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Abstract: Potholes on roads pose a major threat to motorists and autonomous vehicles. Driving over 

a pothole has the potential to cause serious damage to a vehicle, which in turn may result in fatal 

accidents. Currently, many pothole detection methods exist. However, these methods do not utilize 

deep learning techniques to detect a pothole in real-time, determine the location thereof and display 

its location on a map. The success of determining an effective pothole detection method, which in-

cludes the aforementioned deep learning techniques, is dependent on acquiring a large amount of 

data, including images of potholes. Once adequate data had been gathered, the images were pro-

cessed and annotated. The next step was to determine which deep learning algorithms could be 

utilized. Three different models, including Faster R-CNN, SSD and YOLOv3 were trained on the 

custom dataset containing images of potholes to determine which network produces the best results 

for real-time detection. It was revealed that YOLOv3 produced the most accurate results and per-

formed the best in real-time, with an average detection time of only 0.836s per image. The final 

results revealed that a real-time pothole detection system, integrated with a cloud and maps service, 

can be created to allow drivers to avoid potholes.   
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1. Introduction 

Since South Africa is a developing country, the development and maintenance of 

roads is of great significance. Well-maintained roads contribute largely towards the coun-

try’s economy and tarred roads have become an absolute necessity in the 21st century in 

light of economic demands on government by the citizenry. Potholes can be defined as 

areas of a road surface that have formed a hole after being cracked and worn away [1]. 

Potholes start as small cracks, which if not repaired timeously, can increase considerably 

in size. Flat and smooth surfaces are required to ensure a comfortable drive, however, 

potholes can result in an unpleasant and potentially dangerous ride. The tyres are likely 

to get damaged and would require re-alignment. Currently, there is no mechanism to cau-

tion drivers of approaching potholes. Consequently, potholes remain a serious hazard. 

However, technology is available that reduces the impact of a pothole on a vehicle. Vari-

ations of this technology have been installed in several vehicles including the S-class Mer-

cedes, Ford Focus, Jaguar Land Rover and Audi A8. The technology in the S-class Mer-

cedes is referred to as Magic Body Control, which is a suspension that can predict surface 

unevenness and prepare accordingly [2]. This technology does not completely eliminate 

the effect of a pothole but simply reduces it. However, it is possibly more beneficial for a 

driver to detect any damage in the road beforehand. Driving over a pothole may have 

serious implications for a vehicle, for example, a flat, or damage to a tyre, rims, suspen-

sion, steering and possibly the body of the car [3]. Complete avoidance of a pothole would 

eliminate these possibilities. The overall aim of this project is to identify the most suitable 

deep learning algorithm to detect a pothole whilst driving, determine the GPS location 

thereof, display the determined position on a map as pin and send the data to a cloud 
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server for information storage and sharing. An investigation of various deep learning de-

tection algorithms will be conducted. The algorithms selected for this project include 

Faster R-CNN, SSD and YOLOv3. Each of the selected algorithms will be compared and 

the most suitable will be utilised for the purpose of this project. The IoT system will collect 

the GPS data from its module and store it in the cloud. Hence, no manual data must be 

collected. The data must be in real-time and monitored through the cloud.    

2. Materials and Methods 

 2.1 Data collection and processing  

It was necessary to identify an area in South Africa where potholes are prevalent. St. 

Francis Bay and Jeffrey’s Bay in the Eastern Cape Province were identified for the purpose 

of this study. Additional data containing pothole images was found online. The latter was 

produced by [4] who completed a project relating to pothole detection using vision and 

machine learning methods. The images taken by [4] were taken in the Vaal Triangle area 

in Gauteng, Stellenbosch and Somerset West in the Western Cape. Initially, it was as-

sumed that these two sets of data would be adequate, however, with the advent of time, 

it was revealed that more images were required to enhance training for the network. If the 

dataset is too small, overfitting, which refers to a model that models the training data too 

well can occur. The detail and the noise in the training data has been mastered to such an 

extent that the performance of the model on new data is negatively impacted [5]. Thus, it 

was necessary to produce additional images. These images which were produced by 

VWSA were taken in Uitenhage and surrounding areas in the Eastern Cape Province. 

These areas were identified as those containing a large number of potholes. 

The entire dataset of instances of potholes comprised of 1910 images. The images of 

the datasets was gathered through a GoPro Hero 3+. This camera was selected because it 

produces good quality images whilst moving. Thus, it was not necessary to de-blur the 

images in the pre-processing steps, thereby reducing the processing time. The camera was 

set at a resolution of 1280 x 720pixels. The goPro used by [4] was set to the time lapse 

mode at an interval of 0.5 seconds/image and at a resolution of 3680 x 2760pixels. 

The collected data was arranged into positive and negative sets. The positive set of 

data contained images with potholes, while the negative dataset comprised of images 

without potholes. The data collected by [4] was divided into two scenarios, positive and 

negative sets as well as divided into a complex and simple scenario. In the simple scenario, 

it was assumed that the roads were well lit and open, while in the complex scenario, a 

more real-world scenario is depicted. This scenario includes instances of shadows on the 

road. This dataset comprised of images which were taken at various times throughout the 

day. All of the data was separated into the training and test sets.  

The images were cropped such that only the road surface was illustrated. The sky 

and other unnecessary information was cropped out of the image. This had to be done 

because the computer utilised for training had inadequate GPU memory for training. Re-

ducing the size of the image and eliminating unnecessary data such as the sky and grass 

resulted in less memory to train the network. The computational time of the algorithms 

was also reduced as a result of cropping the images. The images were not resized because 

significant aspects of the image would have been lost thus making it difficult to train the 

network.  

The cropped images containing potholes were annotated by utilising the Image Pro-

cessing Toolbox in MATLAB. The annotation process involved colouring in the regions in 

which there were potholes manually. This colouring process was completed by utilising 

the WACOM Cintiq Pro 13. This compact device is an advanced creative pen display 

which enables a user to have a direct pen-on-screen connection. Using this device saved 

time because it would have been extremely difficult and time consuming to colour each 

pothole using a mouse. Once the masks were created from the semantic segmentation, 

these were utilised to create the bounding boxes. Since the VWSA dataset was acquired at 

a later stage, the images within this dataset were annotated using a different graphical 

annotation tool: labelImg. Only bounding boxes were created for this dataset. Initially, the 
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results acquired using semantic segmentation and bounding boxes would have been com-

pared, however, at a later stage it was decided that comparisons between various other 

networks using only bounding boxes would be made. The overall process to be followed 

to achieve the desired results is illustrated in Figure 1 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

    

 

 

     2.2 Development and methodology  

 Various network architectures were utilized for this project. More than one network 

architecture was utilized to determine which performed the best with the given dataset. 

The network architectures included SSD (Single Shot Detection) with the Inception v2 

backbone, Faster RCNN (Region-based CNN) with Inception v2 backbone and YOLOv3 

(You Only Look Once). This section discusses why YOLOv3 was selected as the network 

used for the application of this project. The overall network architecture is also expounded 

upon in this section.  

The results revealed that although Faster R-CNN was more accurate than SSD, the 

inference time was extremely slow and unsuitable for real-time detection. Although SSD 

was fast, the accuracy of the detection was unsatisfactory. Further research was completed 

and it was revealed that videos generally shot at a speed of at least 24fps, the Faster R-

CNN would likely not be able to keep pace. Since Faster R-CNN is a regional based 

method which comprises of two phases, proposing regions and processing these, it proves 

to be somewhat inefficient for real-time detection.  

After this comparison was made, it was decided that a third network should be ex-

plored to optimise the results. Since single stage-detectors produce a higher inference, 

further research was conducted on such detectors. Through thorough research, it was 

revealed that the YOLOv3 network performs better for real-time applications because the 

detection time per object is less when compared to Faster R-CNN and SSD [6]. Generally, 

when dealing with objects of large sizes, SSD performs well. SSD utilises upper layers for 

Figure 1. Overall process to be followed to achieve the 

end goal 
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detection. Consequently, the performance for small objects is not sound. For the applica-

tion of this project, the size of the potholes could vary significantly, thus resulting in poor 

accuracy.  

     2.3 Training YOLOv3 

    The Darknet deep learning framework developed by Joseph Redmon [7] was uti-

lised for this project. It was necessary to first download and build this framework onto the 

computer being used. The first task is to prepare the dataset. The YOLOv3 annotated files 

are required to be in a text file format. Thus, the “.xml” files were converted to “.txt” files. 

The “.txt” file comprises of rows which represent a single bounding box in the image and 

contains the following information about the bounding box: 

 

<object-class-id> <centre-x> <centre-y> <width> <height> 

   

The first field, object-class-id, is an integer that represents the class of the object. This 

number ranges from 0 to (number of classes-1). Since this project only comprises of one 

class, this number is always set at 0. The second and third field, centre-x and centre-y are 

the x and y co-ordinates of the centre of the bounding box divided by the image width 

and height. The fourth and fifth field, width and height are the width and height of the 

bounding box divided by the image width and height. 

The second to the fifth entries are all floating-point values that range between the 

values 0 and 1. The dataset was then split into the training and test sets. The process of 

transfer learning was used in the next step. A pre-trained model containing convolutional 

weights trained on ImageNet was thus utilised. By utilising these weights, the training 

time was reduced significantly [8]. The darknet.data, classes.names and darknet-

yolov3.cfg files, which is included in the code distribution, requires information relating 

to the specifications of the object detector and relevant paths. Thus, these files were edited 

such that the relevant information was provided for each. Various hyper-parameters were 

configured in the configuration file. Once all the various components for training were 

set, the training could take place. The training continued till the loss value dropped below 

a specific threshold [9].  

Once the YOLOv3 algorithm was able to accurately detect potholes on the road, it 

was necessary to upload the GPS co-ordinate of the detected pothole to a cloud server. 

 Comparisons were made between various USB GPS receivers to determine which 

would be the most suitable for the application of this project. After thorough research was 

completed, it was decided that the best suited USB GPS receiver would be the GlobalSat 

BU-353-S4 receiver for this project. This receiver comprises of a highly sensitive, low 

power consumption chipset in an ultra-compact form factor. It is powered by a SiRF Star 

IV GPS chipset and provides superior performance in urban canyons and dense foliage. 

The device is built with a magnet which can stick to the top of a vehicle. Elemental expo-

sure is not a concern because it is able to withstand both freezing and extreme hot tem-

peratures [10].  

The location of the detected pothole was required to be sent to a cloud server so that 

other drivers can be informed of the location of the potholes. The cloud server utilised for 

this project was Ubidots STEM. Ubidots is a two platform company, which comprises of 

Ubidots and Ubidots STEM. The standard STEM package is a non-commercial license that 

allows easier access to students, researchers and hobbyists globally [11]. Ubidots is an 

Internet of Things (IoT), data analytics and visualisation company. Data that is gathered 

from various sensors can be transformed into useful information, allowing for business 

decisions and machine-to-machine interactions be made. Educational research is possible 

through the utilisation of Ubidots. This platform allows for integration of IoT into business 

and research [11]. 

Figure 2 below illustrates an overview of the overall system architecture. The image 

on the road will first be captured via the camera. Once this image is captured, the neural 

network will run, if a pothole is detected. The GPS location of the detected pothole will be 

determined via the GPS module. The collected GPS data will be sent to the cloud server, 
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Ubidots. This information will be available for all those who have access to the Ubidots 

account used to store the data. The relevant parties can then be informed of the potholes 

on the road and the location thereof. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results 

In this section, the various evaluation metrics to determine which network performed 

the best is discussed. The three networks are compared and the results gathered from the 

discussed evaluation metrics is presented. The integrated system performance is dis-

cussed in this section too.  

3.1. Evaluation Metrics  

 Mean average precision is a metric utilised to evaluate object detectors. It is the 

average of the average precision. To comprehend MAP, it is necessary to define the 

terms ‘precision’, ‘recall’ and ‘IoU’ (Intersection over union). Precision can be defined as 

how repeatable a measurement is [12]. It is the percentage of the results that is relevant. 

An example of precision is how close a second arrow is to the first arrow on a dart board 

[13]. 

 

 

 

  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

Recall can be defined as the percentage of the total relevant results that is classified 

correctly by the algorithm [14]. 

Figure 2: Overall system architecture 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

If precision is increased then recall will decrease and vice versa. 

 

IoU can can be defined as the ratio of the area of intersection and area of union of the 

ground truth and predicted bounding boxes. The “ground truth bounding box” is the 

bounding box and its co-ordinates are provided in the training set [15].  Figure 3 below 

illustrates that the green box represents the ground truth box while the red box is what 

the model predicts. It is clear that these two boxes have different co-ordinates. The area of 

intersection is where the one box overlaps the other and the area of union is the total area 

covered by both bounding boxes [16].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The confidence score can be defined as the probability that an anchor box contains 

an object. The confidence is predicted by a classifier. Both the IoU and confidence allows 

one to determine whether a predicted box is a true positive, false positive or false negative. 

A threshold value of 0.5 is predefined for the IoU [15]. 

A detection is considered a true positive (TP) only if the following three conditions 

are met [17]: 

• Confidence score > threshold 

• The predicted class matches the class of a ground truth 

• The predicted bounding box IoU (e.g. 0.5) is greater than the threshold of the 

ground-truth  

If the above conditions are not met, the predication is considered a false positive (FP).  

When the confidence score of a detection that is supposed to detect a ground truth is lower 

than the threshold, it is considered a false negative (FN) [17].  When the confidence score 

of a detection that is not supposed to detect anything is lower than the threshold, it is 

considered a true negative (TN). However, this is not of great significance in object detec-

tion [16].  

A numerical metric, known as average precision (AP) can be utilised to evaluate the 

performance of a detector. AP is essentially the precision averaged over all unique recall 

levels. To reduce the fluctuations in the curve, it is necessary to interpolate the precision 

at multiple recall levels before actually calculating the metric. The interpolated precision 

pinterp, at a specific recall level (r) is defined as the highest precision found for any recall 

level r’ ≥ r [18]: 

    

             𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) = 𝑝(𝑟′)𝑟′≥𝑟
𝑚𝑎𝑥  (3) 

     

Figure 3: Representation of ground truth box 

and predicted box and IoU [16] 
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There are two ways to select the levels of recall at which the precision should be in-

terpolated. Traditionally, 11 equally spaced recall levels are selected (i.e., 0.0, 0.1, 0.2,...1.0). 

A new standard selects all unique recall levels presented by the data. The new method is 

more advanced to enhance the precision and measure differences between methods with 

low AP. It is possible to define AP as the area under the interpolated precision-recall curve 

[18]. 

𝐴𝑃 =  ∑(𝑟𝑖+1 − 𝑟𝑖)𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑖+1)

𝑛−1

𝑖=1

 (4) 

Where r1, r2,...,rn is the recall levels at which the precision is first interpolated. The calcu-

lation of AP only considers one class. Only one class, potholes, was used for this project.   

 

Average recall (AR) is a numerical metric that can also be utilised to compare the 

object detector performance. AR is essentially the recall averaged over all IoU ∈ [0.5, 1.0] 

and can be determined by the following equation [19]:  

 

𝐴𝑅 = 2 ∫ 𝑟𝑒𝑐𝑎𝑙𝑙(𝑜)𝑑𝑜
1

0.5

 (5) 

     Where o is IoU and recall(o) is the corresponding recall. 

 

     3.2 Results 

Table 1 below illustrates the results of the various performance metrics for each of 

the networks which were trained.  

Table 1. Performance metrics results of each network 

 Average Precision Average Recall F1-Score 
mAP @ 0.5 

IoU 

Detection 

time per im-

age (average) 

Faster R-CNN 0.077 0.663 

 

0.137 

 

0.415 7.02s 

SSD 0.043 0.326 0.076 0.185 4.815s 

YOLOv3 0.347 0.32 0.42 0.347 0.836s 

 

 

 

The YOLOv3 network achieved the precision value of 0.347 whereas Faster R-CNN 

and SSD achieved average precision values of 0.077 and 0.043 respectively. However, the 

recall value of YOLOv3 was lower than that of Faster R-CNN, indicating that while the 

YOLOv3 network has a higher proportion of positive results in the correctly predicted 

values, the Faster R-CNN network outperforms it in its ability to correctly predict the pos-

itive results. The mAP value of Faster R-CNN was also higher than that of YOLOv3, fur-

ther proving that Faster R-CNN has a greater level of precision in detecting potholes. It 

should be noted that, although the size of each detected pothole is not the same, Faster R-

CNN performs the best out of all of the networks regardless of the size of the object to be 

detected. The average detection time per image was the lowest for YOLOv3. Since the 

project had to be utilized in real-time, the YOLOv3 network was selected as the network 

on which the other operations would run i.e. acquire the GPS location of the detected 
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pothole and storing it in the cloud. This network was selected because the inference time 

per image was the lowest. 

The vehicle was driven at 60km/h to adhere to the speed limit set in the city. The 

webcam used for the real-time testing was positioned such that the view of the road was 

akin to a driver’s viewpoint and the maximum area of the road was captured. The webcam 

was placed inside the vehicle. When driving at a speed of 60km/h and taking into consid-

eration that the detection time per image of the YOLOv3 network was 0.836 seconds, the 

calculated distance from which potholes can be detected is 13.877m. Determining the dis-

tance in real-time was beyond the scope of this project. Once the pothole was detected, 

the GPS location of the detected potholes had to be acquired. The GPS location of the de-

tected pothole was then sent to a cloud server, Ubidots. The GPS data is available for an-

yone who has access to the Ubidots account created for this project. The longitude and 

latitude values of each detected pothole is stored on Ubidots. The last detected pothole is 

illustrated as a pin on a map on Ubidots. This enables one to acquire a visual representa-

tion of where the pothole is situated. This visual representation is shown in Figure 4 be-

low. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

The development and maintenance of roads in developing countries such as South 

Africa is of great significance. Potholes can result in an unpleasant and potentially dan-

gerous ride. The tyres are likely to get damaged and would require re-alignment. It was 

thus necessary to create a system whereby driving over a pothole could be minimised. 

This research paper presented a comparative evaluation of state-of-the art CNN based 

object detection models to detect potholes on the road in real-time and from videos. Each 

of the networks were trained on a custom dataset and the performance was evaluated 

through the utilisation of various evaluation metrics. The best results for the application 

of this project was acquired through the YOLOv3 architecture, which worked the best for 

real-time applications because the inference speed was the fastest of the three evaluated 

architectures. The Faster R-CNN network proved the most accurate of the three models. 

SSD performed the worst in terms of accuracy, which could be attributed to the varying 

Figure 4: Screenshot of zoomed in map showing the pin of the 

last detected pothole on Ubidots 
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sizes of the potholes. Once it was determined that YOLOv3 would be the most suitable 

architecture for this particular application, the location, i.e. the GPS co-ordinates of the 

detected pothole had to be determined. The next step was upload these GPS co-ordinates 

to a cloud server where these could be stored and later illustrated on a map.   
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