, internal energy and 

chemical potential, etc. These physical quantities are not strongly related to the SCE 

itself, and makes the analysis more complicated and quasi-empirical.  

In this study, the definition of information entropy is proposed based on the SCE 

itself. According to the principle of maximum entropy and moment method, it is tried 

to give the PSD of SCE at equilibrium, and determine the expression for the algebraic 

mean volume and standard deviation of PSD. 

Moment method and its asymptotic solution 

In the moment method, the k-th order moment Mk of PSD is defined as 

0
( )k
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

=               (4) 

Using the moment transformation, the SCE turns to a series of equations related to the 

evolution of particle moments: 
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The minimum set of moments required to close the particle moment equation is the first 

three, M0, M1 and M2. The zeroth order moment represents the total particle number 

concentration; the first order moment is proportional to the total particle mass 

concentration, which remains constant due to the rigorous mass conservation 

requirement; and the second order moment describes the dispersion of PSD. In the free 

molecular regime, the TEMOM model is 
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In the continuum regime, the corresponding model is 
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where the dimensionless particle moment is defined as 
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Which corresponds to the variance of distribution function. For the TEMOM model of 

Brownian coagulation, the scaling asymptotic growth rate can be found as [27] 
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where the constant C = 6/5 in the free molecule regime, and C = 1 in the continuum 

regime, respectively. It can be found that the particle dimensionless moment tends to a 

constant with the asymptotic solution, i.e., 
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The asymptotic solution reveals that the zeroth order particle moment tends to zero 

as time advances. Is this solution the reality? This question cannot be answered by the 

moment method itself. The traditional way to solve this problem is to propose the 

constraint condition based on the second law of thermodynamics. However, this 

approach is quasi-empirical. Another way is to define the entropy of SCE itself, and the 

PSD at equilibrium is given according to the principle the maximum entropy. But how 

to give an appropriate definition of entropy is a problem in itself. There are two main 

definitions of entropy of SCE in the literatures, one is the definition of entropy based 

on the PSD, and the other is that based the coagulation probability. The latter seems to 

be more complex than the former, and can provide more information to get the best 

fractal dimension of agglomerates with simple collision kernel at equilibrium. In our 

previous work, the two kinds of definitions of entropy are equivalent with asymptotic 

analysis for Brownian coagulation, and both can only solve the problem partially. In 

this work, the entropy will be defined based on statistical mechanics, which overcomes 

the shortcomings of the previous definition of entropy and successfully determines the 

algebraic mean volume.  

Information entropy of SCE 

Smoluchowski coagulation equation is deferent from the Boltzmann equation [35]. 

In the former, the collision between particles is perfectly inelastic, the mass and 
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momentum are conserved while the maximum amount of kinetic energy of system is 

lost, and the total particle number density is reduced. Therefore, Smoluchowski 

coagulation equation is a soft spheres collision model. However, the Boltzmann 

equation is a hard spheres collision model, the conservation of mass and momentum 

together with the conservation of kinetic energy makes possible the calculation of final 

velocities in two-body collision, and the particle number density remains constant. 

Therefore, the definition of information entropy for SCE is also deferent from that for 

Boltzmann equation. In the latter, the information entropy is the only the function of 

the integral of the product of the distribution function and its logarithm. 

In the literatures, there are several definitions of information entropy for SCE, such 

as the definition based on the coagulation probability [36], but the effect of particle 

number density on the entropy is not considered. Another way to define the entropy for 

SCE based on thermodynamics can be found in our previous work [30,31], the 

properties and evolution of entropy for SCE are studied from the perspective of energy 

balance and conversion, not from the SCE itself.   

Starting from the original definition of information entropy [29], which is a function 

of the total number of microscopic states (Ω) in a disperse system, i.e., S = kBlnΩ , and 

Ω can be calculated for SCE as 

0 !

!
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n
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               (11) 

According to the Sterling formula, then the information entropy can be expressed as 

( ) ( )0 0 0ln lnB BS k M M M k n n n= − − −         (12) 

Therefore, the information entropy for SCE can be considered as a function of PSD and 

the total number of particles. Let the normalized PSD as 
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Then the information entropy can be simplified as form of continuity function 

0
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
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Principle of maximum entropy 

In mathematics, the principle of maximum entropy can be expressed as that the 

normalized PSD makes the information entropy approach to the extremum, i.e.,  
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with the moment constraints as 
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Based on the variational principle and Lagrange multiplier method, the normalized PSD 

under the condition of maximum entropy can be obtained as a lognormal function: 
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In which the geometric mean volume vg and standard deviation σ can be expressed as 

the functions of particle moments 
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Then the information entropy at equilibrium can be expressed as 
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Which are the functions of particle dimensionless moment MC and zeroth order moment 

M0. Using the extreme condition again, i.e.,  
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The parameters of PSD can be determined as 

0 1, 2 /eq eq

CM e M M e= =            (20) 

Or 
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And the information entropy at equilibrium is simplified as 

0

eq eq

BS k M=               (22) 

And algebraic mean volume at equilibrium is 
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The result reveals that the assumption that (M1/M0)
eq = 1 in the self-preserving 

hypothesis is reasonable in some sense. 

Cercignani’s conjecture for SCE 

Cercignani’s conjecture is based on the entropy-entropy production method, which 

was first used in kinetic theory for the Fokker-Planck equation [37], it has been at the 

core of the renewal of the mathematical theory of convergence to thermodynamically 

equilibrium for Boltzmann equation over the past decade [38]. In explicitly, 

Cercignani’s conjecture assumes a linear inequality between the entropy and the 

entropy production functional for Boltzmann integral operator as 

( )eqdS
K S S

dt
 −              (24) 

In which K is the proportional coefficient. Recently, Cercignani’s conjecture for 

Boltzmann equation with hard sphere collision has been proved by Villani [39]. 

Brownian coagulation is a similar dissipative system as that described by Boltzmann 

equation. Is this conjecture still true for the SCE? 

In 2019, Xie and Liu [40] have proposed a similar equality of the relationship 

between entropy and entropy production for SCE as the structure of Cercignani’s 

conjecture according to the thermodynamic constraint. In their derivation process, a 

similar H function as that in Boltzmann equation is defined, but the relationship 

between the new H function and entropy S remains unknown. Because the entropy in 

that work is based on thermodynamics, it is difficult to answer this question 

theoretically. Can the definition of information entropy in present work solve this 

problem? 

The entropy production can be calculated from the definition of entropy in Eq.(12) 

as 

20
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According to the principle of maximum entropy, the entropy is less than that at 

equilibrium, i.e., S ≤ Seq. In this way, the following inequality will hold, 

( )20
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In which the constant K is obtained 
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And the scaling growth rate of entropy can be obtained as  
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Therefore, the Cercignani’s conjecture is true for SCE due to Brownian motion, which 

means that the effect of molecular collisions is to force a non-equilibrium distribution 

function at a point in physical space back to a lognormal distribution function, and SCE 

for Brownian motion is convergence in mathematically. 

Discussions and conclusions 

In this study, the information entropy for SCE is proposed from the point of view of 

total number of microscopic states in a disperse systems. Based on the variational 

principle and Lagrange multiplier method, the normalized PSD can be obtained as a 

lognormal function under the condition of maximum entropy and moment constraints. 

The information entropy at equilibrium are the functions of particle dimensionless 

moment and zeroth order moment. Using the extreme condition, the geometric mean 

volume and standard deviation are both determined as simple constants. The results are 

consistent with the self-preserving hypothesis. It should be pointed out that the 

geometric mean volume has not been determined in the previous literatures.  

With the present definition of information entropy, the Cercignani’s conjecture for 

SCE holds naturally. The result reveals that the SCE for Brownian motion is 

convergence in mathematically. As mentioned above, Cercignani’s conjecture are both 

true for elastic and perfectly inelastic collision theory. Moreover, a general two-body 

collision can be decomposed into the weighted sum of elastic and perfectly inelastic 

collision. Therefore, Cercignani’s conjecture holds for any two-body collision systems, 

which will explain many unknown problems. For example, the Navier-Stokes equation 

can be derived from the Boltzmann equation using Chapman-Enskog asymptotic 

expansion method, meanwhile, there is a dissipation of turbulent kinetic energy in 

turbulence flow. The question is that how can the dissipation of turbulent kinetic energy 

be realized in elastic collision system? Perhaps the combination of elastic and perfectly 

inelastic collision theory can solve this theoretical inconsistent problem. 
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Appendix: Lagrange multiplier method and variational principle 

When the total number of particles is fixed, the principle of maximum entropy can be 

expressed as 

max ( ) ( ) ln ( )Entropy p p x p x dx = −
           (A1) 

With the mathematical and physical constraint  

( ) ( )
2 2

( ) 1;

( ) ln ;

( ) ln

p x dx

xp x dx

x p x dx



 

=

=

− =







           (A2) 

According to the Lagrange multiplier method, three parameters are introduced as  

( )

( ) ( ) ( )( )2 2

( , , , ) ( ) ln ( ) ( ) 1

                       ( ) ln ln ( ) ln

L p p x p x dx p x dx

xp x dx x p x dx

   

    

= − + −

+ − + − −

 

 
 (A3) 

Using the extreme condition, it can be found the following relationship  

2ln ( ) 1 ( ln ) 0
L

p x x x
p

   


= + − − − − =


        (A4) 

And the distribution function can be expressed as  

( ) 2( ) exp 1 exp ( ln )p x x x    = − + −          (A5) 

By rearrangement, it becomes  

2 2

2 (2 ln ) 2 ln
( ) exp 1 (ln ) exp

2 2
p x x

     
    

 

      − −
= − + − −      

         

 

 (A6) 

From the integrability condition, it can be found  

0                  (A7) 

From the expectation condition, it can be found  

( ) ln ln
2

E x


 


= − =  and 0 =          (A8) 

From the constraint that the integral of distribution is unit, it can be found  

( )exp 1 1





− − =              (A9) 
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From the constraint of variance, it can be found that 

( ) 2

3

1
exp 1 (ln )

2


 



 
− =  − 

          (A10) 

Then the solution can be found 

2

1
=

2(ln )



−               (A11) 

And the distribution function is obtained as 

( )
2

2

ln1
( ) exp

2(ln )2 ln

x
p x



 

 −
= − 

  

         (A12) 

Using the coordinate transformation  

lnx y=                 (A13) 

And the distribution function becomes 

( )2

2

ln /1 1 1
( ) ( ) exp

2ln2 ln

y
p x dx p y dy dy

y y



 

 
= = − 

 
     (A14) 

With the relationship between volume and particle size,  

31

6
v y=                (A15) 

And the distribution function with particle volume is obtained as 

( )2

2

ln /1 1
( , ) exp

18ln3 2 ln

gv v
p v t

v 

 
= − 

  

        (A16) 

Which is the lognormal function listed in Eq.(16) of the paper.  
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