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Abstract: We have shown that prebiotic xylo-oligosaccharides (XOS) increased beneficial gut mi-
crobiota (GM) and prevented high fat diet-induced hepatic steatosis, but the mechanisms behind
these effects are not clear. We studied whether XOS affects adipose tissue inflammation and insulin
signaling, and whether the GM and fecal metabolome explain associated patterns. XOS was sup-
plemented or not with high (HFD) or low (LFD) fat diet for 12 weeks in male Wistar rats (n =
10/group). Previously analyzed GM and fecal metabolites were biclustered to reduce data dimen-
sionality and identify interpretable groups of co-occurring genera and metabolites. Based on our
findings, biclustering provides a useful algorithmic method for capturing such joint signatures. On
the HFD, XOS-supplemented rats showed lower number of adipose tissue crown-like structures,
increased phosphorylation of AKT in liver and adipose tissue as well as lower expression of hepatic
miRNAs. XOS-supplemented rats had more fecal glycine and less hypoxanthine, isovalerate,
branched chain amino acids and aromatic amino acids. Several bacterial genera were associated
with the metabolic signatures. In conclusion, the beneficial effects of XOS on hepatic steatosis in-
volved decreased adipose tissue inflammation and likely improved insulin signaling, which were
further associated with fecal metabolites and GM.

Keywords: non-alcoholic fatty liver disease, xylo-oligosaccharides, metabolites, gut microbiota,
biclustering, high fat diet, microRNA, rats

1. Introduction

Up to 90% of the obese population in western countries is estimated to suffer from
non-alcoholic fatty liver disease (NAFLD). NAFLD is defined as excessive fat accumula-
tion in the liver, which is not caused by excessive alcohol consumption or steatogenic
drug use. Without intervention, simple NAFLD can progress to steatohepatitis, which is
characterized by steatosis along with inflammation and hepatocyte degeneration, and
ultimately cirrhosis, exposing the patient to a risk of hepatic failure and hepatocellular
carcinoma [1].

In recent years, the pathogenesis of liver diseases has been shown to involve the
digestive system and in particular the microbes that it hosts [2]. One very prominent
mechanism for the interaction could be the flux of microbial metabolites into the portal
circulation, facilitated by inflammation in the gastrointestinal tract [3]. Understanding
the role of the gut microbiota (GM) in NAFLD has raised the hope that the GM could be
modulated to alleviate the disease with, for instance, specific diets. We have shown that
high hepatic fat content was associated with low abundance of Faecalibacterium prausnitzii
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in the gut of humans [4,5] and, further, that the intragastric administration of F.
prausnitzii ameliorated NAFLD in mice [6]. We and others have found that the growth of
F. prausnitzii can be naturally increased by feeding it with prebiotic xylo-oligosaccharides
(XOS) [5,7]. We further found that when supplemented with high-fat diet (HFD) to in-
duce NAFLD, XOS partly prevented hepatic steatosis in rats simultaneous with the in-
crease in F. prausnitzii abundance [5]. Similarly, prebiotic fructo-oligosaccharides [8] and
galacto-oligosaccharides [9] have been shown to ameliorate NAFLD in mice. However,
besides hepatic metabolism, serological findings and gut integrity, the mechanisms as-
sociated with prebiotic-induced prevention of NAFLD have not been widely explored.

Hepatic fat accumulation has been shown to strongly associate with adipose tissue
insulin resistance in humans [10]. Moreover, adipose tissues from patients with NAFLD
have an increased expression of inflammatory genes and macrophages that excessively
produce inflammatory cytokines [11]. Studies have suggested a link between the degree
of hepatic damage and the number of macrophages that have infiltrated visceral and
subcutaneous adipose tissue [12]. Rodent studies also suggest that inflammation and
macrophage recruitment into the adipose tissues precede hepatic inflammation [13,14].
This could be facilitated by the chemical signaling from adipose tissue macrophages,
which in turn increases neutrophil and macrophage infiltration into the liver [14],
contributing to the onset of NAFLD [15]. In obese rodents and humans, these macro-
phages are typically found around necrotic adipocytes in formations called 'crown-like
structures' (CLSs) [16]. The density of CLSs has been shown to correlate with obesity,
hepatic inflammation and insulin resistance, and thus, treatment of adipose tissue in-
flammation and prevention of adipocyte death has been proposed as one therapeutic
avenue for hepatic diseases [17,18]. We previously showed that oral administration of F.
prausnitzii reduced adipose tissue inflammation along with hepatic fat [6] but whether
increasing its natural abundance in the gut, by prebiotic supplementation, could also
reduce adipose tissue inflammation has not been studied.

The fecal short chain fatty acids (SCFAs), trimethylamine, bile acids, ethanol and
indole derivatives have been underlined in a recent review as potential markers of
NAFLD-related dysbiosis of the GM [19]. Screening of volatile organic compounds by
gas chromatography-mass spectrometry revealed increased esterification of organic ac-
ids, especially SCFAs, and decreased amounts of certain ketones in the feces of patients
with NAFLD. In addition, Da Silva et al [20] found higher levels of propionate and iso-
butyrate in the feces of patients with NAFLD. Besides NAFLD [5,21], lower fecal SCFA
amounts have been linked to increased insulin resistance [22], while at the same time
elevated SCFA amounts have been observed in obese individuals, albeit without con-
trolling for NAFLD [23]. In another study, extreme obesity was also related to increased
fecal valerate and secondary bile acids [24]. In our previous study, nuclear magnetic
resonance (H-NMR) analysis of cecal metabolites of rats showed that, compared to the
HFD, prebiotic XOS reduced cecal levels of isovalerate and tyrosine [5]. Isovalerate is a
branched chain fatty acid (BCFA) occurring naturally in plants and is a product of amino
acid metabolism by the GM [25]. Decreased levels of isovalerate have been associated
with NALFD in several studies [26-29]. However, similar to XOS, feeding resistant starch
to mice on a HFD seemed to also decrease isovalerate levels [30]. Tyrosine is an aromatic
amino acid and a precursor to phenolic compounds as well as the potent vasoconstrictor
tyramine [25]. Elevated levels of tyrosine have been widely associated with NAFLD
[27,29,31-33] and, further, its increase can be a marker of progressed steatosis and in-
creased insulin resistance [29,31,32].

Fecal metabolome is dependent and indicative of the type and functions of the mi-
crobiota that colonize the gut [34]. The human microbiome is dynamic and prone to vary
between individuals. Several lifestyle and demographic factors contribute to the consti-
tution of the microbiome and, in many cases, these effects are strong enough to mitigate
inter-individual variation. This has led to the application of various machine learning
(ML) methods in microbiology [35] to facilitate automated screening of potentially novel
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associations between such factors and the highly complex microbial communities. ML
models that use the taxonomic composition of these communities to predict host char-
acteristics and disease have been increasingly popular and have helped to uncover novel
information on the interactions of our microbiome and health [35-37]. The associations
between fecal metabolomes, taxonomic composition, and metabolic health are less well
characterized, however. Using classification and regression models, we recently explored
the GM as a supplement to conventional risk factors to predict prevalent and incident
liver disease occurrence and severity with improved accuracy in a large prospective
population cohort [38,39].

The increasing availability of studies that generate parallel taxonomic and metabo-
lomic profiles have created the need to adopt new methodology to study the associations
between these and other layers of omics information. Biclustering algorithms are a
commonly utilized technique in gene expression studies that provide possibilities to de-
tect associations between taxonomic and metabolomic variation by grouping the rows
and columns of a 2-dimensional matrix [40,41]. Biclustering techniques can complement
global, single-dimensional clustering techniques by discovering additional, context spe-
cific structure in high-dimensional data tables [42]. Applications of biclustering in the
field of microbiology are encouraging, if still rather sparse [43-45]. Moreover, the existing
body of research has concentrated on biclustering microbial samples and spectroscopic or
spectrometric peaks to taxonomically group the samples and even predict the taxon in a
random sample. This knowledge can be extended to multiomic data sets derived from a
given biological matrix, where biclustering can be used to identify co-occurring sets of
microbial species and their co-varying metabolic signatures.

In this study, we determined whether the effects of XOS on the GM and hepatic
health were mediated by reduced adipose tissue inflammation as well as improved lipid
metabolism and insulin signaling in liver and adipose tissues. To this end, we looked at
the phosphorylation levels of key proteins related to insulin signaling and lipid metabo-
lism in liver and adipose tissues. To further characterize adipose tissue inflammation, we
measured the common leukocyte antigen CD45 and the density of CLSs. We also deter-
mined the expression levels of hepatic microRNAs (miRNA) previously linked to
NAFLD [46,47], and the activity of metabolic enzymes in adipose tissues and gas-
trocnemius muscle. Our central hypothesis was that the GM composition and fecal
metabolome would display specific signatures of XOS supplementation and thus partly
explain the improvement of NAFLD. To this end, we utilized a biclustering algorithm on
the correlation coefficient matrix of bacterial genera and metabolites to identify coherent
and interpretable, biologically relevant biclusters and reduce effective data dimensional-
ity. Finally, we identified signatures of XOS supplementation and changes in adipose
tissue and liver metabolism. Overall, our findings demonstrate how the currently avail-
able data integration techniques, such as biclustering, can facilitate joint analysis of mul-
tiple parallel omic data types and thus provide novel insights into the interplay between
different levels of taxonomic and functional variation in host-associated microbial
communities.

2. Materials and Methods
2.1. Animals

An approval for the animal experiment was received from the National Animal
Experiment Board of Southern Finland (ESAVI/8805/4.10.07/2017), and the study was
performed in accordance with the Guidelines of the European Community Council di-
rectives 2010/63/EU and the European Convention for Protection of Vertebrate Animals
used for Experimental and other Scientific Purposes (Council of Europe No123, Stras-
bourg 1985). Four different diets were administered ad libitum to rats as described pre-
viously [5]. XOS was supplemented or not with high (HFD, 60% of energy from fat,
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Labdiet/Testdiet, UK) or “low” (LFD, 10% of energy from fat, Labdiet/Testdiet, UK) fat
diet for 12 weeks in male Wistar rats (n = 10/group).

2.2. Collection and analysis of fecal samples

The contents of the cecum were collected at the time of necropsy, snap-frozen in
liquid nitrogen and stored at -80°C, as described previously [5]. Extraction of the bacte-
rial DNA from the cecum contents, 16S rRNA gene sequencing and processing of the
sequence data and extraction of operational taxonomic units (OTUs) were done as de-
scribed previously [5]. Sample preparation for metabolomic analysis, NMR measurement
and identification and analyses of cecal metabolites were done as described previously
[5].

Altogether 226 bacterial genera and 38 metabolites were included in the down-
stream data analyses for this study. Both datasets were explored for features with low
prevalence. For the bacterial genera, features with a prevalence of < 10 % at the 0.1 %
relative abundance were considered to have low prevalence, which left us with 66 gene-
ra. Data loss, calculated as the sum of relative abundance per sample, was on average 0.7
%. For the metabolites, features with a prevalence of <10 % at 0 absolute abundance were
considered to have low prevalence. No metabolites were filtered out.

It should be noted, that to minimize redundant fields in the correlation matrix, we
filtered out dataset for variables with high amounts of zero or missing values, which was
the case for most genera. In the preprocessing phase, we filtered out roughly 70 % of the
genera, using 10 % prevalence at 0.1 % relative abundance as the cut off. In this process,
the relative abundances of the phyla Firmicutes and Bacteroidetes increased 32 pp and
decreased 45 pp, respectively. In previous studies Firmicutes accounted for most taxa
predictive of liver disease [38,39] and in our case the dropped genera had low overall
significance.

2.3. Biclustering

To remove effects bacterial compositionality, we applied the centered-log ratio (clr)
transformation to the filtered genus-level abundances. Before the transformation, + 1 was
added to absolute abundances to avoid division by zero —type errors. The maximum ef-
fect of the +1 addition was no more than 0.07 pp on relative abundances. Spearman cor-
relations were calculated between the clr-transformed genus and raw metabolite abun-
dances. The co-variation in the genus and metabolite abundances was then investigated
by forming biclusters on the Spearman correlation coefficient matrix. We used the spec-
tral co-clustering algorithm described by Dhillon [48], available through the SpectralCo-
clustering method from Scikit learn package. The optimal number of clusters was de-
termined to be five by measuring Silhouette and Calinski-Harabasz scores for each model
with cluster amounts 2 — 38, for metabolite and genus axes separately. By functionality,
the spectral co-clustering method attempts to form a block-diagonal bicluster structure
from the highest values, in this case the strongest positive correlations, with each row
and each column belonging to exactly one bicluster. This allows the discovery of mean-
ingful negative correlative patterns by examining cross-cluster correlations.

2.4. Preparation of tissue protein homogenates and measurement of metabolic enzyme activities

The epididymal, mesenteric and subcutaneous adipose tissues, liver and gas-
trocnemius muscle were harvested upon necropsy, snap-frozen in liquid nitrogen and
stored until use at -80°C. After pulverizing the tissues in liquid nitrogen, the tissues were
further homogenized in ice-cold lysis buffer using TissueLyser (Qiagen, Valencia, CA,
USA). For liver and muscle, the total proteins were extracted from ~25 mg of pulverized
tissue using 10 times of volume (v/w) of buffer that contained 50 mM Tris-HCl (pH 7.4),
150 mM NaClz, 1 % NP-40, 1 mM NaVOs, 0.1 % SDS and 1 mM DTT, supplemented with
protease and phosphatase inhibitors (Thermo Fischer Scientific, Waltham, MA, USA). For
epididymal, mesenteric and subcutaneous adipose tissues, the total proteins were ex-
tracted from ~100 mg of pulverized tissue using 4 times of volume (v/w) of buffer that
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contained 10 mM Tris-HCI (pH 7.4), 150 mM NaClz, 2 mM EDTA, 1 % Triton-X-100, 10 %
glycerol and 1 mM DTT, supplemented with protease and phosphatase inhibitors
(Thermo Fischer Scientific).

The enzyme activities of citrate synthase (CS), aspartate aminotransferase (AST) and
alanine aminotransferase (ALT) in the adipose tissues and gastrocnemius muscle protein
homogenates were measured with Konelab 20xTi analyzer (Thermo Fischer Scientific)
using commercial kits, and the 3-hydroxyacyl-CoA dehydrogenase 8 (3-HAD) activity in
a solution that contained 50 mM triethanolamine-HCl (pH 7.0), 4 mM EDTA, 0.04 mM
NADH, and 0.015 mM S-acetoacyl-CoA.

2.5. Western blot analyses of the phosphorylated proteins

A total of 60 pg of protein homogenates from liver and 50 ug of total protein from
adipose tissues were run on Criterion™ TGX Stain-Free 4-20 % gradient gels (Bio-Rad
Laboratories, Hercules, CA, USA). After that, the gels were ultraviolet (UV) -activated
with ChemiDoc™ imaging system (Bio-Rad) using default settings for the stain free gel
activation. Then, the proteins were blotted onto nitrocellulose membranes using
Trans-Blot® Turbo™ RTA Midi Nitrocellulose Transfer Kit (Bio-Rad) and Trans-Blot®
Turbo™ Transfer System (Bio-Rad). After blotting, the membranes were imaged with
ChemiDoc™ imaging system (Bio-Rad) using default settings for the stain free blots.
Then, the membranes were cut horizontally in order to separate the molecular weights
corresponding to the proteins of interest, and afterwards blocked with Odyssey®
Blocking buffer (LI-COR Biosciences, Lincoln, NE, USA) for 1 hour at RT. Then, the
membranes were incubated overnight at +4°C with the primary antibodies diluted at
1:1000 in Odyssey® Blocking buffer. All primary antibodies were purchased from Cell
Signaling Technology (Danvers, MA, USA). On the next day, the membranes were in-
cubated with the secondary antibody donkey anti-rabbit IRDye 800CW (LI-COR Biosci-
ences, Lincoln, NE, USA) diluted at 1:20 000 in Odyssey® Blocking buffer for 1 hour at
RT. Finally, the images were acquired with ChemiDoc™ imaging system using default
settings for IR Dye 800CW blot. To quantify the phosphorylation levels of the proteins
Image Lab 6.0 —software (BioRad) was used. The intensities of the protein bands of in-
terest were normalized to intensities of the stain free blot.

2.6. Quantitative real-time PCR analyses

To analyze the expression levels of hepatic miRNAs and Actb mRNA, as well as
adipose tissue Cd45 mRNA, the total RNA was extracted from ~100 mg of pulverized
epididymal and mesenteric adipose tissues and ~20 mg of pulverized liver by homoge-
nizing with TissueLyser (Qiagen) in Trizol reagent (Invitrogen, Carlsbad, CA, USA) ac-
cording to the supplied protocol. For the analysis of the Cd45 and Actb mRNA, total RNA
was reverse transcribed using the High-Capacity cDNA Synthesis Kit (Applied Biosys-
tems, Foster City, CA, USA) according to the instructions of the manufacturer. For the
analyses of miRNAs, the total RNA was reverse transcribed using miScript II RT Kit with
HiFelx buffer (Qiagen).

Real-time quantitative PCR (qPCR) analysis of Cd45 and Actb mRNA was performed
using iQ SYBR Supermix and the CFX96™ Real-Time PCR Detection System (Bio-Rad).
The sequences of the in-house designed primers were as follows: Cd45 forward
5-CCGTTGTACACCAGAGATGA-3’, Cd45 reverse 5-TCCCAAAATCAGTCTGCAC-3,
Actb forward 5-GGCACCACACTTTCTACAAT-3’ and Actb reverse
5-AGGTCTCAAACATGATCTGG-3". The expression levels of Cd45 mRNA were nor-
malized to the quantity of cDNA in the samples that were determined with Quant-iT
PicoGreen dsDNA Assay Kit (Invitrogen) according to the manufacturer’s instructions.
The fluorescence was detected with GloMax Multi+ microplate reader (Promega Biosys-
tems, Sunnyvale, CA, USA).

To quantify the expression levels of hepatic miRNAs, iQ SYBR Supermix and the
CFX96™ Real-Time PCR Detection System (Bio-Rad) were also used. The sequence of the
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universal primer was 5-GAATCGAGCACCAGTTACGC-3'. The sequences of miRNA
specific primers were obtained from miRBase [49], and were as follows:

¢  rmo-miR-21-5p MIMATO0000790: 5-UAGCUUAUCAGACUGAUGUUGA-3’,

e  rmo-miR-122-5p MIMAT0000827: 5'-UGGAGUGUGACAAUGGUGUUUG-3,

e  rmo-miR-192-5p MIMAT0000867: 5'-CUGACCUAUGAAUUGACAGCC-3', and

e  mo-miR-221-3p MIMAT0000890: 5'-AGCUACAUUGUCUGCUGGGUUUC-3'.

The expression levels of miRNAs were normalized to the levels of Actb because the
common miRNA endogenous controls U6 and RNU6B have been shown to be highly
variably expressed in liver samples [50].

2.7. Histopathological scoring of the epididymal adipose tissue

The epididymal adipose tissue samples for the histological analysis were fixed in
buffered 4% paraformaldehyde for 48 h at +4°C, transferred into PBS and stored at +4°C
until histological processing. The samples were routinely embedded into paraffin, sec-
tioned at 6 um and stained with hematoxylin and eosin (H&E). After general histo-
pathological assessment, the total number of CLS per one tissue section (section areas
25-35 mm?) in each animal was counted. The histopathological assessment was done
blinded to the treatments.

2.8. Statistical analyses

The statistical analyses, except for the GM and their metabolites were performed
with IBM SPSS Statistics v26 for Windows (SPSS, Chicago, IL, USA). The main effects of
the diet and XOS as well as their interactive effects on the variables were determined
using UNIANOVA. If an effect of XOS was found, the statistical significance of the dif-
ferences between the XOS-supplemented group and HFD or LFD were further analyzed
with Mann Whitney U test. The statistical significance was determined at p<0.05. The
statistical analyses for bacterial genera and the metabolites were performed with Python,
using Scipy and Sklearn packages. Group differences were analyzed with Mann Whitney
U test, as with the biomarkers.

We studied the biclusters, diet types, and measured biomarkers further with super-
vised and unsupervised ML. First, we fitted a classification model with metabolites and
genera from the whole dataset and then from each bicluster separately to predict overall
diet, diet fat content or XOS ingestion. We used XGBoost [51] as the classifier, as we pre-
viously demonstrated its suitability for microbiological dataset [38,39]. Our model was
fitted with raw metabolite abundances without standardization, as XGBoost is a deci-
sion-tree based classifier. However, genus abundances were clr-transformed [35,52]. The
model performance was evaluated by average accuracy and F1 scores from 5-fold cross
validation. Principal component analysis, as implemented in the Scikit Learn package,
was used to analyze biomarkers with biclusters and individual features.

3. Results

3.1. Biclustering

Biclustering identified five sets of co-occurring metabolites and bacterial genera
(Table 1).

For clarity, we named the biclusters based on their metabolite characteristics.
Overall, the spectral co-clustering method provided well-defined biclusters visually and
in terms of Silhouette and Calinski-Harabasz scores. We found a decent coherence within
the biclusters considering the ontology and structure of the metabolites. SCFAs, carbo-
hydrate metabolism markers and nicotinate appeared together in the same bicluster,
named hereafter SCFA bicluster, and showed distinct co-variation. These metabolites
were consistently more abundant in the feces of LFD rats, as we have described previ-
ously [5]. The product bicluster contained valerate, aspartate and isobutyrate, which are
products of amino acid fermentation [25], specifically of the branched chain aminoacids
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leucine, isoleucine and valine [53]. Choline and its degradation products, trimethylamine
(TMA) and ethanol appeared in the same bicluster, named hereafter TMA bicluster.
Amino acids (AA), including BCAAs and aromatic amino acids, were mostly grouped in
the AA bicluster. The isovalerate bicluster contained a heterogeneous group of com-
pounds. Tyrosine and isovalerate, the metabolites previously found to decrease with
XOS ingestion on the HFD [5], were found in the AA and isovalerate biclusters, respec-
tively. Tyrosine, however, appeared to co-vary with hypoxanthine and methylamine,
which were both lower on the XOS-supplemented diets independent of the dietary fat.
Despite some redundancy, we identified functional coherence within the biclusters
on the bacterial genus axis as well. The SCFA bicluster contained a significant proportion
of gram-positive, known SCFA producers [54,55] and genera linked to lean phenotypes
[56-58]. These genera were more abundant in the LFD groups. The isovalerate bicluster,
on the other hand, contained genera known to thrive in carbohydrate-deficient condi-
tions [59-61] but also genera, which encompass apparent opportunistic pathogens
[62,63]. These genera were chiefly more abundant in the HFD groups. The AA bicluster
seemed to contain at least two gram-negative genera, which have been previously im-
plicated in adipose tissue inflammation and metabolic dysfunction in mice [64,65]. In
addition, the total abundance of these genera was decreased by the XOS on the HFD.

Table 1. The features contained in each bicluster, with non-annotated bacterial genera excluded.
Positive log: fold change indicates higher abundance in the HFD group.

log2 fold log2 fold log2 fold log2 fold
change change Metabolites in bi- change change

Bicluster Genera in bicluster HFD/HFD+XOS HFD/LFD | cluster HFD/HFD+XOS HFD/LFD

SCFA Bi- [Ruminococcus] gauvreauii

cluster group -0.14 -2.43% 1,3-dihydroxyacetone 0.17 -0.61
Anaerostipes -1.41 -4.04 ** 2-oxoglutarate 0.27 -0.44
Christensenellaceae R-7
group 0.42 -0.2 Acetate -0.05 -0.52 **
Clostridium sensu stricto1 ~ -0.23 -3.78% Butyrate -0.07 -1.51**
Faecalibaculum 148 -5.69 ** Glucose 0.11 -1.96 **
GCA-900066225 -0.81 -2.47 % Methionine 0.38 -0.06
Papillibacter 0.86 -3.87 ** Nicotinate 0.05 -1.06 **
Parabacteroides 0.29 -0.48 * Propionate -0.01 -0.62 **
Rodentibacter -0.83 -2 Pyruvate 0.63 -0.98 *
Romboutsia 1.69 -0.75 Uracil 0.59 -0.51%
Ruminiclostridium 5 1.39* -2.31** Urocanate 0.48 -0.63
Ruminococcaceae UCG-014 0.25 -0.82
Turicibacter 116 -3.96 **

Product [Bacteroides] pectinophilus

Bicluster group -3.51 0.8 Aspartate 0.06 0.17
[Eubacterium] copros-
tanoligenes group -0.42 -0.12 Isobutyrate 0.08 0.57
[Eubacterium] xylanophi-
lum group 0.81 0.66 Threonine 0.09 0.47*
Akkermansia -0.29 0.21 Valerate 0.25 0.47 *
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Alistipes -0.01 1.13%
Defluviitaleaceae UCG-011  0.37 2.38 **
Family XIII AD3011 group ~ 1.13 ** 1.33*
Odoribacter -0.33 1.35
Ruminococcaceae UCG-005 0.77 1.93

TMA Bi- Allobaculum 0.93 1.6 Choline 0.97 1.45*%

cluster Alloprevotella -0.5 -0.05 Ethanol -0.2 -0.08
Bacteroides -0.1 0.38 Fumarate 0.01 -0.39
Blautia -0.25 -0.69 Glycine -0.81°% 048
Erysipelatoclostridium -1.31 -0.04 Methanol -1.09 0.24
Escherichia-Shigella -1.82** -0.93 Trimethylamine 0.15 0.11
Faecalitalea -0.65 1.24%
Flavonifractor 0.96 3.07*
Fusicatenibacter 3.88 10.07
Holdemania -0.32 0.9
Intestinimonas -0.18 -0.57
Lachnospiraceae UCG-008  -0.82 1.46
Marvinbryantia -1.65 ** -0.95
Oscillospira -0.83 8.89
Parasutterella 0.63 0.98

AA Bicluster | Bilophila 0.61* 3.41** Alanine 0.19 0.04
Desulfovibrio 0.75 -0.25 Formate -0.8 -0.75 **
Eisenbergiella -0.03 0.05 Glutamate 0.08 -0.03
Erysipelotrichaceae
UCG-003 -0.23 -1.25 Hypoxanthine 1.8** -0.46 *
Lachnospiraceae NK4A136
group 1.27 0.87 Isoleucine 0.34% -0.16
Mucispirillum 151 1.03 Leucine 0.31 0.07
Oscillibacter 0.7* -0.97 % Methylamine 0.73** 0.5
Roseburia -0.08 -1.42 Phenylalanine 0.45* -0.04
Ruminiclostridium 1.27 -0.06 Proline 0.33 0
Ruminiclostridium 9 0.55 0.31 Tyrosine 0.55 ** 0.02
Ruminococcaceae UCG-003 0.67 0.18
Ruminococcaceae UCG-004 -2.8 -2.33
Ruminococcus 1 0.13 0.35

Isovalerate [Eubacterium] nodatum

Bicluster group 0.36 3.31** Glycerol 1.57 3.0 **
Candidatus Soleaferrea 0.58 2.21%* Isovalerate 0.37* 1.02 **
GCA-900066575 0.41 1.0* Lactate 0.63 0.9
Lachnoclostridium -0.33 2.38* Malonate -0.11 0.28
Lactobacillus 0.28 0.51 Succinate -0.35 -1.53
Lactococcus 0.54 0.6 Tryptophan -0.11 0.45
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Rikenellaceae RC9 gut
group 0.31 1.43* Valine 0.39* 0.09
Ruminococcaceae
NK4A214 group -0.04 1.91**
Sellimonas 0.57 2.57 **
UBA1819 -0.63 1.86 **

Mann-Whitney U: *p < 0.05 *p < 0.01

We illustrate the biclustering in a heat map, where the rows and columns are ar-
ranged according to the number of the bicluster, and the nodes are colored by the mag-
nitude of the Spearman correlation coefficient (Figure 1a). The strongest positive correla-
tions were observed between the metabolites and the genera in the SCFA bicluster, that
is, between SCFAs and SCFA-producers. The strongest negative correlations found were
between the metabolites in the SCFA bicluster and the genera in the isovalerate bicluster,
which contained most genera associated with the HFD. Escherichia, Shigella and Para-
sutterella genera are known to produce TMA and ethanol from choline [25,66,67]. These
genera and metabolites clustered together, suggesting that the biclusters indeed reflect
biological significance.

Compared to the HFD, the HFD + XOS group had higher levels of glycine and TMA
bicluster genera, particularly Marvinbryantia and Escherichia-Shigella. The HFD + XOS
group also had lower levels of amino acids and slightly lower levels of amino acid deg-
radation products and metabolites in the isovalerate bicluster. The genera in the AA bi-
cluster, particularly Bilophila and Oscillibacter were decreased with XOS supplementation.

No bicluster-level differences were observed between the LFD and LFD + XOS
groups. Feature-wise, XOS supplementation on the LFD was associated with lower hy-
poxanthine levels and higher methylamine and 1,3-dihydroxyacetone levels. XOS sup-
plementation associated with increased abundances of genera Bilophila and
GCA-900066575 and decreased abundances of Alloprevotella, Erysipelotrichaceae UCG-003,
Erysipelatoclostridium, Akkermansia and [Eubacterium] coprostanoligenes group.

We also plotted the hepatic triglycerides along with the total abundances of the
genera and metabolites from each bicluster (Figure 1b). The bicluster compositions
seemed to clearly associate with hepatic fat content. This was most visible within the
SCFA, product and isovalerate biclusters where the separation of the HFD and LFD
groups was most prominent. Higher abundance of SCFAs, glycolysis markers and
“lean”-type microbes not only associated with a leaner phenotype and “healthier” diet,
but also with better hepatic health in terms of fat content.
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Figure 1. Biclustering results: (a) Heat map of Spearman correlation coefficients between the me-
tabolites and genera. The color of a node indicates the magnitude and the direction of correlation.
Biclusters suggested by the spectral co-clustering algorithm are visible as the diagonal highlighted
blocks. The resulting checkerboard structure is a side product of the algorithm and allows the ob-
servation of cross-cluster associations such as the congregated negative correlations in the up-
per-right corner. (b) Summed relative genus and absolute metabolite abundances in each bicluster.
Boxes indicate quartiles; points outside whiskers are outliers. Scatter markers were sized to indicate
hepatic fat (triglycerides) in each sample. Bacterial relative abundances were summed and then
centered log ratio (clr) -transformed. Both axes were mean centered at zero.

We used classification to test how well each bicluster reflected the differences be-
tween the diet groups. Moreover, we wanted to see whether the variation within some
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biclusters could be attributable to the dietary fat or XOS supplementation. For compari-
son, we trained the selected classifier model first with all genera or metabolites in the
data set. To study associations of certain diets and biclusters, we then trained the model
separately with the features in each bicluster (Supplementary Table S1). The raw metab-
olite abundances and the clr-transformed genus abundances were used as input values.

The prediction accuracy for overall diet groups was low for each run, most likely
implying the homogeneity of the LFD and LFD + XOS groups. Using all biclusters, the
XOS supplementation was predicted with a modest 50 % accuracy, although a slightly
higher accuracy was reached by using features from only the AA bicluster. The metabo-
lites in this bicluster were somewhat better predictors of XOS than the genera (62.5 % vs
45 % accuracy). These metabolites, ranked by the highest feature importances were hy-
poxanthine, tyrosine, glutamate, methylamine, isoleucine, formate, alanine, proline, leu-
cine and phenylalanine.

As apparent in the scattergrams in Figure 1b, the dietary fat explained greatly the
variance in several features and had a prominent impact on the separation of the groups.
The predictive performance for the dietary fat was high, whether using all features or
only the features in the SCFA bicluster, with glucose and butyrate comprising .975 and
.025 of the feature importances, respectively. Almost the same accuracy and f1 scores
were achieved by using only the features from product and isovalerate biclusters.

3.2. The effects of the diets on the hepatic microRNA:s

Hepatic miRNAs that have been previously associated with NAFLD [68] were ana-
lyzed with quantitative real-time PCR. Based on the univariate analysis of variance,
there were no interactive effects of XOS or dietary fat on the levels of miRNAs. However,
based on Mann Whitney U test, compared to the HFD, the HFD + XOS had lower hepatic
levels of miR-192-5p (p=0.002) and miR-221-3p (p<0.001), and the LFD group had higher
levels of miR-21-5p (p<0.001), as well as decreased the levels of miR-192-5p (p=0.001) and
miR-221-3p (p<0.001) (Figure 2). On the LFD, XOS supplementation decreased the hepatic
levels of miR-192-5p (p<0.001, Figure 2). Compared to the HFD+XOS, the LFD+XOS had
higher levels of miR-21-5p and lower levels of miR-192-5p (p<0.001 for both, Figure 2).

- 154
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Figure 2. The relative expression levels of miRNAs in liver. n=8-10/group. The graph shows the
quantification of the miRNAs by real-time quantitative PCR. The black dots in the bars show indi-
vidual data points. * indicates statistically significant difference between the groups as determined
by Mann Whitney U test.

3.3. The effects of the diets on the phosphorylation of insulin signaling and fatty acid oxidation
related proteins in liver

The phosphorylation of acetyl-CoA-carboxylase at Ser79 (p-ACC) directs the fatty
acid metabolism from lipogenesis to oxidation. Both dietary fat [F (1, 0.368) = 307.4,
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p<0.001] and XOS supplementation [F (1, 0.006) = 4.6, p=0.039] affected p-ACC (Figure 3).
On the HFD, XOS supplementation slightly decreased, and on the LFD increased it. The
phosphorylation of ACC was lower on the HFD than on the LFD. In addition, dietary fat
and XOS had an interactive effect on p-ACC [F (1, 0.012) = 13.7, p=0.001]. Dietary fat [F (1,
2.8x10%) = 6.8, p=0.013], but not XOS, affected the inhibitory Ser636/639 phosphorylation
of insulin receptor substrate 1 (p-IRS1) with the phosphorylation levels being slightly
lower in the LFD groups (Figure 3). Fat and XOS had an interactive effect on p-IRS1 [F (1,
2.1x10%) = 5.7, p=0.022]. Downstream from the IRS1, XOS affected the Thr308 phosphor-
ylation of protein kinase B (p-AKT) [F (1, 4.7x10%) = 4.5, p=0.040) increasing it slightly
independent of dietary fat (Figure 3). The dietary fat [F (1, 0.006) = 12.0, p=0.001), but not
XOS, affected the Thr202/Tyr204 phosphorylation of extracellular signal-regulated kinase
(p-ERK) with the phosphorylation levels being lower on the LFD groups (Figure 3).

ERK-
ACC-Serf8 IRS Ser636/639 AKT-Thraos Thr’ZOZnyr’204
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Figure 3. The phosphorylation levels of ACC, IRS1, AKT and ERK in liver. n=8-10/group. The
graph shows the quantification of the proteins by Western blot. The black dots in the bars show
individual data points. Above the graph examples of the blot images are shown. The effects of XOS
and dietary fat (FAT) on each phosphorylated protein are indicated in the boxes below the graphs.
NS denotes non-significant effect. The effects of XOS were further verified with Mann Whitney U
test, and * indicates statistically significant difference between the HFD or LFD group and the cor-
responding XOS-supplemented group.

3.4. The effects of the diets on the markers of adipose tissue inflammation

According to the histopathological scoring of the epididymal adipose tissue, both
dietary fat [F (1, 140.237) = 29.2, p<0.001) and XOS [F (1, 28.463) = 5.9, p=0.020) decreased
the number of CLSs (Figure 4a) but neither affected the number of mononuclear cells
(data not shown).

Quantitative PCR of protein tyrosine phosphatase receptor type C, also known as
leukocyte common antigen (CD45) mRNA, revealed that the dietary fat but not XOS af-
fected the relative mRNA. The levels were higher in the LFD than HFD groups both in
epididymal (CD45-epi) [F (1, 0.011) = 18.1, p<0.001) and mesenteric (CD45-mese) [F (1,
0.071) =15.1, p<0.001) adipose tissue (Figure 4b).


https://doi.org/10.20944/preprints202103.0001.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 March 2021 d0i:10.20944/preprints202103.0001.v1

14 of 27

0.4+
15+
g [ HFD s 0.3 o
é § . [ HFD + XOS & 0.2 I% >
27 O Lo g o014 p=0.09 l .
23 ‘1* * [@LFD+X0s 9006 & 3 .
zE H . [ HFD +X0s
g = 098 : i [ LFD
Q
0.02- : ’% [ LFD + XOS
afe = .
0.00 T =
X
& @
& &
) &
& £d
N &
K N
XOS effect p=0.020 XOS effect NS NS
FAT effect p<0.001 FAT effect p<0.001 p<0.001
(a) (b)

Figure 4. The effects of the diets on adipose tissue inflammation markers. (a) The graph shows the
observed counts of CLSs in epididymal adipose tissue as determined by histopathological scoring.
n=10/group. The black dots in the bars show individual data points.. (b) The graph shows the rela-
tive expression levels of CD45 mRNA in both epididymal and mesenteric adipose tissue that were
quantified with qPCR. n=8-10/group. The black dots in the bars show individual data points.

In both panels, the effects of XOS and fat separately are indicated in the boxes below the
graphs. NS denotes non-significant effect. The effects of XOS were further analyzed with Mann
Whitney U test, and on the HFD, XOS tended to decrease CD45 mRNA as indicated by the p-value
shown in the graph.

3.5 The effects of the diets on the phosphorylation of insulin signaling, fatty acid oxidation and
lipolysis related proteins in the epididymal and subcutaneous adipose tissue

In the epididymal adipose tissue, the dietary fat decreased [F (1, 0.73) =24.5, p<0.001]
p-ACC (Figure 5a). The dietary fat also decreased [F (1, 0.09) = 6.2, p=0.017] and XOS
tended to increase [F (1, 0.051) = 3.5, p=0.070] the lipolysis activating Ser660 phosphory-
lation of hormone-sensitive lipase (p-HSL) (Figure 5a). XOS subtly increased p-AKT [F (1,
0.054) = 6.9, p=0.012] (Figure 5a). In the subcutaneous adipose tissue LFD had an in-
creasing effect on p-ACC [F (1, 0.151) = 14.2, p=0.001] but XOS had no effect on it (Figure
5b). No effects of the diets on the phosphorylation of AKT or ERK were found in the
subcutaneous adipose tissue (Figure 5b).

ERK-

ACC-Ser79 HSL-Serf60 ARKT-Thr30g ACC-Ser?g AKT-Thr308 Thr202/T yr204
- ———— [ —— — = '* i e ——
Stain-free Stain-free | ¥
g 1.0 [@ HFD - @ HFD
:.E 1 [0 HFD + X0S ) - [ HFD + XOS
28 O Lro ge 04 i O LFD
2 2 :
g-.% OLip+xos 22 0.2 &l '—I-l [ LFD + X08
L3 =2 @
£5 0.5 - th .
= E 8 &
25 £
a3 27 0.010 .
s - 2 ; L.
I.I% 3 i e @ S T
1 e ’-I| : 0.005 ﬁ ) ’_I_I |{'| FI
0.01E1 Iiﬁ. - T 0.000 ’ : .l%l .
C 2 * o & &
J 3 J & & §
XOS$ effect NS NS p=0.012 XOS effect NS NS
FAT effect | | p<0.001 p=0.017 NS FAT effect | | p=0.001 NS
(a) (b)

Figure 5. The effects of the diets on the phosphorylation levels of proteins in the adipose tissues. (a)
Phosphorylation levels of ACC, HSL and AKT in epididymal adipose tissue. (b) Phosphorylation
levels of ACC, AKT and ERK in subcutaneous (SC) adipose tissue.
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In both panels n=8-10/group. The graphs show the quantification of the of the proteins by
Western blot. The black dots in the bars show individual data points. Above the graph examples of
the blot images are shown. The effects of XOS and dietary fat (FAT) separately are indicated in the
boxes below the graphs. NS denotes non-significant effect. The effects of XOS were further verified
with Mann Whitney U test, and * indicates statistically significant difference between the HFD or
LFD group and the corresponding XOS-supplemented group.

3.6. The effects of the diets on the activities of metabolic enzymes

The LFD increased the activity of AST in the epididymal adipose tissue [F (1, 0.002) =
8.7, p=0.006], while XOS decreased it in the mesenteric adipose tissue [F (1, 0.411) = 7.9,
p=0.009] (Figure 6a). The dietary fat and XOS had an interactive effect on the activity on
AST activity in the subcutaneous adipose tissue [F (1, 0.01) = 12.4, p=0.001] (Figure 6a).
XOS supplementation increased the activity of ALT in the epididymal adipose tissue [F
(1, 0.006) =4.7, p=0.018] independent of dietary fat (Figure 6b). An interactive effect of fat
and XOS was found on the activity of beta-HAD in the mesenteric adipose tissue [F (1,
9.333) = 14.5, p=0.001], while in the subcutaneous adipose tissue only dietary fat had an
increasing effect on it [F (1, 0.027) = 4.7, p=0.037] (Figure 6¢). LFD increased the activity of
CS in the epididymal adipose tissue [F (1, 0.024) = 17.2, p<0.001], while in gastrocnemius
muscle the dietary fat and XOS had an interactive effect on its activity [F (1, 6.649) =4.7,
p=0.037] (Figure 6d).
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Figure 6. The activities of (a) AST, (b) ALT, (c) f-HAD and (d) CS in epididymal, mesenteric and
subcutaneous (SC) adipose tissue as well as gastrocnemius muscle.
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In all panels n=8-10/group. The graphs show the biochemically measured enzymatic activities.
The black dots in the bars show individual data points. The effects of XOS and dietary fat (FAT)
separately are indicated in the boxes below the graphs. NS denotes non-significant effect. The ef-
fects of XOS were further verified with Mann Whitney U test, and * indicates statistically significant
difference between the HFD or LFD group and the corresponding XOS-supplemented group.

3.7. Associations between the biclusters and biomarkers

We investigated how the total abundances of the metabolites (Figure 7a) or genera
(Figure 7b) in each bicluster were associated with the biomarkers of liver or adipose tis-
sue. Most notably miR-221-3p, miR-192-5p, hepatic triglycerides, CLSs and, to a lesser
amount, p-IRS1-liver and p-ERK-liver correlated negatively with SCFAs, carbohydrate
metabolism markers (p<0.05 for all, Figure 7a), and the “lean-type” genera in the SCFA
bicluster (p<0.05 for all, Figure 7b). These biomarkers were positively associated to me-
tabolites and genera in the product bicluster and genera in the isovalerate bicluster.

Conversely, p-ACC-liver, CS-epididymal, AST-mesenteric, CD45 and miR-21-5p,
were positively associated with features in the SCFA bicluster and negatively associated
with features in the product bicluster and genera in the isovalerate bicluster (p<0.05 for
all, Figures 7a & b). None of the biomarkers were significantly associated with the total
abundances of metabolites in the TMA bicluster, however, AST-subcutaneous, miR-21-5p
and AST-epididymal were negatively and CLSs positively associated with the TMA bi-
cluster genera (p<0.05 for all, Figure 7b).

The total abundance of the metabolites in the isovalerate bicluster was negatively
associated with p-HSL-epididymal, p-AKT- epididymal and p-ACC- epididymal (p<0.05
for all, Figure 7a). In addition, feature-wise observations revealed that isovalerate, which
was significantly elevated in the HFD group compared to the HFD + XOS group, was
positively associated with hepatic triglycerides, CLSs, miR-221-3p and miR-192-5p
(p<0.05 for all). Isovalerate was also negatively associated with miR-21-5p, p-ACC-liver,
CD45-epididymal, CS-epididymal, p-ACC-epididymal and p-AKT-epididymal (p<0.05
for all).
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Figure 7. Heat maps of Spearman correlation coefficients between the total abundances of (a) the
metabolites and (b) the genera in each bicluster and different biomarkers. The color of a node in-
dicates the magnitude and the direction of correlation. Hierarchical clustering was applied to bi-
omarkers. The raw metabolite abundances were summed, and the relative genus abundances were
summed and then clr-transformed. epi = epididymal fat, mese = mesenteric fat, SCfat = subcuta-
neous fat, gastro = gastrocnemius muscle. * denotes p < 0.05 and ** p <0.01.

To study whether different co-variation of the metabolites, genera and biomarkers
were linked to the effects of XOS, we further analyzed the associations within the HFD
and HFD + XOS groups by principal component analysis (PCA). For the comparison, we
used the total metabolite or total genus abundances of each bicluster and biomarkers
with significant or visually interesting differences between the two groups. The groups
differed markedly along the first principal component, containing 20.5 % of the total
variance (Figure 9). Most of this variance was explained by miR-192-5p, miR-221-3p, AA
bicluster, isovalerate bicluster, p-AKT-epididymal, p-ERK-liver and p-HSL-liver, as ap-
parent by the loadings (Figure 9).

The total metabolite abundances in the AA and isovalerate biclusters positively
co-varied with miR-192-5p, miR-221-3p and to a lesser amount with AST-mesenteric,
CLSs and hepatic triglycerides. Conversely, they co-varied negatively with p-ERK-liver
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and p-HSL-epididymal. The genera in the AA bicluster tended to co-vary with CLSs and

hepatic triglycerides.
o HFD % TMA bicl. genera
0.4
o © Mro+xos S e
PAKT_liver
SCFA bicl. genera
ALT epi
4 02 Jsovalerpte bicl. metabolites
o = TMA bicl. metabolit
* o\= PAKT.epi ARs liver P icl. metabolites
n 0
L L LLSs_epi
fuc z A& bicl. geney
S ~ 00 - ity el aetabolites
2 K
E : E pﬂsffem-"‘e’ Raccunt MiA221 _liver
s o s JMiRL92._liver
g o ° g SCFA bicl. metabolites P":g_‘(";‘:';é' metabdlites
O ole [ . 0 -0.2
) . Jsovalerate bicl. genera
e 'Y e
-] o -]
L]
2 -0.4
& Product bicl. genera
-3 -2 -1 0 1 2 3 4 -03 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
Component 1 (20.5 %) Compenent 1 (20.5 %)
(a) (b)

Figure 8. PCA of the HFD and HFD+XOS groups using total feature abundances in each bicluster
and selected biomarkers, (a) ordination and (b) loading plots. The total explained variance for each
component is shown in parentheses, and the ellipses indicate 95 % confidence intervals.

In the PCA of significantly different features (Figure 9), the group separation was
observed along explained 31.4 % of the total variance. Methylamine co-varied strongly
and positively with hepatic miRNAs and AST-mesenteric and negatively with
pATK-epididymal and ALT-epididymal. Hypoxanthine co-varied with CLSs, hepatic
triglycerides and p-AKT-epididymal. Noticeably, BCAAs (leucine, isoleucine, and va-
line) and aromatic amino acids (phenylalanine and tyrosine) were clustered with tri-
glycerides along the first component, which explained most of the between-group varia-
tion, whereas glycine, along with ALT-epididymal, distinctly co-varied along the second
component. Oscillibacter, Bilophila and Ruminiclostridium 5, which were significantly de-
creased with XOS (Figure 10), were also associated with hepatic triglycerides and miR-
NAs. Escherichia-Shigella and Marvinbryantia were increased with XOS supplementation
and co-varied positively with p-AKT-epididymal and negatively with CLSs, hepatic tri-

glycerides and miRNAs.
o HFD . ALT_epi
4| © HFD+X0s Giycine
0.4 1
0.3 q
Bilophila Phenylglanine
> e
= ® =
e o X 02 ,Isova\eré\ﬁz‘me
3 3 Escherichia-Shigella JSM&E'HS
La] ) z
~ ° olg @ ~ 01 DAKT_epi ‘Ruminiclostridium 5
';C; 0 e % e ;:: Triglycerides |liver
c ° c Laoscillibacter
g ° S 0.0 Marvinbryantia - poxanthine
3 . " £ T PACC liver  Family XIil AD3011 group
PAKT liver

S S

-2 —0.1 £LSs_epi

o
-0.2 AST.mese
Methylamine
a e 8 -0.3 TIRAS3, S
-4 =2 0 2 4 -0.2 -0.1 0.0 01 0.2 0.3
Component 1 (31.4 %) Component 1 (31.4 %)
(a) (b)

Figure 9. PCA of the HFD and HFD+XOS groups with all significantly differing features and bi-
omarkers, (a) ordination and (b) loading plots. The ellipses indicate 95 % confidence intervals. The
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total explained variance for each component is shown in parentheses. epi = epididymal fat, mese =
mesenteric fat.
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Figure 10. The features with significant differences between the HFD and HFD + XOS groups, log:
fold changes and mean-centered values showing group distributions. Negative logz fold change
indicates higher log: effect size with XOS, and positive indicates higher log: effect size without
XOS. Bars indicate error. Kernel density bandwidth of the violin plot 0.5. epi = epididymal fat, mese
= mesenteric fat.

4. Discussion

In the present study, we sought to characterize the underlying tissue specific
mechanisms behind the steatosis-preventing effects of XOS supplementation in rats. In
addition, we implemented novel bioinformatic analyses to understand whether the in-
terplay between the gut microbes and their metabolites could explain the prebiotic and
hepatic health-promoting effects of XOS. Indeed, the hepatic steatosis-preventing effects
of XOS were associated with decreased adipose tissue inflammation, likely improved
insulin signaling and certain clusters of co-occurring fecal metabolites and bacterial
genera.

The development of biclustering techniques has been driven by the need to capture
relevant biclusters, that relate to real biological associations and physical conditions.
Much of this development has been in the context of transcriptomics [42], but biclustering
techniques can potentially benefit other omics studies as well, such as discovering the
biological co-occurrence of microbes and their metabolites [43]. Here we utilized the
spectral co-clustering method [48] on a data table of correlations between the metabolites
and bacterial genera and demonstrated its utility in a) identifying co-occurring bacterial
genera and subsets of relevant metabolic conditions and b) thus reducing the effective
dimensionality in the analysis of a multiomic dataset and improving interpretability.

The identified biclusters captured that the SCFAs and co-varying markers of car-
bohydrate metabolism were decreased on the HFD, which is in agreement with de-
creased SCFAs having been previously linked to NAFLD and insulin resistance [5,21,22].
Among the genera that were most abundant on the LFD, in SCFA-rich conditions, were
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Anaerostipes and Faecalibaculum, which are known saccharolytic butyrate producers
[54,55]. The only known species of Faecalibaculum, F. Rodentium, has also been identified
as anti-tumourigenic in mice [54]. The HFD was characterized by lower fecal SCFAs and
correlated with an increased abundance of a heterogeneous group of genera. Among
these, Candidatus Soleaferren has been described in anorexic subjects [59] and
GCA-900066575 and Lachnoclostridium in high fat [60] conditions suggesting that our
findings might be related to the carbohydrate-deficient conditions on the HFD. We also
found choline and its degradation products ethanol and TMA along with known
TMA-producing proteobacteria Escherichia, Shigella and Parasutterella [25] in a shared bi-
cluster. Thus, these biclusters seemed to reflect biological significance.

With respect to biclusters, the effects of XOS supplementation seemed to vary de-
pending on the dietary fat, which was apparent by the low classification accuracy. On the
LFD, the addition of XOS associated with only a few individual metabolites and genera
not visible at the bicluster level. On the HFD, glycine was elevated with XOS supple-
mentation. Impaired glycine biosynthesis has been linked with hyperlipidemia and ste-
atohepatitis and, conversely, administration of glycine in a tripeptide form to mice alle-
viated both conditions [69]. Notably, the levels of hypoxanthine were decreased by XOS
independent of dietary fat. Hypoxanthine is a major substrate of xanthine oxidase, which
converts it to uric acid and reactive oxygen species [70]. Xanthine oxidase is highly ex-
pressed in liver and recently investigated as a therapeutic target in NAFLD [71]. Reduc-
ing oxidative stress through suppression of the xanthine metabolic pathway ameliorated
hepatic steatosis and inflammation. Thus, some of the steatosis-reducing effects of XOS
might be attributed to higher glycine and lower hypoxanthine levels in our study.

On the HFD, XOS-supplemented rats had significantly lower levels of isovalerate,
methylamine and slightly lower levels of the co-occurring genera. In a recent study,
feeding resistant starch to mice on a HFD decreased the levels of isovalerate and abun-
dances of Oscillibacter, Ruminiclostridium 5 and Ruminiclostridium 9 [30] being in line with
our findings showing that Oscillibacter and Ruminiclostridium 9 were found to co-vary
together and with the amino acid levels.

XOS-supplemented rats also had lower levels of BCAAs and aromatic amino acids.
This metabolic fingerprint was visible in the biclusters, as these metabolites were con-
tained in AA and isovalerate biclusters. In addition, amino acid fermentation products
(the Product bicluster) tended to be lower with XOS. Obesity and NAFLD have been
shown to have an interactive effect on serum amino acid levels, increasing BCAAs and
aromatic amino acids while decreasing glycine [31,32]. In addition, the same amino acid
profile has been linked to metabolic syndrome independent of obesity [72]. We observed
a reverse effect by XOS on these amino acids in feces, which raises the question whether
altered protein catabolism by the GM could be tailgated by insulin resistance and hepatic
steatosis.

As described, we further determined the possible relations of the tissue level mo-
lecular mechanisms in concert with their interactions with the metabolites and microbes
to the hepatic steatosis-preventing effects of XOS. We first analyzed the hepatic expres-
sion levels of several miRNAs previously associated with NAFLD [68]. Supporting the
role of up-regulated miR-21-5p in reducing lipid accumulation [73], we found that the
HFD groups expressed significantly less miR-21-5p, which has been shown to al-
so promote hepatic insulin resistance and steatosis [73,74]. However, contradicting re-
sults of serum and hepatic miR-21-5p levels have been reported in both humans and in
animal models of NAFLD/NASH. Some studies show an up-regulation of miR-21-5p
[75,76], while others report a down-regulation [77][73]. miR-122-5p is involved in
the regulation of hepatic lipid metabolism among other several physiological processes
in hepatic function [78]. In our study, there were no differences in miR-122-5p levels
between the groups suggesting that miR-122-5p is not responsive to HFD or XOS in rat
liver. XOS lowered the levels of hepatic miR-192-5p both on the HFD and LFD, which is
contradictory to rodent studies showing that NAFLD or HFD decreased hepatic miR-192
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-5p expression leading to lipid accumulation in cells [47,79]. It is possible that our results
with XOS-induced miR-192-5p down-regulation could relate to reduced hepatic in-
flammation [80], however, further studies are needed to determine this effect of
miR-192-5p. In previous studies miR-221-3p has been shown to be involved
in NASH-induced carcinoma mouse model [81]. Furthermore, up-regulation
of miR-221-3p in liver has been observed in NASH patients in a fibrosis-dependent
manner as well as in a mouse model of hepatic fibrosis [82]. Our results show that XOS
down-regulated hepatic miR-221-3p on the HFD suggesting a healthier hepatic
miR-profile in response to XOS supplementation. However, in our model fibrosis was
not present as reported previously [5]. In our study, miRs 192-5p and 221-3p were asso-
ciated with hepatic p-ACC and triglycerides, supporting the emerging role of these miRs
in regulating lipid metabolism [46,47]. Nevertheless, the mechanistic role of these miRs in
hepatic fat accumulation is yet to be resolved.

On the HFD, XOS slightly decreased the hepatic levels of Ser79-phosphorylated
ACC, the enzyme that catalyzes the rate-limiting step of de novo lipogenesis (Wakil et al.
1983). The phosphorylation of ACC at Ser79 inactivates ACC inhibiting the production of
malonyl-CoA, which causes a decrease in de novo lipogenesis [83-86] and enhances fatty
acid B-oxidation [86,87]. Based on our results, the prevention of hepatic fat accumulation
by XOS did not involve enhanced ACC activation by Ser79 phosphorylation. However,
we found that higher fecal glucose, nicotinate (niacin) and butyrate along with
SCFA-producing bacterial genera, particularly Faecalibaculum, were highly predictive of
higher p-ACC. This is not surprising considering that SCFAs and niacin have both been
shown to impede hepatic de novo lipogenesis [88,89].

Upon binding of insulin IRS1 subsequently recruits phosphoinositide 3-kinase
(PI3K), which activates AKT by phosphorylating it at Thr308 [90]. While the tyrosine
phosphorylation of IRS1 promotes its activity, serine phosphorylation of IRS1 inhibits its
functions [91]. We did not find effects of XOS on the Ser-phosphorylation of IRS], yet, as
expected, the LFD groups expressed less phosphorylated IRS1 indicating better insulin
signaling compared to the HFD groups. However, downstream of IRS1, XOS enhanced
the phosphorylation of AKT independent of dietary fat in the epididymal adipose tissue
and liver. This is in agreement with a recent study in type 2 diabetic rats showing that
XOS increased insulin signaling in muscle [92]. An improved insulin signaling by XOS
could be linked to its anti-hyperglycemic effects that were recognized already 30 years
ago [93]. Nevertheless, in our previous study XOS did not affect serum glucose levels in
the same rats [5]. AKT phosphorylation in the epididymal fat negatively correlated with
the genera and metabolites in the isovalerate bicluster, likely reflecting the effects of di-
etary fat. These associations might relate to the role of BCFAs in regulating adipocyte
insulin signaling [94].

Because the pathogenesis of NAFLD is associated with adipose tissue dysfunction
[10,11], we also studied whether the XOS-induced reduction in hepatic fat content was
due to alterations in the activity of metabolic enzymes and inflammation in the adipose
tissues of the rats. Several studies have shown that in obesity, infiltration of immune cells
into the adipose tissue increases inflammation, which is associated with disturbed insulin
signaling [95-98]. Insulin resistance in turn is a risk factor for the onset of NAFLD [99].
We hypothesized that XOS-induced increase of anti-inflammatory F. prausnitzii, reduced
hepatic fat content and increased AKT phosphorylation would associate with decreased
HFD-induced inflammation in the adipose tissue. The epididymal adipose tissue samples
exhibited no over pathological changes and the amount of CLS was relatively low in all
groups. Highly likely, the adipose tissue macrophages have played a role in our study to
contribute to the hepatic fat content because both the XOS and LFD were associated with
a reduced number of CLSs in the epididymal adipose tissue. Adipose tissue-resident
macrophages are known to importantly contribute to the onset of NAFLD by increasing
macrophage recruitment and inflammation in the liver [11,13,14]. In our data, SCFAs and
co-varying bacterial genera were associated with lower number of CLSs. SCFAs butyrate,
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propionate and acetate are known to reduce inflammation in both liver and adipose tis-
sue [19], and thus their co-variance could reflect biological significance.

To analyze inflammatory factors further, we also determined the mRNA expression
levels of CD45 mRNA in the mesenteric and epididymal adipose tissue. CD45 is a
transmembrane protein that is present on all leukocytes and their hematopoietic pro-
genitors [100]. In both the epididymal and mesenteric adipose tissue, the expression of
CD45 was highest in the LFD groups despite the decreased number of macrophages. This
finding was surprising because we have shown that increasing F. prausnitzii abundance
in mice by oral administration was followed by a decrease in hepatic fat content and a
concomitant decrease of CD45-positive leukocytes in the adipose tissue [6]. However, it
should be noted that while CLS are macrophages and mainly bone marrow-derived
CD45-positive cells [101], based on their cell morphology they are highly differentiated
and phagocytize adipocytes [102]. Thus, it might be that the production of CD45 mRNA
in these cells is low despite the high protein content. In addition, interestingly, on a con-
trary to many studies linking immune cell infiltration into the adipose tissue inflamma-
tion and NAFLD, some studies have shown that enrichment of specific immune cells in
the adipose tissue can in fact prevent the onset of insulin resistance. For instance, Har-
mon et al. showed that B-1b lymphocytes that are enriched in the visceral adipose tissue
of obese humans, decrease inflammation and insulin resistance in the visceral adipose
tissue in diet-induced obese mice [103]. In another study, perforin-positive dendritic cells
reduced inflammation in the adipose tissue by reducing the number of tissue resident,
inflammatory T cells in mice [104]. The results of these two studies raise the question
whether some type of immune cells in the adipose tissue may sometimes be a protective
instead of detrimental.

Altogether, in the present study, we identified several molecular mechanisms and
co-variances of metabolites and bacterial genera underlying the XOS-prevented hepatic
steatosis in rats. This validated the use of biclustering as a useful algorithmic tool to as-
sess the biological importance of microbe-metabolite co-occurrence in health and disease.

5. Conclusions

Based on our observations, the joint analysis of taxonomic and metabolomic patterns
can be supported by biclustering algorithms, which provide a useful technique for de-
tecting interpretable groupings of co-varying microbes and metabolites, potentially
linked with health and disease. The preventive effects of XOS on hepatic steatosis could
be linked to reduced adipose tissue inflammation, as apparent by the lower counts of
CLSs in the epididymal adipose tissue. This reduction was accompanied by increased
phosphorylation of AKT in both liver and epididymal adipose tissue, suggesting that less
inflammation was associated with improved insulin signaling. On the HFD, XOS in-
creased fecal glycine and decreased BCAAs, aromatic amino acids, hypoxanthine and
isovalerate that due to their known functions could partly explain steatosis-reducing ef-
fects of XOS.
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