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Abstract: Remote sensing (RS) has been widely adopted as a tool to investigate several biotic and 

abiotic factors, directly and indirectly, related to biodiversity conservation. European grasslands are 

one of the most biodiverse habitats in Europe. Most of these habitats are subject to priority conser-

vation measure, and they are threatened by several human induced process. The broad expansions 

of few dominant species are widely reported as drivers of biodiversity loss. In this context, using 

Sentinel-2 (S2) images, we investigate the distribution of one of the most spreading species: Brachy-

podium genuense. We performed a binary Random Forest (RF) classification of B. genuense using a RS 

image and field sampled presence/absence points. Then, we integrate the occurrences obtained from 

RS classification into niche models to identify the topographic drivers of B. genuense distribution. 

Lastly, the impact of B. genuense distribution in the N2k habitats was assessed by overlay analysis. 

The RF classification process detected B. genuense's cover with an overall accuracy of 91.18%. The 

integration of RS and topographic niche models shows that the most relevant topographic variables 

that influence the distribution of B. genuense are slope, elevation, solar radiation and Topographic 

Wet Index (TWI) in order of importance. The overlay analysis shows that 74.04% of the B. genuense 

identified in the study area falls on the semi-natural dry grasslands. The study highlights the im-

portance of the RS classification and the topographic niche models as an integrated approach for 

mapping a broad-expansion species such as B. genuense. The coupled techniques presented in this 

work should be applicable to other plant communities with remotely recognizable characteristics 

for more effective management of N2k habitats. 

Keywords: Habitat grasslands monitoring; Brachypodium genuense; vegetation dynamics; Campo 

Imperatore plateau; Sentinel-2; Machine learning; Multispectral classification; Topographic niche 

models; Natura 2000. 

 

1. Introduction 

European grasslands, especially those on limestone substrates, are one of Europe’s 

richest ecosystems in terms of floristic richness and endemic species [1]. Indeed, most of 

these communities are considered priority habitats of community interest under the Eu-

ropean Community Habitats Directive (92/43/EEC) [2]. 

The vegetation dynamics driven by land use change in Mediterranean mountains 

cause consequent drastic reduction in biodiversity [3]. The land use change, in these areas, 

is mainly related to the abandonment of traditional human activities that have favored the 

maintenance of the grasslands over previous centuries [4]. This land use change (aban-

donment of the traditional practices) had and is still having negative effect on several hab-

itats including semi-natural grasslands [5]. Even though the semi-natural grasslands are 
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actually in the priority conservation status across Europe, negative changes are expected 

not only on vegetation [6], but also for many animal species strongly connected to these 

habitats (e.g. Brunetti, et al. [7],Console, et al. [8]). 

In this context, remote sensing (RS) has been widely adopted as tool to investigate 

several biotic and abiotic factors directly and indirectly related to biodiversity conserva-

tion [9,10]. 

In the last decade, satellite data showed great versatility in environmental studies 

such as fires disturbances [11], floods [12], droughts [13], spread of invasive alien species 

[14,15], and several other human induced pressures [16-18]. 

From this perspective, the RS has demonstrated to be a practical and economic tool 

for studying vegetation cover both on local and global scale [19,20], also proving a quan-

tification of the biotic characteristics of grassland habitats  [21,22]. 

Among the several information provided by RS, multispectral data, such as Landsat 

and Sentinel-2 MSI (S2) images, have proven suitable for detecting grassland disturbances 

and monitoring changes in these ecosystems [23-27]. Moreover, the higher spatial and 

temporal resolution of S2 compared to Landsat makes S2 a better tool (in some cases) for 

vegetation studies [28].  

Integrate RS data with species distribution model (SDMs) is a key tool to investigate 

the realized niche of several species. Species distribution models are numerical tools that 

combine observations of species occurrence or abundance with environmental estimates 

[29]. They are used to gain ecological and evolutionary insights and to predict distribu-

tions across landscapes [30,31]. Species occurrences are often biased by sampling effort. 

Indeed frequently, researchers sample easily accessible areas (i.e. near major roads or 

towns), leading to geographic clusters of localities [32,33]. To overcome this bias, RS data 

can provide an accurate distribution with a high number of occurrences to calibrate the 

models.  

In this study we focused on Apennine grassland communities colonized by Brachy-

podium genuense and/or B. rupestre [34,35]. B. genuense is a spreading competitor species in 

the earliest stages of the colonization of the grasslands, that are widely diffused in the 

Apennine chain [36]. We focused on this species because its invasive behavior causes a 

change in community structure, species composition and a loss of biodiversity [37,38]. 

Therefore, controlling the spread of B. genuense is a key issue for the conservation of bio-

diversity and the maintenance or restoration of the value of mountain pastures [39,40]. 

The proposed integration of RS data and topographic niche models was tested on the 

Campo Imperatore upland plain (Abruzzo, Italy), in the south-eastern sector of the Gran 

Sasso and Monti of Laga National Park. This area, where the target species is widely dif-

fused, is characterized by a remarkable floristic and vegetational biodiversity [41,42]. 

The study also aims to provide a new approach to monitor these important grassland 

habitats in view of the future European ‘5th Habitat Report ex-Art. 17’ on Natura 2000 

(N2k) habitats planned for the year 2024 (2019-2024). 

Our study based on S2 images, aims to achieve the following targets: i) Mapping the 

Brachypodium genuense (B. genuense) distribution using RS data. ii) Investigate the topo-

graphic drivers of the target species by the integration of RS data with ecological model-

ling. iii) Identify the N2k habitats (European Commission 2013) which are the most in-

vaded by B. genuense. 

2. Materials and Methods 

2.1 Study Area 

In this study we focused on Campo Imperatore upland plain falling within the Gran Sasso 

and Monti of Laga National Park (Figure 1) in the alpine biogeographical region [43]. The 

Campo Imperatore plateau ranges from 1300 to 2500 m a.s.l., it is at the foot of the main 

limestone mountains of the Gran Sasso group, that has been strongly shaped by glacia-

tions and morphogenetic phenomena, mainly by karst, snow, wind and water. Under 

these conditions, particularly extensive geoforms have originated, such as the sinkhole 
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fields, the shallow and deep incisions, and the swallow holes [44]. The bioclimatic classi-

fication according to Rivas-Martínez, et al. [45] indicates a temperate macroclimate, an 

oceanic bioclimate, and an upper supratemperate thermotype and an orotemperate ther-

motype [46]. 

Since the past, the main land use in this area has been breeding (intensive grazing sheep). 

Currently, pastoral activity is much milder with the replacement of sheep with cattle and 

horses left in the wild pastures. In the eastern sector beech woods and conifer stands are 

present. 

The study area, despite its limited size (~ 9400 ha), is characterized by a noticeable flora 

[42] and vegetation [47] and represents an optimal area to test the techniques presented in 

the work. Furthermore, the area falls within a Special Protection Areas (SPAs) (Birds Di-

rective, EU), and in a Sites of Community Interest (SCIs) (Habitat Directive, EU) and is 

one of the largest upland plains in Europe, the largest in the Italian Apennines [48]. 

2.2 Target species 

Brachypodium genuense (DC.) Roem. et Schult. is a graminoid perennial herb species of the 

Poaceae family. Is an endemic taxon of the Italian peninsula and is widespread in grass-

lands over 1300–1400 m a.s.l.. This plant reaches a height of 0.4 - 0.7 m (maximum 1.2 m) 

with wintering buds at ground level. Its large dimensions, strong capacity of vegetative 

reproduction (with remarkable lateral spreading), growth from basal meristems, and high 

phytomass production, makes B. genuense a dominant species in dense grasslands [49]. 

Indeed, the genus Brachypodium has hairy leaves rich in siliceous crystals that discourages 

domestic herbivores to feed on them [50]. From a phenological perspective, B. genuense in 

central Apennine follows precise stages: the vegetative growth starts in May and reach 

full flowering in July (Green up). After fruiting and seed production in July–August (Ma-

turity), in November all individuals are fully dried (Senescence) [37]. 

2.3 Remote sensing dataset and pre-processing 

In this paper, the distribution of B. genuense is measured by using the multispectral images 

of S2 satellites (Copernicus Program) at 10 m per pixel. S2 launched in June 2015, provides 

open-source multispectral data with a spatial resolution of 10 to 60 m per pixel, 13 spectral 

bands with a temporal resolution of 5 days [51]. These characteristics make S2 data suita-

ble to environmental monitoring on a horizontal scale, indeed, S2 data were used in sev-

eral studies concerning grassland communities [49,52]. S2 carries a MultiSpectral Instru-

ment (MSI) that measures the Earth's reflected radiance in 13 bands, from 443 to 2190 nm. 

The visible RGB, the NIR, Red-edges and SWIR bands resulting highly suitable for the 

classification of both grassland and tree coverings [53]. The analyzed images were ac-

cessed by ESA's Open Access portal (https://scihub.copernicus.eu), with a temporal range 

between late June ÷ late August 2019 (Appendix S1). This time interval was chosen to 

distinguish B. genuense from other plant communities based on its phenology. Indeed, in 

the study area, the target species reaches the senescence phase after the other broadly 

covered species (e.g. Bromopsis erecta). The satellite images to perform the classification 

analysis were chosen taking into account the phenological stages of the B. genuense species 

in the central Apennines [37]. The phenological phases considered were: beginning of veg-

etative growth (Green up - 20 June 2019), flowering and fruiting (Maturity - 25 July 2019), 

beginning of leaf yellowing and full drying (Senescence - September 28, 2019) [54]. 

The ‘Level 1C’ (TOA – Top of Atmosphere reflectance) was initially chosen to obtain 

greater temporal coverage (compared to ‘Level 2A’ not yet available at the time of data 

acquisition) and to better choice of the images with low cloud percentage. Furthermore, 

the images were pre-processed (to obtain the ‘Level 2A’) by performing the atmospheric 

correction [55] with Sen2Cor [56] tool of the free software SNAP – Sentinel-2 Toolbox [57] 

provided by ESA. 
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Sen2Cor atmospheric correction algorithm relies on the APDA (Atmospheric Precorrected 

Differential Absorption) algorithm [58] to retrieve the Water Vapour content from the L1C 

image. This algorithm uses a ratio between band B8A and band B09. 

The S2 Level 2-A (BOA – Bottom Of Atmosphere reflectance) processing consist in two 

parts: Atmospheric Correction (S2AC) mentioned above and Scene Classification (SC) 

which we used to mask the limited clouds in the images. The SC algorithm allows to detect 

clouds, snow and cloud shadows and to generate a classification map, which consists of 4 

different classes for clouds (including cirrus), together with six different classifications: 

vegetation, soils/deserts, water, snow, shadows and cloud shadows. The algorithm is 

based on a series of threshold tests that use as input TOA reflectance from the S2 spectral 

bands [59]. 

To build the dataset for classification, 10 spectral bands (B2, B3, B4, B5, B6, B7, B8, B8A, 

B11, B12) were chosen for each analyzed image [52] by resampling and combining them 

into a single piled layer (raster stack). In addition to the multispectral bands, we also in-

cluded in the stack a Digital Elevation Model (provided by Abruzzo region: 

http://opendata.regione.abruzzo.it/content/modello-digitale-del-terreno-risoluzione-

10x10-metri) at 10 m per pixel and its derivative products such as Slope and Aspect. Fi-

nally, to obtain a more accurate classification, the NDVI (Normalized Difference Vegeta-

tion Index) [60,61] and a derivative product thereof, such as ‘Texture’ (Focal analysis) [62], 

were calculated for each analyzed image and added to the stacked raster. Focal analysis 

is one of the raster neighborhood analysis methods and is one of the cues that is used for 

visual classification and as additional information for automated classification. The 

method usually calculates the variability of pixel values in a certain neighborhood around 

a central pixel. The texture images obtained from the focal analysis provides a measure of 

the heterogeneity of the average (in our case) values of the pixels within a defined area of 

an image; it also provides a combination of desirable attributes for cover classes charac-

terization on a landscape scale [63]. 

2.4 Field data 

We carried out a data collection in the field and from other ancillary data (e.g. Catonica, 

et al. [64],Congedo, et al. [65],Copernicus [66]) to train the classifier and to validate the 

result of the classification process. Field data was collected using a GPS receiver ‘GPSMap 

60CSX’ (positional error <2 m). 

A random stratified sampling based on existing knowledge (land cover products) distrib-

uted over the entire studied area (mainly consisting by grasslands) was used, considering 

the altitudinal variability within the area, ranged from 1500 to 2000 m a.s.l. 

Since these data are used as training and validation data, we took care that all recorded 

data had accurate location and thematic information. Our sampling framework consid-

ered positional errors in classified images by ensuring that sample points are not close to 

the edge of a class boundary (presence/absence classes). 

The ground truth data was collected close the same date when the imagery used for the 

classification was acquired (2019-07), except for the image acquired in the late spring pe-

riod (2019-06-20) where it was not possible to realize the sampling. This was done to en-

sure conditions on the ground have not changed significantly. 

The samplings were made in homogeneous areas, so that no mixed pixel signal could 

interfere with the classification algorithm, including all the intra-class variability [62]. 

The presence sampled points were collected in a homogeneous patch of 100 m2, where B. 

genuese cover is higher than 90%. 

Moreover, the same number of absence points of the target species on grassland habitats, 

plus a limited number of absence points in the other different cover classes (e.g. forest, 

bare soil, scree, urbanized), were collected both directly and indirectly in the field and 

through the previously mentioned layers of existing geographic information. 
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Consistent with the size of the study area, 40-point occurrences of B. genuense were col-

lected. A total of 80 sample points were selected in the study area to create the training 

and accuracy assessment data sets. 

2.5 Classification Analysis by Machine learning  

To capture the extents of B. genuense in the study area, the Random Forest (RF) machine 

learning classifier [67] was used. RF is a machine learning algorithm that employs a bag-

ging (bootstrap aggregation) operation in which a certain number of trees (ntree) are con-

structed based on a random subset of samples derived from the training data. Each tree is 

independently grown to maximum size based on a bootstrap sample from the training 

dataset without any pruning, and each node is split using the best among a subset of input 

variables (mtry) [68]. 

The supervised RF algorithm was used to relate the target species to the satellite and an-

cillary data. RF was chosen as the preferred classification method as it has frequently 

demonstrated its skill for vegetation mapping using various typology of data [69,70] and 

is less sensitive than other machine learning classifiers to the quality of training samples 

and to overfitting [71]. 

The 'superClass' function within the RStoolbox package [72] in R environment [73] was 

used to perform the RF classification analysis.  

The Random Forest’s tuning has been optimized by setting the default number of trees 

(500) and mtry to 6 considering the variables used for the classification, according to the 

papers of Duro, et al. [74] and Belgiu and Drăguţ [71]. 

We performed a binary classification using the presence points of the target species as a 

reference class and the absences points as all other classes considering a two-class binary 

scenario (presence/absence of target species). These binary classifiers, however, require a 

complete and exhaustively labelled sample set for model training [75]. In particular, the 

training set must typically contain labelled samples of all cover types that occur in the 

imagery, which are then divided into presence and absence sample subsets. 

2.6 Accuracy Assessment 

One of the most important steps in a classification process is accuracy assessment. The 

aim of accuracy assessment is to quantitatively assess how effectively the pixels were sam-

pled into the correct cover classes. Considering the paper by Foody, et al. [76] we focused 

more on the class of interest (presence of B. genuense) so that even a small and inexpensive 

training dataset can be used to obtain the desired information. Considering the total ex-

tension of the study area (~ 9400 ha) we used a small training dataset. It is widely demon-

strated in the literature that even the use of a small training dataset relative to the study 

area size, can lead to excellent results [77-79]. For the accuracy assessment, we kept 80% 

of the data for training the model and the remaining 20% for validation. Performance tun-

ing and estimation were performed using random 10-folds cross-validation using the ‘su-

perClass’ function in RStoolbox. In addition, the Overall accuracy (OA), Kappa, Sensitiv-

ity and Specificity [80] were obtained through the same function. 

Since the model has no knowledge of the environments in which the classification is made, 

estimating the area to which a classification model can be reliably applied is required. To 

this end we used the method proposed by Meyer and Pebesma [81] which consists in the 

calculation of the 'Applicability Area' (AOA) which is defined as the area, for which, on 

average, the cross-validation error of the model is applied. To calculate the AOA, the 'dis-

similarity index' (DI) based on the minimum distance from the training data in the multi-

dimensional predictor space is required, with the predictors weighted by their respective 

importance in the model [82]. The AOA is derived by applying a threshold based on the 

DI of the training data in which the DI of the training data is calculated with respect to the 

cross-validation strategy used for training the model. The ‘CAST’ package [83] was used 

for the estimation of the AOA in the R environment. This function estimates the DI and 

the derived AOA of spatial prediction models by considering the distance of new data 
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(i.e. a Raster Stack of spatial predictors used in the models) in the predictor variable space 

to the data used for model training.  

The spatial association of the classified B. genuense patches were tested using the Local 

Indicators of Spatial Association (LISA) analysis. This analysis provides for each observa-

tion an indication of the extent of significant spatial clustering and the sum of LISAs for 

all observations can be considered as a global indicator of spatial association [84]. 

2.7 Conversion of plant associations into NATURA 2000 habitats 

The plant associations in the study area were extrapolated from ‘La vegetazione di Campo 

Imperatore (Gran Sasso d’Italia)’ [47]. Through an expert-based process, the plant associ-

ations have been converted into their respective habitats (N2k). The plant associations 

were transformed in N2k habitat according to the ‘Interpretation Manual of European 

Union Habitats - EUR28’ [2] and the ‘Interpretation Manual of Italian Habitats’ [85]. The 

complex vegetation systems like those of the sinkholes, that occur in small area, cannot be 

reported as one habitat type thus were named ‘Mosaic’. 

2.8 GIS analysis of the spread of B. genuense on habitats NATURA 2000 

To evaluate the spread of B. genuense on habitat N2k, we calculated the area of B. genu-

ense’s cover map obtained by classification analysis. All spatial processes and geographic 

analyses were managed through QGIS 3.4.13 [86]. The raster obtained from classification 

process has been polygonized and intersected with another vector layer of the N2k habi-

tats. This post-modelling analysis was performed to investigate the spatial relationship 

between the B. genuense and the N2k habitats. To assess how each habitat was affected by 

the spread of B. genuense, the cumulative contribution of the patches in each habitat and 

the differences between ‘realized’ cover with ‘expected’ cover was calculated. The realized 

cover is the real cover of the target species in each habitat while the expected cover is an 

equal repartition of B. genuense cover proportional to the area of each habitat, thus the 

target species results equally distributed among the habitats. The ‘expected’ cover in each 

habitat (Expected cover(i)) was calculated by using the following formula: 

 

𝐄𝐱𝐩𝐞𝐜𝐭𝐞𝐝 𝐂𝐨𝐯𝐞𝐫(𝐢) =
𝐀𝐫𝐞𝐚𝐇(𝐢) ∗  𝐓𝐨𝐭𝐀𝐫𝐞𝐚𝐁𝐫𝐚

𝐓𝐨𝐭𝐀𝐫𝐞𝐚
   

 

Where the AreaH(i) is the total area of each habitat, TotAreaBra is the total area covered 

by B. genuense and TotArea is the entire study area.  

Moreover, to investigate how the distribution of B. genuense is associated in the ecotones 

among habitats, ‘moving windows’ approach was used. The 'moving window' process 

consists of a window of a given size (the neighbourhood) that is moved across the image. 

It stops for each pixel and calculates a summary statistic for the neighbourhood and then 

moves on to the next pixel. In our case, we calculated the 'standard deviations' to identify 

the ecotones among the habitats. The presence/absence data of B. genuense was recorded 

in these ecotonal areas and compared with core areas of the habitats. To test if B. genuense 

is associated to the ecotones among Habitats, three different buffer area were used: 3x3, 

5x5 and 7x7 [62]. 

2.9 Topographic niche model 

Species distribution models (SDMs) were used to investigate the topographic drivers of 

the investigated species. They are a group of numerical tools that combine observations 

of species occurrence with environmental estimates [30]. 

The topographic variables calculated are elevation, eastness, northness, slope, topo-

graphic wetness index (TWI), roughness, terrain ruggedness index (TRI), topographic po-

sition index (TPI) and solar radiation. All these variables were extrapolated from digital 

elevation model (DEM) at 10 m per pixel, free available for the Abruzzo Region. The oc-

currences data were extrapolated from the RS classification. To avoid high spatial 
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autocorrelation, we reduced the presence point by topographic similarity. Through clus-

tering based on topography information of points, the occurrences were classified into 100 

classes and within each class was sampled the 5 % of points obtaining a total of 884 pres-

ence points. To assess the spatial autocorrelation among occurrences Moran’s test were 

performed in R studio using the ‘usdm’ package [87].  

Three sets of 1000 pseudo absences were randomly sampled in all the area where the clas-

sification does not identify the B. genuense occurrences. For the species distribution model 

were used 2 different algorithms: Generalized Linear Models (GLM; type = “quadratic”, 

interaction level = 2) and Generalized Boosting Model, also known as Boosted Regression 

Trees (BRT; number of trees = 10000, interaction depth = 3, cross-validation folds = 10). 

The choice of these techniques permitted to explore responses from different classes of 

models, ranging from more classical statistical techniques (GLMs) to machine learning-

oriented approaches (BRT) [31,88]. GLMs are based on parametric linear functions [89,90]. 

BRT combines the regression-tree and boosting algorithms to optimize predictive perfor-

mance from an ensemble of trees sequentially fitted focusing on residuals from the previ-

ous iterations [91]; this technique in general results in high discrimination performance 

and fit of accurate function [29]. The SDMs for the investigated species was performed 

using BIOMOD2 [92] and ECOSPAT [93]. 

 

3. Results 

 

                             3.1 Classification output and Accuracy assessment 

The coverage map of B. genuense (Figure 2), obtained through the RF classifier, 

showed a large spread of this species within the study site. The classification algorithm 

detected 776.98 ha of B. genuense area out of the 9402.84 ha total study area (8.26% of the 

total area).  

Before performing the classification process, we estimated the spatial areas for which 

the classification model should provide reliable predictions, through the calculation of the 

AOA. Forecasts outside the AOA (Appendix S2) were strongly limited in the North-West-

ern sector of study area. In the context of presence-absence, the best result obtained on the 

Campo Imperatore upland plain, provided values of overall accuracy (OA) of 90.91% with 

a Kappa of 80.53% (Tab.1). More data about the classification results were reported in 

Appendix S3 and in general, the RF classifier showed relatively consistent overall perfor-

mance at the study site. 

The analysis on spatial association of B. genuense shows as most of the patches have 

a high clustering value. Even though the general pattern is 'clustered', there are also some 

not clustered patches mainly distributed in the central and western parts of the study area 

(see Appendix S4). This section may be divided by subheadings. It should provide a con-

cise and precise description of the experimental results, their interpretation, as well as the 

experimental conclusions that can be drawn. 

 

3.2 Conversion of plant associations into Natura 2000 habitats 

As observed by Figure 3, the dominant vegetation cover in the study area is repre-

sented by high altitude grasslands and meadows (N2k habitats 6170, 6210*, 6230*).  

Based on Habitat N2k (Appendix S5) the plant associations, overlapped with B. genu-

ense distribution, were divided into 5 habitats. The 6170, 6210 e 6230 are grassland habi-

tats, two of them are priority (6210* e 6230*), one is for scree habitat (8210) and one for 

shrubs habitat (4060). 

 

3.3 Overlay analysis output 

Following the overlay analysis (Figure 3), B. genuense classified in the study area 

(8.26% of the total area) was found in 5 different types of habitats (Tab. 2). The differences 

between ‘realized’ and ‘expected’ cover of B. genuense in each habitat shows as the most 

affected by the spread of B. genuense is the 6210* (Semi-natural dry grasslands and 
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scrubland facies on calcareous substrates - Festuco-Brometalia - *important orchid sites) 

with 255 ha more than expected. Moreover, the 74.04% of total B. genuense distribution 

was detected within this habitat. On the other hands the less affected is the Alpine and 

subalpine calcareous grasslands (6170) with 3.45% of B. genuense cover. The other habitats 

(6230*, Mosaic and 8120) have slight differences between ‘expected’ and ‘realized’ cover. 

These habitats have shown a cumulative contribution of 5.17% in 6230* (Species-rich Nar-

dus grasslands, on siliceous substrates in mountain areas and submountain areas, in Con-

tinental Europe), 1.90% in ‘Mosaic’ (habitats 6170/6210*/6230*) and 0.48% in 8120 (Calcar-

eous rocky slopes with chasmophytic vegetation).  

The results obtained using the moving windows techniques identify the ecotonal 

area among habitats. Compared the B. genuense cover between the core and the ecotonal 

areas it was observed a slight difference (≈1.6 %). The three different moving windows 

size (3x3, 5x5, 7x7) give the similar results and in the core area the percentage of B. genu-

ense ranges from 7.1 % to 7.4 % while in the ecotonal areas ranges from 8.7 % to 8.9 %. 

 

3.4 Topographic model output 

Ensemble model to investigate the topographic driver of B. genuense distribution 

shows high accuracy with sensitivity higher than 95 and about 85 of specificity (Tab. 3).   

Six topographic variables with a Pearson correlation coefficient < 0.75 were selected 

[90,94]: elevation, eastness, northness, slope, topographic wetness index (TWI) and solar 

radiation (Figure 4). The main topographic drivers are elevation, slope, solar radiation 

and TWI in order of importance. Indeed B. genuense shows a strong preference of slight 

slope area with an elevation between 1500 and 2000 m a.s.l. Moreover, the target species 

prefers humid areas as highlighted by (TWI) that is the most commonly topographic index 

used, to describes the tendency of a cell to accumulate water [95]. Moreover, this species 

shows a slight preference for areas with high solar radiation. 

On the other hands the distribution seems not affected by aspect, indeed both east-

ness and northness shows flat response curves. 

 

4. Discussion 

One of the aims of the study was to distinguish the grasslands dominated by B. genuense 

from other types of vegetation throughout a binary classifiers approach. We used a small 

training and validation samples and a multi-variable approach using optical and ancillary 

data (NDVI, DEM, Slope, Aspect, Texture). Furthermore, to distinguish the target species 

from other plant coverings, we observed the phenological variations of B. genuense by us-

ing multitemporal satellite data. 

The result of the classification allowed us to distinguish the species with overall accuracy 

values > 90%, in agreement with other studies conducted on widely spread grasslands 

and invasive species, where the accuracy values achieved ranged from 70 to 90% [96-99]. 

Our results suggest as binary classifier approach (presence/absence) well perform also 

with small training samples, in accordance with recent literature [77-79]. 

In the study area, some plants species, such as Bromopsis erecta and Festuca circummediter-

ranea, could alter the measure of the spectral signature of B. genuense, contributing to the 

overall classification error. Any overestimation of the distribution of B. genuense in some 

habitats may be due to the copresence of plant species with similar phenology and/or en-

vironmental needs that cause spectral mixing [100]. Despite this, the high accuracy values 

of the RF classification may be due to the decrease in abundance of early and mid-flower-

ing species, as the invasion of B. genuense decreases the heterogeneity of the vegetation 

from the phenological point of view [101]. Another factor that could explain the high per-

formance of the model may be due to the physiological peculiarities (silica-rich and hairy 

leaves) [102] of the target species which allow its overabundance compared to other spe-

cies as it is not palatable by domestic herbivores (sheep and cattle) in understocking con-

ditions [103]. Through the sampling in homogeneous areas mainly dominated by the tar-

get species, the multitemporal analysis and efforts concentration on two cover classes, we 

have limited the spectral mixing as much as possible. 
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Furthermore, it is well known that the spatial resolution of the images must be carefully 

chosen with respect to the spatial scale of the analysed object [104]. Notwithstanding, the 

S2 data with a spatial resolution of 10 m per pixel were able to map the target species. 

Through a careful ground-based survey campaign at the same time as the acquisition of 

images by satellite sensors, we have shown how maps deriving from S2 can also be a 

powerful source of information, as confirmed by Feilhauer, et al. [105].  

The topographic model suggests as a high-resolution digital elevation model strongly im-

prove knowledge of plant species distribution [106]. The results obtained are in accord-

ance with the ecology of B. genuense, indeed a preference of humid areas (high value of 

TWI) with high value of solar radiation suggest the competitiveness of this species 

[36,107]. Topography can be considered as an important determinant of distribution pat-

terns in dry grasslands and controls soil moisture and pH. Thus, TWI is an excellent can-

didate to be a priority driver of local plant diversity patterns in grasslands [108]. These 

findings suggest the key role of hydrology in species distribution [109,110]. Moreover, the 

effect of topography on pH distribution could explain the strong effect of TWI in shaping 

B. genuense. Indeed, this species shows a small pH interval ranged from 6.17 and 7.2 [107]. 

However, the direct effect of solar radiation on local temperatures [111,112] may also con-

tribute to its effects on local vegetation patterns. Finally, the elevation and slope variables 

suggest as this species is limited by high elevation and high slope probably due to the 

combination of environmental constraints: decrease of soil depth, low temperature, and 

winter stress [37]. 

The overlay analysis on N2k habitats identify the most occupied habitat by B. genuense, 

this result can be important to address management policy and conservation strategies for 

nature conservation.  Concerning the relationship between species and N2k habitats, the 

most suitable habitat for B. genuense spread are the semi-natural grasslands referred to 

Festuco-Brometalia (habitat 6210*) which are one of the most threatened habitats in Europe 

[5,113]. The strong diffusion of B. genuese on the habitat 6210* is probably due to the vari-

ation in the livestock types (from sheep to cows/horses) and/or to the reduction of exten-

sive grazing in the study area. The increase of Brachypodium (B. pinnatum, B. genuense, B. 

rupestre) distribution cause reduction in grasslands biodiversity [35,37,101,114,115]. In-

deed, as shown in a recent study [116] when B. genuense and/or B. rupestre becomes dom-

inant (cover > 80%) a strong reduction in biodiversity was observed. Moreover, as said 

above, many plant communities in the study area constitute habitats of interest for biodi-

versity conservation and hosting several plants of high naturalistic value that could be 

threatened by B. genuense spread. 

Other habitats, such as 4060 and 6230*, have shown high B. genuense percentage. The high 

values in these habitats can be associated both to specific topographic characteristics and 

the limited area occupied by these habitats. Indeed, the differences among realized and 

expected cover is less than 20 ha. The 8120 and 6170 habitats have shown the low percent-

age of B. genuense cover; these results could be explained by the altitudinal distribution of 

these habitats that go up to 2000 m a.s.l where the investigated species decrease its suita-

bility. 

5. Conclusions 

RS can be considered an effective approach to assess the distribution and spread of dom-

inant plant species such as B. genuense that can affect habitat biodiversity. Our results 

show that the binary classification integrated with SDMs is affordable and reliable method 

for characterize both distribution and topographic niche of B. genuense. Indeed, the occur-

rences data obtained from RS classification can be used to calibrate niche models, useful 

for studying the drivers underlying the species distribution.  

Our results, on B. genuense, highlight as some variables such as elevation and slope are the 

main distribution drivers followed by solar radiation and TWI.  

The overlay analysis between B. genuense coverage and N2k habitats shows that the target 

species spreads across all habitats with a strong preference for 6210*. The monitoring of 
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potentially invasive species is fundamental for the management of the N2k habitats, es-

pecially in the protected areas where the conservation of biodiversity is one of the priority 

goals. 

In this sense, further studies, using high resolution RS data and multitemporal diachronic 

analysis could strongly improve the knowledge on the spread of B. genuense. Moreover, 

the approach presented in this study may be extended to larger areas and to other plant 

community for a more effective habitats management.  

 

Supplementary Materials:  

Appendix S1. Satellite images used for the analysis. 

Appendix S2. Results of the ‘Area of Applicability’ (AOA) analysis. 

Appendix S3. Accuracy statistics. 

Appendix S4. Maps of spatial aggregation using LISA. 

Appendix S5. Transformation of plant association into Habitats Natura 2000. 

 

Author Contributions: Conceptualization, WDS and MDM; formal analysis, WDS and MDM; all 

the authors contribute to field investigation; all authors writing original draft preparation. All au-

thors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: All the RS data are free available, presence absence points used to 

calibrate the RF classification are available from the corresponding author on reasonable request. 

Acknowledgments: In this section, you can acknowledge any support given which is not covered 

by the author contribution or funding sections. This may include administrative and technical sup-

port, or donations in kind (e.g., materials used for experiments). 

Conflicts of Interest: The authors declare no conflict of interest. 

 

 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2021                   



 

References 

 

1. Biondi, E.; Allegrezza, M.; Zuccarello, V. Syntaxonomic revision of the Apennine grasslands belonging to Brometalia erecti, 

and an analysis of their relationships with the xerophilous vegetation of Rosmarinetea officinalis (Italy). Phytocoenologia 2005, 

35, 129-164. 

2. European Commission, D. Interpretation manual of European Union habitats–EUR28. Eur Comm, DG Environ 2013, 144. 

3. Millennium Ecosystem Assessment. Ecosystems and human well-being; Island press Washington, DC:: 2005; Vol. 5. 

4. Köhler, B.; Gigon, A.; Edwards, P.J.; Krüsi, B.; Langenauer, R.; Lüscher, A.; Ryser, P. Changes in the species composition 

and conservation value of limestone grasslands in Northern Switzerland after 22 years of contrasting managements. 

Perspectives in Plant Ecology, Evolution and Systematics 2005, 7, 51-67. 

5. Rusina, S.; Kuzemko, A. EDGG cooperation on syntaxonomy and biodiversity of Festuco-Brometea communities in 

Transylvania (Romania): report and pre-liminary results. Bull. Eur. Dry Grassl. Group 2009, 4, 13-19. 

6. Janssen, J.; Rodwell, J.; Criado, M. European red list of habitats. Part 2. Terrestrial and freshwater habitats. European Union. 

2016. 

7. Brunetti, M.; Magoga, G.; Iannella, M.; Biondi, M.; Montagna, M. Phylogeography and species distribution modelling of 

Cryptocephalus barii (Coleoptera: Chrysomelidae): is this alpine endemic species close to extinction? ZooKeys 2019, 856, 3. 

8. Console, G.; Iannella, M.; Cerasoli, F.; D'Alessandro, P.; Biondi, M. A European perspective of the conservation status of the 

threatened meadow viper Vipera ursinii (BONAPARTE, 1835)(Reptilia, Viperidae). Wildlife Biology 2020, 2020. 

9. Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.; Tarantino, C.; Adamo, M.; Mairota, P. Remote sensing for 

conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. 

Ecological Indicators 2013, 33, 45-59. 

10. Wang, R.; Gamon, J.A. Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment 2019, 231, 111218. 

11. De Simone, W.; Di Musciano, M.; Di Cecco, V.; Ferella, G.; Frattaroli, A.R. The potentiality of Sentinel-2 to assess the effect 

of fire events on Mediterranean mountain vegetation. Plant Sociology 2020, 57, 11-22, doi:10.3897/pls2020571/02. 

12. Shahabi, H.; Shirzadi, A.; Ghaderi, K.; Omidvar, E.; Al-Ansari, N.; Clague, J.J.; Geertsema, M.; Khosravi, K.; Amini, A.; 

Bahrami, S. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning 

Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sensing 2020, 12, 266. 

13. Liu, Q.; Zhang, S.; Zhang, H.; Bai, Y.; Zhang, J. Monitoring drought using composite drought indices based on remote 

sensing. Science of The Total Environment 2020, 711, 134585. 

14. Iannella, M.; De Simone, W.; D’Alessandro, P.; Console, G.; Biondi, M. Investigating the Current and Future Co-Occurrence 

of Ambrosia artemisiifolia and Ophraella communa in Europe through Ecological Modelling and Remote Sensing Data 

Analysis. International journal of environmental research and public health 2019, 16, 3416. 

15. Iannella, M.; D'Alessandro, P.; Longo, S.; Biondi, M. New records and potential distribution by Ecological Niche Modelling 

of the adventive leaf beetle Monoxia obesula Blake in the Mediterranean area (Coleoptera, Chrysomelidae, Galerucinae). 

Bulletin of Insectology 2019, 72, 135-142. 

16. Geldmann, J.; Joppa, L.N.; Burgess, N.D. Mapping change in human pressure globally on land and within protected areas. 

Conservation Biology 2014, 28, 1604-1616. 

17. Iannella, M.; Liberatore, L.; Biondi, M. The effects of a sudden urbanization on micromammal communities: a case study of 

post-earthquake L’Aquila (Abruzzi Region, Italy). Italian Journal of Zoology 2016, 83, 255-262. 

18. De Simone, W.; Iannella, M.; D’Alessandro, P.; Biondi, M. Assessing influence in biofuel production and ecosystem services 

when environmental changes affect plant–pest relationships. GCB Bioenergy 2020, 12, 864-877, doi:10.1111/gcbb.12727. 

19. Sawaya, K.E.; Olmanson, L.G.; Heinert, N.J.; Brezonik, P.L.; Bauer, M.E. Extending satellite remote sensing to local scales: 

land and water resource monitoring using high-resolution imagery. Remote sensing of Environment 2003, 88, 144-156. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2021                   



 

20. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; 

Loveland, T.R., et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850-853, 

doi:10.1126/science.1244693. 

21. Neumann, C.; Weiss, G.; Schmidtlein, S.; Itzerott, S.; Lausch, A.; Doktor, D.; Brell, M. Gradient-based assessment of habitat 

quality for spectral ecosystem monitoring. Remote Sensing 2015, 7, 2871-2898. 

22. Guerini Filho, M.; Kuplich, T.M.; Quadros, F.L.D. Estimating natural grassland biomass by vegetation indices using Sentinel 

2 remote sensing data. International Journal of Remote Sensing 2020, 41, 2861-2876. 

23. Knick, S.T.; Rotenberry, J.T.; Zarriello, T.J. Supervised classification of Landsat Thematic Mapper imagery in a semi-arid 

rangeland by nonparametric discriminant analysis. Photogrammetric Engineering and Remote Sensing 1997, 63, 79-86. 

24. Zha, Y.; Gao, J.; Ni, S.; Liu, Y.; Jiang, J.; Wei, Y. A spectral reflectance-based approach to quantification of grassland cover 

from Landsat TM imagery. Remote Sensing of Environment 2003, 87, 371-375. 

25. Lehnert, L.W.; Meyer, H.; Wang, Y.; Miehe, G.; Thies, B.; Reudenbach, C.; Bendix, J. Retrieval of grassland plant coverage 

on the Tibetan Plateau based on a multi-scale, multi-sensor and multi-method approach. Remote sensing of Environment 2015, 

164, 197-207. 

26. Li, Y.; Zhang, H.; Shen, Q. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. 

Remote Sensing 2017, 9, 67, doi:10.3390/rs9010067. 

27. Griffiths, P.; Nendel, C.; Pickert, J.; Hostert, P. Towards national-scale characterization of grassland use intensity from 

integrated Sentinel-2 and Landsat time series. Remote Sensing of Environment 2020, 238, 111124. 

28. Fauvel, M.; Lopes, M.; Dubo, T.; Rivers-Moore, J.; Frison, P.-L.; Gross, N.; Ouin, A. Prediction of plant diversity in grasslands 

using Sentinel-1 and-2 satellite image time series. Remote Sensing of Environment 2020, 237, 111536. 

29. Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat suitability and distribution models: with applications in R; Cambridge 

University Press: 2017. 

30. Elith, J.; Leathwick, J.R. Species distribution models: ecological explanation and prediction across space and time. Annual 

review of ecology, evolution, and systematics 2009, 40, 677-697. 

31. Di Musciano, M.; Di Cecco, V.; Bartolucci, F.; Conti, F.; Frattaroli, A.R.; Di Martino, L. Dispersal ability of threatened species 

affects future distributions. Plant Ecology 2020, 1-17. 

32. Reddy, S.; Dávalos, L.M. Geographical sampling bias and its implications for conservation priorities in Africa. Journal of 

Biogeography 2003, 30, 1719-1727. 

33. Iannella, M.; D'Alessandro, P.; Biondi, M. Entomological knowledge in Madagascar by GBIF datasets: estimates on the 

coverage and possible biases (Insecta). Fragmenta entomologica 2019, 51, 1-10. 

34. Bonanomi, G.; Caporaso, S.; Allegrezza, M. Short-term effects of nitrogen enrichment, litter removal and cutting on a 

Mediterranean grassland. Acta Oecologica 2006, 30, 419-425. 

35. Bonanomi, G.; Caporaso, S.; Allegrezza, M. Effects of nitrogen enrichment, plant litter removal and cutting on a species-rich 

Mediterranean calcareous grassland. Plant Biosystems 2009, 143, 443-455. 

36. Allegrezza, M.; Ballelli, S.; Ciucci, V.; Mentoni, M.; Pesaresi, S. The vegetation and the plant landscape of Monte Sassotetto 

(Sibillini Mountains, Central Apennines). Plant Sociol 2014, 51, 59-87. 

37. Catorci, A.; Cesaretti, S.; Gatti, R.; Ottaviani, G. Abiotic and biotic changes due to spread of Brachypodium genuense (DC.) 

Roem. & Schult. in sub-Mediterranean meadows. Community Ecology 2011, 12, 117-125. 

38. Tardella, F.M.; Bricca, A.; Piermarteri, K.; Postiglione, N.; Catorci, A. Context-dependent variation of SLA and plant height 

of a dominant, invasive tall grass (Brachypodium genuense) in sub-Mediterranean grasslands. Flora 2017, 229, 116-123. 

39. Buckland, S.; Thompson, K.; Hodgson, J.; Grime, J. Grassland Invasions: Effects of Manipulations of Climate and 

Management. Journal of Applied Ecology 2001, 301-309. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2021                   



 

40. Kosić, I.V.; Tardella, F.M.; Grbeša, D.; Škvorc, Ž.; Catorci, A. Effects of abandonment on the functional composition and 

forage nutritive value of a North Adriatic dry grassland community (Ćićarija, Croatia). Applied Ecology and Environmental 

Research 2014, 12, 285. 

41. Biondi, E.; Ballelli, S.; Allegrezza, M.; Taffetani, F.; Frattaroli, A.R.; Guitian, J.; Zuccarello, V. La vegetazione di Campo 

Imperatore (Gran Sasso d’Italia). Braun-Blanquetia 1999, 16, 53-115. 

42. Conti, F.; Bartolucci, F. The vascular flora of Gran Sasso and Monti della Laga National Park (Central Italy). Phytotaxa 2016, 

256, 1-119. 

43. Cervellini, M.; Zannini, P.; Di Musciano, M.; Fattorini, S.; Jiménez-Alfaro, B.; Rocchini, D.; Field, R.; Vetaas, O.R.; Irl, S.D.; 

Beierkuhnlein, C. A grid-based map for the Biogeographical Regions of Europe. Biodiversity data journal 2020, 8. 

44. Calandra, R. I suoli di "Campo Imperatore" (Gran Sasso d'Italia). Braun-Blanquetia 1999, 16, 21-32. 

45. Rivas-Martínez, S.; Rivas-Sáenz, S.; Penas-Merino, A. Worldwide bioclimatic classification system, Global Geobot., 1, 1–638. 

2011. 

46. Baldoni, M.; Biondi, E.; Frattaroli, A. Caratterizzazione bioclimatica del Gran Sasso d’Italia. Braun-Blanquetia 1999, 16, 21. 

47. Biondi, E.; Ballelli, S.; Allegrezza, M.; Taffetani, F.; Frattaroli, A.; Guitian, J.; Zuccarello, V. La vegetazione di Campo 

Imperatore (Gran Sasso d'Italia). In “Ricerche di Geobotanica ed Ecologia Vegetale di Campo Imperatore (Gran Sasso 

d’Italia). Braun-Blanquetia 1999, 16, 53-119. 

48. Gratani, L.; Rossi, A.; Crescente, M.; Frattaroli, A. Ecologia dei pascoli di Campo Imperatore (Gran Sasso d'Italia) e carta 

della biomassa vegetale. In “Ricerche di Geobotanica ed Ecologia Vegetale di Campo Imperatore (Gran Sasso d’Italia). 

Braun-Blanquetia 1999, 16, 227-247. 

49. Malatesta, L.; Tardella, F.M.; Tavoloni, M.; Postiglione, N.; Piermarteri, K.; Catorci, A. Land use change in the high mountain 

belts of the central Apennines led to marked changes of the grassland mosaic. Applied Vegetation Science 2019, 22, 243-255. 

50. Catorci, A.; Antolini, E.; Tardella, F.M.; Scocco, P. Assessment of interaction between sheep and poorly palatable grass: a 

key tool for grassland management and restoration. Journal of plant interactions 2014, 9, 112-121. 

51. Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats 

using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sensing of Environment 2018, 216, 345-354. 

52. Rapinel, S.; Mony, C.; Lecoq, L.; Clement, B.; Thomas, A.; Hubert-Moy, L. Evaluation of Sentinel-2 time-series for mapping 

floodplain grassland plant communities. Remote sensing of environment 2019, 223, 115-129. 

53. Hennessy, A.; Clarke, K.; Lewis, M. Hyperspectral Classification of Plants: A Review of Waveband Selection Generalisability. 

Remote Sensing 2020, 12, 113. 

54. Lim, C.H.; An, J.H.; Jung, S.H.; Nam, G.B.; Cho, Y.C.; Kim, N.S.; Lee, C.S. Ecological consideration for several methodologies 

to diagnose vegetation phenology. Ecological research 2018, 33, 363-377. 

55. Szantoi, Z.; Strobl, P. Copernicus Sentinel-2 Calibration and Validation. European Journal of Remote Sensing 2019, 52, 253-255. 

56. Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 sen2cor: 

L2a processor for users. In Proceedings of Proceedings of the Living Planet Symposium, Prague, Czech Republic; pp. 9-13. 

57. Gascon, F.; Ramoino, F. Sentinel-2 data exploitation with ESA's Sentinel-2 Toolbox. EGUGA 2017, 19548. 

58. Schläpfer, D.; Borel, C.C.; Keller, J.; Itten, K.I. Atmospheric precorrected differential absorption technique to retrieve 

columnar water vapor. Remote Sensing of Environment 1998, 65, 353-366. 

59. Main-Knorn, M.; Pflug, B.; Debaecker, V.; Louis, J. Calibration and validation plan for the l2a processor and products of the 

Sentinel-2 mission. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 2015. 

60. Rouse, J.W.H., R.H.; Schell, J.A.; Deering, D.W.; and Harlan, J.C.  . Monitoring the vernal advancement and retrogradation 

(greenwave effect) of natural vegetation. NASA/GSFC type 111 Final Report , Greenbelt, MD 1974. 

61. Viana-Soto, A.; Aguado, I.; Martínez, S. Assessment of Post-Fire Vegetation Recovery Using Fire Severity and Geographical 

Data in the Mediterranean Region (Spain). Environments 2017, 4, 90, doi:10.3390/environments4040090. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2021                   



 

62. Wegmann, M.; Leutner, B.; Dech, S. Remote sensing and GIS for ecologists: using open source software; Pelagic Publishing Ltd: 

2016. 

63. Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image texture as a remotely sensed measure of vegetation structure. 

Remote Sensing of Environment 2012, 121, 516-526. 

64. Catonica, C.; Tinti, D.; De Bonis, L.; Di Santo, D.; Calzolaio, A.; De Paulis, S. CARTA DELLA NATURA PER LA 

ZONAZIONE DEL PIANO DEL PARCO NAZIONALE DEL GRAN SASSO E MONTI DELLA LAGA. 2015. 

65. Congedo, L.; Sallustio, L.; Munafò, M.; Ottaviano, M.; Tonti, D.; Marchetti, M. Copernicus high-resolution layers for land 

cover classification in Italy. Journal of Maps 2016, 12, 1195-1205. 

66. Copernicus, L.M.S. Corine Land Cover 2018. Availabe online: https://www.eea.europa.eu/data-and-maps/data/copernicus-

land-monitoring-service-corine#tab-figures-produced (accessed on  

67. Breiman, L. Random forests. Machine learning 2001, 45, 5-32. 

68. Xiong, J.; Thenkabail, P.; Tilton, J.; Gumma, M.; Teluguntla, P.; Oliphant, A.; Congalton, R.; Yadav, K.; Gorelick, N. Nominal 

30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-

2 and Landsat-8 Data on Google Earth Engine. Remote Sensing 2017, 9, 1065. 

69. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a 

random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing 2012, 67, 93-104. 

70. Barrett, B.; Raab, C.; Cawkwell, F.; Green, S. Upland vegetation mapping using Random Forests with optical and radar 

satellite data. Remote sensing in ecology and conservation 2016, 2, 212-231. 

71. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of 

Photogrammetry and Remote Sensing 2016, 114, 24-31. 

72. Leutner, B.; Horning, N.; Schwalb-Willmann, J.; Hijmans, R. RStoolbox: tools for remote sensing data analysis. R package 

version 0.1 2017, 8. 

73. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria. URL http://www.R-project.org/ 2016. 

74. Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine 

learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote sensing of 

environment 2012, 118, 259-272. 

75. Muñoz-Marí, J.; Bruzzone, L.; Camps-Valls, G. A support vector domain description approach to supervised classification 

of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing 2007, 45, 2683-2692. 

76. Foody, G.M.; Mathur, A.; Sanchez-Hernandez, C.; Boyd, D.S. Training set size requirements for the classification of a specific 

class. Remote Sensing of Environment 2006, 104, 1-14. 

77. Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land 

classification with Landsat thematic mapper imagery. Remote sensing 2014, 6, 964-983. 

78. Stenzel, S.; Fassnacht, F.E.; Mack, B.; Schmidtlein, S. Identification of high nature value grassland with remote sensing and 

minimal field data. Ecological indicators 2017, 74, 28-38. 

79. Grabska, E.; Hawryło, P.; Socha, J. Continuous Detection of Small-Scale Changes in Scots Pine Dominated Stands Using 

Dense Sentinel-2 Time Series. Remote Sensing 2020, 12, 1298. 

80. Congalton, R.G.; Green, K. Assessing the accuracy of remotely sensed data: principles and practices; CRC press: 2019. 

81. Meyer, H.; Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. 

arXiv preprint arXiv:2005.07939 2020. 

82. Meyer, H.; Reudenbach, C.; Wöllauer, S.; Nauss, T. Importance of spatial predictor variable selection in machine learning 

applications–Moving from data reproduction to spatial prediction. Ecological Modelling 2019, 411, 108815. 

83. Meyer, H.; Reudenbach, C.; Ludwig, M.; Nauss, T. CAST:’caret’Applications for Spatial-Temporal Models. R package version... 

URL: https://CRAN. R-project. org/package= CAST 2018. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2021                   



 

84. Anselin, L. Local indicators of spatial association—LISA. Geographical analysis 1995, 27, 93-115. 

85. Biondi, E.; Blasi, C.; Burrascano, S.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Galdenzi, D.; Gigante, D.; Lasen, C.; Spampinato, 

G. Italian interpretation manual of the 92/43/EEC Directive Habitats. Ministero dell’Ambiente e della Tutela del Territorio e del 

Mare, Roma 2009. 

86. QGIS Development Team. QGIS geographic information system. Open source geospatial Foundation project 2016. 

87. Naimi, B.; Hamm, N.A.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species 

distribution modelling? Ecography 2014, 37, 191-203. 

88. Iannella, M.; Cerasoli, F.; D’Alessandro, P.; Console, G.; Biondi, M. Coupling GIS spatial analysis and Ensemble Niche 

Modelling to investigate climate change-related threats to the Sicilian pond turtle Emys trinacris, an endangered species from 

the Mediterranean. PeerJ 2018, 6, e4969. 

89. Leathwick, J.R.; Rowe, D.; Richardson, J.; Elith, J.; Hastie, T. Using multivariate adaptive regression splines to predict the 

distributions of New Zealand's freshwater diadromous fish. Freshwater Biology 2005, 50, 2034-2052. 

90. Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; 

Lehmann, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129-151. 

91. Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. Journal of Animal Ecology 2008, 77, 802-813. 

92. Thuiller, W.; Georges, D.; Engler, R.; Breiner, F.; Georges, M.D.; Thuiller, C.W. Package ‘biomod2’. 2016. 

93. Di Cola, V.; Broennimann, O.; Petitpierre, B.; Breiner, F.T.; D'Amen, M.; Randin, C.; Engler, R.; Pottier, J.; Pio, D.; Dubuis, A. 

ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 2017, 40, 774-

787. 

94. Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J. 

Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 

27-46. 

95. Mattivi, P.; Franci, F.; Lambertini, A.; Bitelli, G. TWI computation: a comparison of different open source GISs. Open 

Geospatial Data, Software and Standards 2019, 4, 1-12. 

96. Peterson, E.B. Mapping percent-cover of the invasive species Bromus tectorum (cheatgrass) over a large portion of Nevada 

from satellite imagery. Report for the US Fish and Wildlife Service, Nevada State Office, Reno, by the Nevada Natural Heritage 

Program, Carson City 2003. 

97. Wang, A.; Chen, J.; Jing, C.; Ye, G.; Wu, J.; Huang, Z.; Zhou, C. Monitoring the invasion of Spartina alterniflora from 1993 

to 2014 with Landsat TM and SPOT 6 satellite data in Yueqing Bay, China. PLoS One 2015, 10, e0135538. 

98. Kganyago, M.; Odindi, J.; Adjorlolo, C.; Mhangara, P. Evaluating the capability of Landsat 8 OLI and SPOT 6 for 

discriminating invasive alien species in the African Savanna landscape. International journal of applied earth observation and 

geoinformation 2018, 67, 10-19. 

99. Tian, Y.; Jia, M.; Wang, Z.; Mao, D.; Du, B.; Wang, C. Monitoring Invasion Process of Spartina alterniflora by Seasonal 

Sentinel-2 Imagery and an Object-Based Random Forest Classification. Remote Sensing 2020, 12, 1383. 

100. Elkind, K.; Sankey, T.T.; Munson, S.M.; Aslan, C.E. Invasive buffelgrass detection using high-resolution satellite and UAV 

imagery on Google Earth Engine. Remote Sensing in Ecology and Conservation 2019, 5, 318-331. 

101. Corazza, M.; Tardella, F.M.; Ferrari, C.; Catorci, A. Tall Grass Invasion After Grassland Abandonment Influences the 

Availability of Palatable Plants for Wild Herbivores: Insight into the Conservation of the Apennine Chamois Rupicapra 

pyrenaicaornata. Environmental management 2016, 57, 1247-1261. 

102. Catorci, A.; Cesaretti, S.; Tardella, F. Effect of tall-grass invasion on the flowering-related functional pattern of 

submediterranean hay-meadows. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 2014, 148, 

1127-1137. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2021                   



 

103. Catorci, A.; Ottaviani, G.; Kosić, I.V.; Cesaretti, S. Effect of spatial and temporal patterns of stress and disturbance intensities 

in a sub-Mediterranean grassland. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 2012, 146, 

352-367. 

104. Nagendra, H. Using remote sensing to assess biodiversity. International journal of remote sensing 2001, 22, 2377-2400. 

105. Feilhauer, H.; Dahlke, C.; Doktor, D.; Lausch, A.; Schmidtlein, S.; Schulz, G.; Stenzel, S. Mapping the local variability of 

Natura 2000 habitats with remote sensing. Applied vegetation science 2014, 17, 765-779. 

106. Lassueur, T.; Joost, S.; Randin, C.F. Very high resolution digital elevation models: do they improve models of plant species 

distribution? Ecological Modelling 2006, 198, 139-153. 

107. Zuccarello, V.; Biondi, E.; Allegrezza, M.; R., C. Valenza ecologica di specie e di associazioni prative e modelli di 

distribuzione lungo gradienti sulla base della teoria degli insiemi sfocati (Fuzzy Set Theory). Braun-Blanquetia 1999, 16, 121-

225. 

108. Moeslund, J.E.; Arge, L.; Bøcher, P.K.; Dalgaard, T.; Ejrnæs, R.; Odgaard, M.V.; Svenning, J.-C. Topographically controlled 

soil moisture drives plant diversity patterns within grasslands. Biodiversity and conservation 2013, 22, 2151-2166. 

109. Pickett, S.; Bazzaz, F. Organization of an assemblage of early successional species on a soil moisture gradient. Ecology 1978, 

59, 1248-1255. 

110. Buri, A.; Cianfrani, C.; Pradervand, J.-N.; Guisan, A. Predicting plant distribution in an heterogeneous Alpine landscape: 

does soil matter? In Proceedings of EGU General Assembly Conference Abstracts; p. 12364. 

111. Bennie, J.; Huntley, B.; Wiltshire, A.; Hill, M.O.; Baxter, R. Slope, aspect and climate: spatially explicit and implicit models 

of topographic microclimate in chalk grassland. Ecological modelling 2008, 216, 47-59. 

112. Potter, K.A.; Arthur Woods, H.; Pincebourde, S. Microclimatic challenges in global change biology. Global change biology 

2013, 19, 2932-2939. 

113. Dengler, J. Zwischen Estland und Portugal–Gemeinsamkeiten und Unterschiede der Phytodiversitätsmuster europäischer 

Trockenrasen. Tuexenia 2005, 25, 387-405. 

114. Galiè, M.; Casavecchia, S.; Galdenzi, D.; Gasparri, R.; Soriano, P.; Estrelles, E.; Biondi, E. Seed germination behavior of two 

Brachypodium species with a key role in the improvement of marginal areas. Plant Sociol 2013, 50, 91-107. 

115. Bricca, A.; Tardella, F.M.; Tolu, F.; Goia, I.; Ferrara, A.; Catorci, A. Disentangling the Effects of Disturbance from Those of 

Dominant Tall Grass Features in Driving the Functional Variation of Restored Grassland in a Sub-Mediterranean Context. 

Diversity 2020, 12, 11. 

116. Allegrezza, M.; Biondi, E.; Ballelli, S.; Tesei, G.; Ottaviani, C.; Zitti, S. Brachypodium rupestre (Host) Roem. & Schult. 

herbaceous communities of heliophilous edge in the Trifolio medii-Geranietea sanguinei Müller 1962 class. Plant Sociol 2016, 

53, 59-76. 

 

 

 

 

 

 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2021                   



 

Tables 

 

RF classification 

Overall accuracy (OA) 0.9091 

Sensitivity 1.0000 

Specificity 0.8667 

Kappa 0.8053 

 

Tab. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 2 

 

 

 

 

 

 

 

 

Tab. 3 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

HABITAT 
Habitat 

(ha) 

B. genuense 

(ha) 
% B. genuense 

Realized cover -

Expected cover 

(ha) 

Cumulative 

contribution of 

B. genuense % 

4060 197.62 30.61 15.49 14.28 3.93 

6170 3254.98 112.34 3.45 -156.52 14.45 

8120 721.11 3.72 0.51 -55.84 0.48 

*6210 3874.06 575.3 14.85 255.30 74.04 

*6230 291.39 40.21 13.8 16.14 5.17 

Mosaic 1063.67 14.79 1.39 -73.07 1.90 

      

TOTAL 9402.84 776.98 8.26   

 Sensitivity Specificity 

KAPPA 97.541 85.053 

TSS 97.600 85.003 

ROC 97.600 85.003 
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Table captions 

Tab. 1 Measurements of Overall accuracy (OA), Sensitivity, Specificity and Kappa against RF classification. 

 

Tab. 2 Results from overlay analysis, total hectares of each habitat; hectares of Brachypodium genuense; the relative per-

centage; the differences between realized cover and expected cover, negative values indicate that B. genuense is less than 

what expected (8.26% in each habitat) while positive value indicate a higher cover compared to the expected ones; the 

percentage of B. genuense patches in each habitat compared to the total hectares covered by the species. 

 

Tab. 3 Results of the topographic niche model. Measures of sensitivity and specificity (Kappa, TSS, ROC).  
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Figure captions 
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Figure 1. a) Large scale framework. b) Regional scale framework: digital elevation model of Abruzzo region. c) Local 

scale framework: views of the area’s morphology. The study area located on the Gran Sasso and Monti of Laga National 

Park (Central Apennine, Abruzzo, Italy), are marked in light blue in all panels.  

 

Figure 2 The cover map for Brachypodium genuense in Campo Imperatore showing this grass in light green. The 

background image is a false color image by Sentinel-2 (NIR, Red, Green) highlights the most active vegetation at the 

date of acquisition (25 July 2019). The study area is marked in light blue. In the upper right part, there is the target 

species. 

 

Figure 3 Distribution of Brachypodium genuense on habitat map (Natura 2000) obtained by the expert-based conversion 

process (see Materials and Methods). The numeric codes of the habitats in the legend correspond to: Alpine and Boreal 

heaths (4060), Alpine and subalpine calcareous grasslands (6170), Semi-natural dry grasslands and scrubland facies on 

calcareous substrates (Festuco-Brometalia) (* important orchid sites) (6210*), Species-rich Nardus grasslands, on siliceous 

substrates in mountain areas and submountain areas, in Continental Europe (6230*) and Calcareous rocky slopes with 

chasmophytic vegetation (8210). The pie chart (top left in the figure) shows the split percentage by habitat of the B. 

genuense distribution identified in the study area. The study area is marked in purple. 

 

Figure 4 Inflated response curve of topographic variables for Brachypodium genuense in the study area. The red line is 

the average of the 100 inflate curve randomly selected. The presences (azure dots) and pseudo-absences (dark-blue dots) 

used to calibrate the model. X-axis: Northness = cosine(aspect) and Eastness = sine(aspect); Elevation = m a.s.l.; Slope = 

degrees; Solar Radiation = WH/m2; Topographic Wet Index (TWI), high values indicates humid areas and low values 

indicates dry areas. 
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