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Abstract: This paper presents an approach to the EulerBernoulli beam theory (EBBT) using the finite difference  

method (FDM). The EBBT covers the case of small deflections, and shear deformations are not considered.  

The FDM is an approximate method for solving problems described with differential equations (or partial differential 

equations). The FDM does not involve solving differential equations; equations are formulated with values at selected 

points of the structure. The model developed in this paper consists of formulating partial differential equations with 

finite differences and introducing new points (additional points or imaginary points) at boundaries and positions of 

discontinuity (concentrated loads or moments, supports, hinges, springs, brutal change of stiffness, etc.). The 

introduction of additional points permits us to satisfy boundary conditions and continuity conditions. First-order 

analysis, second-order analysis, and vibration analysis of structures were conducted with this model. Efforts, 

displacements, stiffness matrices, buckling loads, and vibration frequencies were determined. Tapered beams were 

analyzed (e.g., element stiffness matrix, second-order analysis). Finally, a direct time integration method (DTIM) was 

presented. The FDM-based DTIM enabled the analysis of forced vibration of structures, the damping being 

considered. The efforts and displacements could be determined at any time.  
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1. Introduction 

The EulerBernoulli beam has been widely analyzed in the relevant literature. Several methods have been developed, 

e.g., the force method, the slope deflection method, and the direct stiffness method, etc. Anley et al. [1] considered a 

numerical difference approximation for solving two-dimensional Riesz space fractional convection-diffusion problem 

with source term over a finite domain. Kindelan et al. [2] presented a method to obtain optimal finite difference 

formulas which maximize their frequency range of validity. Both conventional and staggered equispaced stencils for 

first and second derivatives were considered. Torabi et al. [3] presented an exact closed-form solution for free vibration 
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                                                                                                                                         (4a) 

                                                                                                                                 (4b)              

                                                                                                                                 (4c)             

                                                                                                                                                                   (4d) 

2.1.1.3   FDM Formulation of equations, efforts, and deformations   

Let us consider a segment k of the beam having a flexural stiffness EIk and equidistant grid points with spacing hk. 

We introduce a reference flexural rigidity EIr  as follows  

EIk = k  EIr         (5) 

We set   

      W(x) = EIr  w(x)                                                                   (5a) 

Substituting Equations (4a), (5), and (5a) into Equation (1) yields 

                                                                                                                                                                       (6) 

At point i, the bending moment, shear force, and slope are formulated with finite differences using Equations (2ac), 

(4bd), (5), and (5a). 

                                                                                                                                                                      (7a) 

                                                                                                                                                                     (7b) 

                                                                                                                                                                     (7c)               

2.1.1.4   FDM Formulation of loadings   

Let us determine here the FDM value qi (Equation (6)) in the case of a varying distributed load q(x). Without 

considering the elastic Winkler foundation the distributed load q(x) is related to the shear force V(x) as follows: 

                                                                                                                                                          
                                                                                                                                                                              (8a)                 
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Considering here a three-point stencil, the following FDM formulations of the first derivative can be made. The 

position i is considered as the left beam’s end, an interior point on the beam, or the right beam’s end, respectively: 

 
                                                                                                                                                              (8b) 

                                                                                                                                                            (8c) 

                                                                                                                                                            (8d) 

 

 The balance of vertical forces applied to a free body diagrams yields the following: 

                                                                                                                                                            (8e) 

                                                                                                                                                            (8f)                  

The combination of Equations (8af) yields the FDM value qi for the position i being the left beam’s end, an interior 

point on the beam, or the right beam’s end. 

                

                                                                                                                                                  (8g)               

                                                                                                                                                              (8h)               

                                                                                                                ,                                             (8i)               

 

The application of Equations (8g8i) shows that in the case of a linearly distributed load, qi is equal q(xi).  

At point i, the stiffness of the elastic Winkler foundation ki is calculated similarly to Equations (8g8i).  

 

2.1.1.5   Analysis at positions of discontinuity 

Positions of discontinuity are positions of application of concentrated external loads (force or moment), supports, 

hinges, springs, abrupt change of cross section, and change of grid spacing.  

 

2.1.1.5.1   Change of grid spacing 

The discretization of the beam may lead to uniform-grid segments, but the grid spacings being different from one 

segment to another, as represented in Figure 3. 
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EULERBERNOULLI BEAM THEORY USING THE FINITE DIFFERENCE METHOD 
 

                                                                                                                                                                  (19c)         

                                                                                                                                                                  (19d)         

Considering the sign conventions adopted for the displacements and slope in general (see Figure 1) and for displacements 

and slope in the element stiffness matrix (see Figure 9), we can set following geometric compatibility boundary 

conditions in combination with Equations (2c) and (14b): 

                                                                                                                                                                   (20a)         

                                                                                                                                                                   (20b)         

                                                                                                                                                                    (20c)              

                                                                                                                                                                   (20d)         
 

The number of equations is 2(n+1) + 4 +4 = 2n + 10. The number of unknowns is 2(n+3) + 4 = 2n + 10, 

especially 2(n+3) unknowns (M; W) at points on the beam and additional points at beam’s ends, and 4 efforts at  

beam’s ends (Vi; Mi; Vk; Mk). Let us define following vector  

                                                                                                                                                                (21)         

The combination of Equations (15a,b) applied at any point on the grid, Equations (19ad), and Equations (20ad) can 

be expressed with matrix notation as follows, the geometric compatibility boundary conditions (Equations (20ad)) 

being at the bottom. 

 
                                                                                                                                                                 (22)         

 

The matrix T has 2n+10 rows and 2n+10 columns. The zero vector above has 2n+6 rows.  

                                                                                                                                                                (23)         

The matrix Taa has 2n+6 rows and 2n+6 columns, the matrix Tab has 2n+6 rows and 4 columns, the matrix Tba has 4 

rows and 2n+6 columns, and the matrix Tbb has 4 rows and 4 columns.  

The combination of Equations (18), (22), and (23) yields the element stiffness matrix of the beam. 

           
                                                                                                                                                              (24a)       
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Equations (20a) and (20c) stay unchanged.                                                                                                                                    

Thus, the number of equations is n+9. The number of unknowns is n+5 + 4 = n + 9, especially n+5 unknowns W 

(at points on the beam and additional points at beam’s ends) and 4 efforts at beam’s ends (Vi; Mi; Vk; Mk).  

The vector       becomes,  

                                                                                                                                                                          (29c)              

The use of Equations (22) to (24b) yields the element stiffness matrix of the uniform beam. 

 

2.2     Second-order analysis  

The equation of static equilibrium can be expressed as follows:    

                                                                                                                                            (30)   

The axial force (positive in tension) is denoted by N(x), and the stiffness of the elastic Winkler foundation by k(x). 

Let us also consider an external distributed axial load n(x) positive along the + x axis  

                                                                                                                                                                                (31)   

Combining Equations (30) and (31) yields                                                                                                                     

                                                                                                                                                                                 (32)    

           2.2.1   Constant stiffness EI within segments of the beam 

A beam with constant stiffness in segments was considered. Substituting Equation (2a) into Equation (32) yields 

                                                                                                                                                                                    (33)   

Substituting Equations (4a), (4c), (4d), (5), and (5a) into Equation (33) yields the following governing equation, 

 

 

                                                                                                                                                                                   (34)               

Equation (34) is applied at any point on the grid with spacing h. At point i, the external distributed axial load ni is 

calculated similarly to Equations (8gi). The transverse force T(x) is related to the shear force V(x) as follows: 

                                                                                                       (35)                 
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The FDM discretization is the same as Figure 10.  Equations (17a) becomes, 

                                                                                                            (39)                             

Equations (37) and (15b) are applied at any point on the grid (the distributed load qi being zero). 

The static compatibility boundary conditions are expressed similarly to Equations (19ad); however in Equations (19a) 

and (19c), the shear forces are replaced by the transverse forces (Equation (38)). The analysis continues similar to the 

first-order element stiffness matrix (Equations (20a24b)).   

 

2.3     Vibration analysis of the beam  

2.3.1   Free vibration analysis   

Our focus here is to determine the eigenfrequencies of the beams. Damping is not considered. A second-order analysis 

is conducted; the first-order analysis can easily be deduced. 

 
2.3.1.1   Beam with constant stiffness EI within segments 

The governing equation is as follows: 

                                                                                                                                                                                       (40)            

where  is the beam’s mass per unit volume, A is the cross-sectional area, N(x) is the axial force (positive in tension), 

n(x) is the external distributed axial load positive along + x axis, and k is the stiffness of the elastic Winkler 

foundation. A harmonic vibration being assumed, w*(x,t) can be expressed as follows:  

                                                                                                                                                                                      (41)             

Here,  is the circular frequency of the beam. Substituting Equation (41) into Equation (40) yields      

                                                                                                                                                                                      (42)             

A uniform grid with spacing hk is assumed in the segment k. 

Substituting Equations (4a), (4c-d), (5), and (5a) into Equation (42) yields the following governing equation: 
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The application of Equations (43b, d) yields 

              (48b) 

For the special case of a tapered beam without an axial force or a Winkler foundation, Equation (48a) becomes 

                                                                                                                                                                                   (48c) 

Equations (15b) and (48a) are applied at any point on the grid. The slope and the transverse force are determined using 

Equations (15d) and (38), respectively. 

Effect of a concentrated mass, a spring, or a springmass system 

The analysis is conducted similarly to the section above; the transverse forces Til and Tir in Equations (45a-c) are 

calculated using Equation (38).   

 
2.3.2   Direct time integration method  

The direct time integration method developed here describes the dynamic response of the beam as multi-degree-of-

freedom system. The viscosity and an external loading p(x,t) are considered.   

 

Uniform beam : The governing equation is applied at any point on the beam as follows: 

                                                                                                                                                                           

                                                                                                                                                                                   (49)                

The derivatives with respect to x are formulated with Equations (4a), (4c), and (4d); those with respect to t (the time 

increment is t) are formulated considering a three-point stencil with Equations (50a-c),  

 

                                                                                                                                                                                    (50a)             

At the initial time t = 0, we apply a three-point forward difference approximation (Equation (8b)) 

                                                                                                                                                                                    (50b)             

 
At the final time t =T, we apply a three-point backward difference approximation (Equation (8d)) 

                                                                                                                                                                                    (50c)             
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Table 1.   Bending moments (kNm) in the beam for various number of grid points: classical beam theory (CBT), 

present study, present study (three-point stencil (TPS))  

Five-point grid 

4  2.0m 

Four-point grid 

3  2.67m 

Position 

 X(m) 

CBT 

(exact results) 

Present study 

 

Present study 

 (TPS) 

Position 

  X(m) 

CBT 

 

Present study 

0.0 -80.00 -80.00 -72.73 0.00 -80.00 -80.00 

2.0 0.00 0.00 5.45 2.67 17.78 17.78 

4.0 40.00 40.00 43.64 5.33 44.44 44.44 

6.0 40.00 40.00 41.82 8.00 0.00 0.00 

8.0 0.00 0.00 0.00    

 

 

Three-point grid 

2  4.0m 

Two-point grid 

1  8.0m 

Position 

 X(m) 

CBT 

(exact results) 

Present study 

 

Position 

  X(m) 

CBT 

 

Present study 

0.00 -80.00 -80.00 0.00 -80.00 -80.00 

4.00 40.00 40.00 8.00 0.00 0.00 

8.00 0.00 0.00    

 

The results of the present study are exact for a uniformly distributed load whatever the discretization, since the exact 

solution for the deflection curve is here a fourth-order polynomial which corresponds to the FDM approximation.  

It is noted that the use of a three-point stencil for the bending moment and slope yields less accurate results since a 

five-point stencil is used for the governing equations.  
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At a position x1 of the beam, the second moment of area I(x1) is defined in Equation (55). The cross-sectional area 

A(x1) is defined as follows: 

                                                                                                               ,                                                                  (58)                

A1 being the cross-sectional area at x1 = L1. The analysis is conducted with n = 9, 13, and 17 grid points. The results 

are then extrapolated to obtain those for infinite grid points. The details of the analysis and results are listed in the 

supplementary file “vibration analysis of a tapered freefixed beam”.  

The vibration frequency  is defined as follows (definition adopted from Torabi [3]).                                                      

.   

                                                                                                             .                                                                   (59) 
 
 
Table 9 lists the results obtained by Torabi [3] and those obtained in the present study.   
 
Table 9.   Coefficients  of natural frequencies (first mode) of a tapered beam  

 
Torabi [3] 

FDM 

Nine-point grid 

FDM 

 Thirteen-point grid 

FDM 

 Seventeen-point grid 

Present study 

n=  

0 = 0.10 2.6842 2.7100 2.6957 2.6906 2.6798 

0 = 0.30 2.3471 2.3548 2.3506 2.3491 2.3459 

0 = 0.50 2.1504 2.1493 2.1500 2.1503 2.1511 

0 = 0.70 2.0165 2.0101 2.0137 2.0135 2.0133 

0 = 0.90 1.9166 1.9062 1.9120 1.9157 1.9324 

 
The results of the present study are identical to those presented by Torabi [3]. 

 

4 Conclusions 
The FDM-based model developed in this paper enables, with relative easiness, first-order analysis, second-order analysis, 

and vibration analysis of EulerBernoulli beams. The results showed that the calculations conducted as described in this 

paper yielded accurate results. First- and second-order element stiffness matrices (the axial force being tensile or 

compressive) in local coordinates were determined. The analysis of tapered beams was also conducted.  

The following aspects were not addressed in this study but could be analyzed with the model in future research: 

 Analysis of Timoshenko beams. 

 Analysis of linear structures, such as frames, through the transformation of element stiffness matrices from local 

coordinates in the global coordinates. 

2 1
4

1

EI

Al
 


 

 2

1 1 1 1( ) /A x A x L
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 Second-order analysis of frames free to sidesway, the P- effect being examined. 

 EulerBernoulli beams resting on Pasternak foundations. 

 Elastically connected multiple-beam system. 

 Warping torsion of beams.  

 Lateral torsional buckling of beams. 

 Classical plate theory by considering additional points at boundaries. 

 Boundary value problem.  

 Initial value problem. 

 Linear ordinary differential equation with constants or variable coefficients. 

 

Supplementary Materials: The following files are uploaded during submission:  

 “fixedpinned beam subjected to a uniformly distributed load” 

 “fixedpinned beam subjected to a concentrated load” 

 “fixedpinned beam subjected to a linearly distributed load” 

 “tapered pinnedfixed beam subjected to a uniformly distributed load” 

 “fixedfree beam subjected to a uniformly distributed load and compressive force” 

 “stability of a fixedpinned beam” 

 “stability of a tapered beam” 

 “vibration analysis of a fixedfixed beam” 

 “vibration analysis of a tapered freefixed beam” 
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Appendix A:  Tapered pinnedfixed beam subjected to a uniformly distributed load    

The tapered beam (Figure 21) subjected to a uniformly distributed load was analyzed here with the force method of the 

classical beam theory. The bending moment at the fixed-end was the redundant effort.  

In the associated statically determinate system, M0(x) and m(x) are the bending moment due to the distributed load and 

to the virtual unit moment at the fixed-end, respectively.  

Let us introduce the dimensionless ordinate  = x/l and 0 = L0/L1.  

M0(x), m(x), and I(x) can be expressed as follows  

 

                                                                                                                                                                     (A1)                             

 

The bending moment M1 at the fixed end is the solution of the following equations: 

                                                                                                                                                                   (A2)                               

                                                                                                                                                                   (A3)                               

                                                                                                                                                                    (A4)                              

 

Equations (A2) and (A3) are solved numerically.  

The combination of Equations (A1) and (A4) yields the bending moment at any position x, as follows: 

                                                                                                                                                                    (A5)                              

Details of the results are presented in the supplementary file “tapered pinnedfixed beam subjected to a uniformly 

distributed load”. 
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