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Abstract: Hydraulic conductivity is the key and one of the most uncertain parameters in 

groundwater modeling. The grid based numerical simulation requires spatial distribution of 

sampled hydraulic conductivity at un-sampled locations in the study area. This spatial interpolation 

has been routinely performed using variogram based models (two-point geostatistics methods). 

These traditional techniques fail to capture the complex geological structures, provides smoothing 

effects and ignore the higher order moments of subsurface heterogeneities. In this study, multiple-

point geostatistics (MPS) technique is used to interpolate hydraulic conductivity data which will 

be further used in WASH123D numerical groundwater simulation model for regional smart 

groundwater management. To do this, MPS need ‘training images (TIs) as a key input. TI is a 

conceptual model of subsurface geological heterogeneity which was developed by using the 

concept of ages, topographic slope as an index criterion and knowledge of geologist. After 

considerations of full physics of the study area, an example shows the benefits of using MPS 

compared with two-point geostatistics Kriging for hydraulic conductivity data interpolation in a 

complex geological formation. 
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Introduction 

Understanding the spatial distribution of hydraulic conductivity is a prerequisite for grid based 

numerical simulation in the field of groundwater resource management. Interpolation methods 

known as geostatistics [1] are characteristically applied to guesstimate values at un-sampled 

locations. Traditionally, two-point geostatistics [2] (variogram-based methods) are frequently used 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 February 2021                   doi:10.20944/preprints202102.0618.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:engr.fiaz@uaar.edu.pk
https://doi.org/10.20944/preprints202102.0618.v1
http://creativecommons.org/licenses/by/4.0/


to approximate the un-sampled values by evaluating the lower-order statistics of spatial 

distribution (i.e., covariance). Many researchers employed these methods such as (Kriging, co-

Kriging, inverse distance weighting) to estimate un-sampled values in real case studies [3-5]. For 

example, Theodossiou and Latinopoulos [3] conducted a study in the Anthemountas basin, 

northern Greece and use the Kriging method for groundwater level interpolation. Kriging and co-

Kriging interpolation techniques were applied by Ahmadi and Sedghamiz [4] for groundwater 

depth mapping. Sun et al. [5] compared three interpolation methods (Kriging, radial basis function 

and inverse distance weighting) to estimate the groundwater level. Kriging is the optimal technique 

for groundwater level interpolation in a real case study [5]. In all literature studies, two-point 

interpolation methods are applied to quantify the spatial correlations only, but for complex 

formations composed of geologic heterogeneity, these methods interpolation may be inappropriate 

[6]. These methods cannot reproduce the interconnected, curvilinear geometries characteristic of 

many heterogeneous complex patterns. These patterns are significant for water resource 

management.  

Multiple-point geostatistics (MPS) [2] approaches offer an opportunity to simulate complex 

geological patterns. Strebelle [7] was the foremost who successfully implement one of the MPS 

algorithm known as SNESIM. Hu and Chugunova [8] presented an overview of MPS methods. A 

book written by Mariethoz and Caers [9] provides a comprehensive introduction to MPS with the 

help of training images.  

Traditional geostatistics talks about hard and soft data and their realization that reflect the patterns 

and constraints related to these data. While MPS is a method that is qualified within other means 

of modeling mostly in reservoir modeling, hydraulic conductivity modeling and rainfall history 

reconstruction [10, 11]. Where traditional variogram modeling is transferred to physical process-

based model that is more realistic and very accurate in terms of their physical representation than 

standard geostatistical techniques. MPS is performed with the help of Training Images (TIs) [12]. 

A training image (TI), i.e., a conceptual physical model of the geology is the container of patterns 

as a representation of spatial continuity that has to be simulated, is the fundamental requirement 

for MPS simulation. 

In this study, two-point variogram based estimation (Kriging) and training image base simulation 

(MPS) is used to produce several stochastic realizations that represent the spatial variation of 
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geologic units in the subsurface. These two methods were compared in this study with the help of 

example data. In the example, the results show that the MPS better reproduces the patterns of 

hydraulic conductivity than Kriging, a two-point geostatistics method. 

Study Region and Geology 

Simply, the training image is the conceptual model of geology consist of hydrology facies of 

formation represented by patterns. TI can be generated with the help of outcrop data, the concept 

of ages, topographic slope as an index criterion and knowledge of geologist. In this study, the 

subsurface cross-section at location CC’ of Dashu city (大樹) as shown in Fig.1 of Pingtung county 

was used as a TI. These subsurface cross-sections were developed by the knowledge of geologist 

as shown in Fig.2.  

Dashu city area consists of four different geological formations. According to geologist, the area 

consists of Holocene (Alluvium) and Holocene (Terrace Deposits) which is a newly developed 

formation in the result of earth quicks and erosion process. This is a flat region having mud, sand 

and gravel mixing. The fraction of this formation is 0.476 in the study region. The second 

formation is called Pleistocene (Linkou Conglomerates) aggregated with mudstone interbeds, 

intercalated with sheet and sandstones. The fraction of this formation is 0.419 and consist of the 

mountainous region. The third formation is known as Pleistocene (Tashe Formation) consist of 

thick mudstone with sandstone and conglomerates interbeds. This formation fraction is 0.042. The 

fourth formation is Pliocene (Nanshihlun Sandstone), which consist of thick sandstone, mudstone. 

The fraction of Pliocene in the region is 0.064. The spatial distribution of formations is shown in 

Fig.3 
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Figure 2: Regional scale subsurface cross-sections of Dashu city 

Figure 1: Regional scale geological profile location map of Dashu City 
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The CC’ cross-section was used as a TI which consists of three formations. The boundary of these 

formations in cross-section was measured with the help of topography and surface boundary of 

these formations. The cross-sections were developed with the help of borehole data and 

Líndiànshùn, 1991 study [13]. The distribution of grain size slices consists of clay and mud layer 

(CMZ) while vfS and fS are the very fine and fine sand layers. The green colour layers 

(mS+cS+vcS) indicate the medium sand, coarse sand and very coarse sand. The fine, medium and 

coarse gravel (fG+mG+cG) grains are also in mixed condition as shown in Fig.2 

Methodology  

Prior Estimation of Hydraulic Conductivity (K) Data 

 The regional study area consists of a limited amount of data. Only three borehole log data in the 

Holocene formation help to determine the hydraulic conductivity. Kozeny-Carman Law [14] was 

used to estimate K (m/s) in Alluvium formation.  

𝐾 =  (
𝜌𝑤𝑔

𝜇𝑤
) . (

𝑑2

180
) . [

∅3

(1 − ∅)2
] 

Where d is the grain size;  𝜌𝑤is the fluid density (1000 kg/m3); 𝜇𝑤 is the dynamic viscosity taken 

to be 0.0014 kg/m s [15];  ∅ is the effective porosity which is estimated with the help of the 

following formula [16]. 

∅ =  ∅𝑛(1 − 𝑉𝑠ℎ) 

Where, ∅𝑛 is the neutron porosity, determine with the help of gamma-ray log (cps) count per 

second. The relationship between neutron porosity and neutron count rate developed by US 

geological survey [16] was used to determine the effective porosity. 𝑉𝑠ℎ is the volume of shale can 

be estimated from gamma-ray log [17] 

𝑉𝑠ℎ = 0.083 [2
3.7(

𝐺𝑅−𝐺𝑅𝑚𝑖𝑛
𝐺𝑅𝑚𝑎𝑥−𝐺𝑅𝑚𝑖𝑛

)
− 1] 

Where, GR is the gamma ray counts at given depth of layer, GRmax and GRmin are the maximum 

and minimum count rate of whole strata. 
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The grain size diameters were obtained from the range of USGS survey for grain size distribution. 

The range of different diameters according to layers is given below. 

CMZ = [0.001, 0.004]; vfS + fS = [0.02, 0.04, 0.08]; mS+cS+vcS = [0.1, 0.2, 0.5, 0.8, 1]; 

fG+mG+cG = [2, 4, 8] mm. 

Based upon the above method, the hydraulic conductivity estimated in alluvium formation is given 

in Table 1. 

Table 1. Estimated Hydraulic Conductivity in Holocene (Alluvium) Formation 

Holocene Formation (Alluvium) 

Core Type K (m/s) 

cG+mG+fG 1.05 x 10-3 

vcS+cS+mS 6.60 x 10-4 

fS+vfS 2.95 x 10-5 

C+M+Z 1.26 x 10-6 

The hydraulic conductivity of other formations was considered by the hypothesis of alluvium to 

the non-alluvium formation. It was supposed because of the non-availability of borehole data. The 

hydraulic conductivity of Pleistocene (Linkou Formation) was assumed one order reduction in the 

magnitude of Holocene (Alluvium) formation and for Pliocene (Nanashihlun) formation two order 

reduction in the magnitude of Holocene. For Pleistocene (Tashe) formation, the hydraulic 

conductivity was assumed half order magnitude reduction from Pleistocene (Linkou) formation. 

The hydraulic conductivity of non-alluvium formations is given in Table 2.  

Table 2. Hydraulic Conductivity of Non-Alluvium Formations 

Pleistocene (Linkou) Pleistocene (Tashe) Pliocene (Nanshihlun) 

Core Type K (m/s) K (m/s) K (m/s) 
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cG+mG+fG 1.05 x 10-4 5.25 x 10-5 1.05 x 10-5 

vcS+cS+mS 6.60 x 10-5 3.30 x 10-5 6.60 x 10-6 

fS+vfS 2.95 x 10-6 1.47 x 10-6 2.95 x 10-7 

C+M+Z 1.26 x 10-7 6.30 x 10-8 1.26 x 10-8 

 

Training Image and Integration of Hydraulic Conductivity Data  

The CC’ cross-section was scanned and used as a training image as shown in Fig.4. The boundary 

of the cross-section is marked with the help of Fig.3. The training image has three categories, 

which were indicated as 0, 1 and 2 values. The histogram of these categories indicated the correct 

target marginal distribution, which was found as 0.30, 0.54, and 0.16, respectively as shown in 

Fig.5 

Figure 4. CC' Cross-section used as a Training Image 

Figure 3. Surface geology map of study area 
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Figure 5. Target Marginal distribution of categories of Training Image 

The CC’ cross-section was also categorized into different classes as shown in Fig.6 for the 

incorporation of prior estimated hydraulic conductivity data. For this purpose, this 2D cross-

section (XZ-direction) were converted into a grid with size: 2130 x 1 x 310 with a unit cell size in 

each direction. The blue colour is the background and used as a No Data (-9966699). This grid 

data is used as hard data for the pattern determination in the kriging process and further for 

conditioning in the MPS method.  

 

Figure 6. Hydraulic Conductivity Grid Data of Cross-section 

Pleistocene (Tashe) Pleistocene (Linkou) Holocene 
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Estimation and Simulation using SGeMS Software 

The Stanford Geostatistical Modeling Software (SGeMS) is a general-purpose, user-friendly, 

state-of-the-art geostatistical software package. In this study, SGeMS is used to estimate and 

simulate hydraulic conductivity data at un-sampled locations using Kriging and MPS, respectively. 

Currently, there is only one practical software that is perfectly available to do MPS is SGeMS. The 

software code is in the public domain, downloadable from http://sgems.sourceforge.net/  

Results and Discussion  

The variogram, a 2-point statistics 

The estimate algorithm of Kriging is performed in SGeMS using variogram 2-point geostatistical 

modeling. The variogram or its equivalent (covariance) is the main tool for kriging. The 

experimental variogram was developed in two directions. The x-direction is the minor direction 

while the z-direction is the main direction. Half of the number of cells of the main direction was 

considered as No. of lag. For vertical variogram, we use dipping of 90 degrees of main data. The 

model and experimental variogram are shown in Fig.7 

 

(A) 
(B) 
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Figure 7. Experimental variogram (A) Z-direction (B) X-direction and (C) Both Direction 

Historically, kriging remains a major integration tool in estimation and simulation algorithms. It 

interpolates the data-to-unknown correlation to data-to-data correlation through a non-diagonal 

kriging matrix. In this work, the Ordinary Kriging (OK) algorithm is used. In OK, the predictive 

value of the random function is locally re-estimated from local data, while the covariance model 

is kept stationary. The variogram in Fig.7 looks nice and smooth with range, sill and nugget effect. 

The analysis indicated the geometric anisotropy because there is a change in range with direction. 

The variogram is subject to sampling variance indicated no over modeling effect as shown in Fig.7. 

The first few lags are very important for kriging results. Here the lags look linear and smooth, so 

spherical variogram type is used. 

The OK results are shown in Fig.8. For performing the OK, the search ellipsoid is very import for 

major continuity. Here used single search neighbourhood in search ellipsoid and dip by 90 degrees 

to get maximum vertical data. To avoid the error, the conditional dataset was increased in data of 

search neighbourhood. 

(0,0,1) 

(1,0,0) 

(C) 
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Figure 8. The Ordinary Kriging (OK) estimation results 

The OK is performed using hydraulic conductivity data of cross-section CC’ on a grid system 

having a size (107 x 55 x 33), cell size (20, 20,10). The interpolation results obtained are smooth 

indicated the use of two-point spatial correlation within the data and could not simulate the 

complex patterns as shown in the training image. Hence 2-point geostatistics can only yield a 

variogram model and failing to reproduce definite shape and patterns. 

Multi-point Simulation using SNESIM Algorithm 

The MPS concept became practical with the SNESIM (Single Normal Equation Simulation) 

implementation of Strebelle (2000) [11]. In SNESIM, the Ti is scanned only once; all conditional 

proportions available in that Ti for a given search template size are stored in a search tree data 

structure, from which they can be efficiently retrieved. This algorithm contains two key parts, the 

construction of the search tree which stores all training proportions, and the simulation part itself. 

In this study, a SNESIM is performed as a 3D simulation conditioning to hydraulic conductivity 

data. The large 2D training image of cross-section CC’ is used. The training image dimension 

(2130 × 1 × 310), and facies proportions 0.30, 0.54, and 0.16 for Holocene, Pleistocene Linkou 

Formation and Pleistocene Tashe Formation, respectively. The hydraulic conductivity point data 

of the CC’ cross-section provide hard conditioning data at each location. The simulated field is of 

size 107×28×40 with cell size 20, 20, 5. For SNESIM simulation, 60 conditioning data nodes are 

retained in the search template. The ranges of search ellipsoid in three major axes are 100, 100 and 

5, respectively. The angles for azimuth and rake are zero while the dip is 90 degrees. No use of 
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affinity or rotation. 4 multiple grids are selected with isotropic template expansion. For data 

conditioning, 4 additional nodes were used in the subgrid concept. The servosystem value is 0.9. 

One SNESIM realization conditioning hard data is given in Fig. 9. 

 

Figure 9. One SNESIM realization of hydraulic conductivity data 

The simulated map using MPS exhibits similar patterns to the true map. The computational cost 

of the MPS method for the interpolation is much higher than that of Kriging. 

Conclusion and Recommendation 

The question “which model, 2-point or MPS?” is very important for the selection of modeling 

technique. The simple criterion is “The better model is that which delivers the “deemed” better 

result”. In this study, SNESIM is mimicking the true map while OK is providing smooth results. 

Hence, the TI patterns yield a “more” accurate result than the simplified structures by variogram-

based statistics. For future work, MPS will be used for geostatistical modeling of Dashu City. The 

surface geology map will be used as a 2D horizontal training image and 1D vertical variogram 

from four cross-sections for characterizing the geologic heterogeneity in three dimensions which 

will be further used in WASH123D numerical groundwater simulation model. 

 

 

References 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 February 2021                   doi:10.20944/preprints202102.0618.v1

https://doi.org/10.20944/preprints202102.0618.v1


[1] Varouchakis, E.A. Geostatistics: Mathematical and Statistical Basis. In: Spatiotemporal 

Analysis of Extreme Hydrological Events, Elsevier, 2019, pp. 1-38, https://doi.org/10.1016/B978-

0-12-811689-0.00001-X. 

[2] Tahmasebi, P. Multiple Point Statistics: A Review. In: Daya Sagar B., Cheng Q., Agterberg F. 

(eds) Handbook of Mathematical Geosciences. Springer, Cham. 2018, pp. 613-643, 

https://doi.org/10.1007/978-3-319-78999-6_30  

[3] Theodossiou, N.; Latinopoulos, P. Evaluation and optimisation of groundwater observation 

networks using the kriging methodology. Environ. Model. Softw. 2006, 21, 991–1000. 

[4] Ahmadi, S.H.; Sedghamiz, A. Application and evaluation of kriging and cokriging methods on 

groundwater depth mapping. Environ. Monit. Assess. 2008, 138, 357–368. 

[5] Sun, Y.; Kang, S.; Li, F.; Zhang, L. Comparison of interpolation methods for depth to 

groundwater and its temporal and spatial variations in the minqin oasis of northwest china. Environ. 

Model. Softw. 2009, 24, 1163–1170. 

[6] Li, L., Huang, G. Groundwater level mapping using Multi-point Geostatistics. Water 2016, 8, 

400; doi:10.3390/w8090400  

[7] Strebelle, S. Conditional simulation of complex geological structures using multiple-point 

statistics. Math. Geol. 2002, 34, 1–21. 

[8] Hu, L.; Chugunova, T. Multiple-point geostatistics for modeling subsurface heterogeneity: A 

comprehensive review. Water Resour. Res. 2008, 44, doi:10.1029/2008WR006993. 

[9] Mariethoz, G., Caers, J. Multiple-point Geostatistics: Stochastic Modeling with Training 

Images, Wiley-Blackwell, 2014, pp.376.  

[10] Huysmans, M., Dassargues, A. Application of multiple-point geostatistics on modelling 

groundwater flow and transport in a cross-bedded aquifer (Belgium). Hydrogeol J 17, 1901 (2009). 

https://doi.org/10.1007/s10040-009-0495-2  

[11] Marini, M., Felletti, F., Beretta, G.P., Terrenghi, J. Three Geostatistical Methods for 

Hydrofacies Simulation Ranked Using a Large Borehole Lithology Dataset from the Venice 

Hinterland (NE Italy). Water 2018, 10, 844; doi:10.3390/w10070844 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 February 2021                   doi:10.20944/preprints202102.0618.v1

https://doi.org/10.1016/B978-0-12-811689-0.00001-X
https://doi.org/10.1016/B978-0-12-811689-0.00001-X
https://doi.org/10.1007/978-3-319-78999-6_30
https://doi.org/10.1007/s10040-009-0495-2
https://doi.org/10.20944/preprints202102.0618.v1


[12] Mohan Srivastava, R. The Origins of the Multiple-Point Statistics (MPS) Algorithm. In: Daya 

Sagar B., Cheng Q., Agterberg F. (eds) Handbook of Mathematical Geosciences. Springer, Cham. 

2018, pp. 655-672; https://doi.org/10.1007/978-3-319-78999-6_32  

[13] Lin Dianshun, 1991, Sedimentary facies and sedimentary environment evolution of the 

Upper-Phoenix in the Laoshan belt in southwestern Taiwan, and a master's degree in the Institute 

of Geology, National Taiwan University. (in Chinese) 

[14] Kruczek, B. Carman–Kozeny Equation. In: E. Droli, L. Giorno (eds.), Encyclopedia of 

Membranes, Springer-Verlag Berlin Heidelberg 2014, DOI 10.1007/978-3-642-40872-4_1995-1 

[15] Fetter, C.W., 1994. Applied Hydrogeology, third ed. Prentice-Hall, Inc., New Jersey, p. 600 

[16] Hudson J.D. 1996, Use of geophysical logs to estimate the quality of ground water and the 

permeability of aquifers. U.S. Geological Survey, Water-Resources Investigations Report 95-4300. 

[17] Larionov VV (1969) Radiometry of boreholes (in Russian). Nedra, Moscow 

[18] Strebelle, S. 2000, Sequential simulation drawing structures from training images, Ph.D. 

thesis, Stanford University, Stanford, CA. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 February 2021                   doi:10.20944/preprints202102.0618.v1

https://doi.org/10.1007/978-3-319-78999-6_32
https://doi.org/10.20944/preprints202102.0618.v1

