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Abstract: This paper presents an approach to the Euler—Bernoulli beam theory (EBBT) using the finite difference
method (FDM). The EBBT covers the case of small deflections, and shear deformations are not considered.

The FDM is an approximate method for solving problems described with differential equations (or partial differential
equations). The FDM does not involve solving differential equations; equations are formulated with values at selected
points of the structure. The model developed in this paper consists of formulating partial differential equations with
finite differences and introducing new points (additional points or imaginary points) at boundaries and positions of
discontinuity (concentrated loads or moments, supports, hinges, springs, brutal change of stiffness, etc.). The
introduction of additional points permits us to satisfy boundary conditions and continuity conditions. First-order
analysis, second-order analysis, and vibration analysis of structures were conducted with this model. Efforts,
displacements, stiffness matrices, buckling loads, and vibration frequencies were determined. Tapered beams were
analyzed (e.g., element stiffness matrix, second-order analysis). Finally, a direct time integration method (DTIM) was
presented. The FDM-based DTIM enabled the analysis of forced vibration of structures, the damping being

considered. The efforts and displacements could be determined at any time.
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1. Introduction

The Euler—Bernoulli beam has been widely analyzed in the relevant literature. Several methods have been developed,
e.g., the force method, the slope deflection method, and the direct stiffness method, etc. Anley et al. [1] considered a
numerical difference approximation for solving two-dimensional Riesz space fractional convection-diffusion problem
with source term over a finite domain. Kindelan et al. [2] presented a method to obtain optimal finite difference
formulas which maximize their frequency range of validity. Both conventional and staggered equispaced stencils for

first and second derivatives were considered. Torabi et al. [3] presented an exact closed-form solution for free vibration
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analysis of Euler—Bernoulli conical and tapered beams carrying any desired number of attached masses. The
concentrated masses were modeled by Dirac’s delta functions. Katsikadelis [4] presented a direct time integration
method for the solution of the equations of motion describing the dynamic response of structural linear and nonlinear
multi-degree-of-freedom systems. The method applied also to equations with variable coefficients. Soltani et al. [5]
applied the Finite Difference Method (FDM) to evaluate natural frequencies of non-prismatic beams, with different
boundary conditions and resting on variable one or two parameter elastic foundations. Boreyri et al. [6] analyzed the
free vibration of a new type of tapered beam, with exponentially varying thickness, resting on a linear foundation. The
solution was based on a semi-analytical technique, the differential transform method. Mwabora et al. [7] considered
numerical solutions for static and dynamic stability parameters of an axially loaded uniform beam resting on a simply
supported foundations using Finite Difference Method where Central Difference Scheme was developed. The classical
analysis of the Euler—Bernoulli beam consists of solving the governing equations (i.e., statics and material) that are
expressed via means of differential equations, and considering the boundary and transition conditions. However, solving
the differential equations may be difficult in the presence of an axial force (or external distributed axial forces), an
elastic Winkler foundation, a Pasternak foundation, or damping (by vibration analysis). By the traditional analysis with
FDM, points outside the beam were not considered. The boundary conditions were applied at the beam’s ends and not
the governing equations. The non-application of the governing equations at the beam’s ends led to inaccurate results,
making the FDM less interesting in comparison to other numerical methods such as the finite element method. In this
paper, a model based on finite difference method was presented. This model consisted of formulating the differential
equations (statics and material relation) with finite differences and introducing new points (additional points or
imaginary points) at boundaries and at positions of discontinuity (concentrated loads or moments, supports, hinges,
springs, and brutal change of stiffness, etc.). The introduction of additional points permitted us to satisfy boundary
conditions and continuity conditions. First-order analysis, second-order analysis, and vibration analysis of structures

were conducted with the model.

2. Materials and methods

2.1  First-order analysis

The sign conventions adopted for loads, bending moments, shear forces, and displacements are illustrated in Figure 1.

a(x)
VY VVVVVYVY
M M
e | EEETEET - -
\Y; v
W
Figure 1. Sign convention for loads, bending moments, shear forces, and displacements.

Specifically, M(x) is the bending moment in the section, V(X) is the shear force, w(x) is the deflection, and q(x) is the

distributed load in the positive downward direction.
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2.1.1 Uniform beam within segments
2.1.1.1 Statics
According to the Euler—Bernoulli beam theory (EBBT), the governing equation of a uniform beam loaded with g(x) is as

follows:

£1 90 om0 = g0 @

where El is the flexural rigidity and K(X) is the stiffness of the elastic Winkler foundation.

The bending moment, shear force, and slope (p(X) are related to the deflection as follows:

M (x) = —E1 3 dWX(X) (22)

V(x) = dM(x) LV (X)=— d ng) -
d

@(X) = V;f(x) (2¢)

2.1.1.2 Fundamentals of FDM for a uniform beam

Figure 2 shows a segment of a beam having equidistant points with grid spacing h.

| | | |

h ' h o h ' mh | h

-2 -1 i i+1 i+2
I

Figure 2. Beam with equidistant points.

The governing equation (Equation (1)) has a fourth order derivative, the deflection curve is consequently
approximated around the point of interest I as a fourth degree polynomial.

Thus, the deflection curve can be described with the values of deflections at equidistant grid points:
W(X) =W, x i () + Wy < By O+ W Fi () +wy < £, 0+ W, x £, (0 @)

The shape functions fj(x) (j =1-2;i-1; i; i+1; i+2) can be expressed using the Lagrange polynomials:
i+2

X—X,
f; ()= || (3b)
I|:|2X
#)

Thus, a five-point stencil is used to write finite difference approximations to derivatives at grid points. Therefore, the

derivatives at i are expressed with values of deflection at points i-2; i-1; i; i+1; i+2.
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d'w| w_,—4w,_, +6w —4w _ +Ww,_,

i 2 (42)
dx* | h
d°w — —Wip +2Wi, —2W, + Wiy (4b)
dx® | 2h®
d’w| -w,_,+16w,_, —30w, +16w, , —w,,,
dx? | 12h? o
dw| _ w_, —8w,, +8w,,, — W,
dx | 12h (4d)

2.1.1.3 FDM Formulation of equations, efforts, and deformations

Let us consider a segment k of the beam having a flexural stiffness Ely and equidistant grid points with spacing hy.

We introduce a reference flexural rigidity El, as follows

El, = By x El, (5)
We set

W(X) = El, x w(x) (5)

Substituting Equations (4a), (5), and (5a) into Equation (1) yields

kh*
W_,—4W.  +| 6+—— |W. —4W. ,
kEIr k

h* 6)

+Wi+2 = ﬂi q

At point i, the bending moment, shear force, and slope are formulated with finite differences using Equations (2a—c),
(4b—d), (5), and (5a).

W, -16W._, +30W. —16W. . +W.
Mi :ﬁk i-2 i-1 12h |2 i+1 i+2 (7a)
Kk
W ., -2W , +2W. ., —-W.
Vi :ﬁ i—2 i-1 i+1 i+2 (7b)
‘ 2h,®
W —8W_, +8W. . —W.
Elr(Di — i-2 i-1 i+1 i+2 7
12h, (79

2.1.1.4 FDM Formulation of loadings

Let us determine here the FDM value {; (Equation (6)) in the case of a varying distributed load q(x). Without
considering the elastic Winkler foundation the distributed load q(x) is related to the shear force V(x) as follows:
dv(x)

dx

(8a)

009 =-


https://doi.org/10.20944/preprints202102.0559.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 March 2021 d0i:10.20944/preprints202102.0559.v2

EULER-BERNOULLI BEAM THEORY USING THE FINITE DIFFERENCE METHOD

Considering here a three-point stencil, the following FDM formulations of the first derivative can be made. The

position 1 is considered as the left beam’s end, an interior point on the beam, or the right beam’s end, respectively:

d\;)((x) | _ "‘42\?;1 —Vie, (8b)
dv (X) _ _Vi—l +Vi+1
dx | 2h (8)
dV(¥)| _ Vi, -4, +3V, (8d)
dx |, 2h

The balance of vertical forces applied to a free body diagrams yields the following:

ViV, =—Ii'_1q(x)dx (8e)

i+l
Vi —Vi=—| " a(x @

The combination of Equations (8a—f) yields the FDM value ; for the position i being the left beam’s end, an interior

point on the beam, or the right beam’s end.

4= | 3 a0 a0cx| .
1 piva

G :% 1 g(x)ax 8h)

4 =iH " (k3] q(x)dx} |
ohl Ji-2 i1 ! (81)

The application of Equations (8g—8i) shows that in the case of a linearly distributed load, Q; is equal {(x;).

At point i, the stiffness of the elastic Winkler foundation Ki is calculated similarly to Equations (8g—8i).

2.1.1.5 Analysis at positions of discontinuity
Positions of discontinuity are positions of application of concentrated external loads (force or moment), supports,

hinges, springs, abrupt change of cross section, and change of grid spacing.

2.1.1.5.1 Change of grid spacing
The discretization of the beam may lead to uniform-grid segments, but the grid spacings being different from one

segment to another, as represented in Figure 3.
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Figure 3. Beam with different grid spacings.

The governing equation (Equation (6)), and the equations for the determination of the bending moment, shear force,

and slope (Equations (7a-c)) at position I are formulated under consideration of different grid spacings h1 and h2.

2.1.1.5.2 Equations of continuity
Let us consider segments k and p of the beam having flexural stiffness El\ and Elp, and equidistant grid points with

spacing hy and hp. Concentrated loads (force P and moment M") are applied at point i, as represented in Figure 4.

L

M*
—_—
VP
Elx El
———.
-3 i2 i1 i i+1 i+2 i+3

Figure 4. Beam with change in grid spacing and stiffness

The model developed in this paper consists of realizing an opening of the beam at point i and introducing additional
points (fictive points ia, ib, ic, and id) in the opening, as represented in Figure 5a,b.

(5a)
-1 | ia Eh
hi hk hk ~ hk = hk

Figure 5a,b. Opening of the beam and introduction of additional points on the left side (5a) and right side (5b).
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The governing equation (Equation (6)) is applied at any point of the beam, i.e., i-2; i-1; il; ir; i+1; i+2, etc.

Thus, the governing equations at positions il and ir yield:

k,h,* 1,
Wi, —4W,, +| 6+——— W, —4W,, +W,, =—q; h, (%)
kEIr k
k. h.* 1,
W, —4W, +| 6+ —L— |W_—4W._, +W._ , =—q, (9b)
ic id ir i+1 i+2 ir''p
ﬂp r ﬂp

The FDM formulations (;; and g of distributed loading and Ki) and K;, of elastic Winkler foundation are calculated
using Equations (8g-i).
The following continuity equations express the continuity of the deflection and slope (Equation (7c)), and the

equilibrium of the bending moment (Equation (7a)) and shear force (Equation (7b)):

Wy = W, —)VV" :Vvir (10a)
W, -8W._ +8W, -W, W_-8N,+8W. W,
El 0. =El 0. > i-2 i-1 ia ib _ _ic id i+1 i+2
I’¢I| I‘¢II’ 12hk 12hp (10b)
M; -M; =M T
B Wi, —16W,, "‘30\/\!" —16W,, +W, _ﬁp Wi, —16W, +3O\Nir2_16vvi+l +Wi., -M (11)
12h, 12h,
W_,-2W_, +2W._ -W., W, —2W,, +2W. , —W.
ViI _Vir =P _)ﬂk i-2 i-1 - ia ib _ﬂp ic id - i+1 i+2 _ P (12)
2h, 2h,

An adjustment of the continuity equations is made in case of a hinge (no continuity of the slope, M; = M;, =0), a
support (Wi = W, = 0, no equation (10d)), or a spring.
At the beam’s ends, additional points are introduced (as shown in Figure 5a,b) and so governing equations are applied

at the beam’s ends, as well as the boundary conditions.

2.1.1.5.3 Non-uniform grid

The grid may be such that every node has a non-constant distance from another, as represented in Figure 6.

-3 -2 i1 i i+1 i+2 i+
| | | | | | |

"his ' h2 oWt W hw | hie

Figure 6. Beam with a non-uniform grid.
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Here, the Lagrange interpolation polynomial (Equation (3b)) is used for FDM formulation. The resulting equations are
complicated, and consequently the non-uniform grid is not further analyzed in this paper. In fact, this case should not

be analyzed as a discontinuity position.

2.1.2  First-order analysis of a tapered beam
2.1.2.1 Statics

Let us analyze here the case of a tapered beam, as shown in Figure 7.

Figure 7. Tapered beam.

An elastic Winkler foundation with stiffness K is considered. The varying flexural rigidity is EI(X). The equations of

static equilibrium and material relation are formulated as follows:

MO gm0 = a9 a3
dx
M (X) = —EI(x) d;")"(gx) (13b)

The slope is determined using Equation (2c), and the shear force using (2b).

2.1.2.2 FDM formulations of equations, efforts, and deformations

A uniform grid with spacing hy is considered. Equations (13a-b) have a second order derivative; consequently, a three-

point stencil is considered for the following derivatives (S(x) representing M(x) or w(x)):

d’S(x)| S, ,-2S,+S,, (142)
dx* | h’

dS(X)| _ =Siu+Si (14b)
dx |; 2h,

A reference flexural rigidity El, is introduced (Equations (5-5a)). Here the parameter [3 is defined at any position i.

Considering Equations (5-5a) and (14a), the FDM formulations of Equations (13a,b) yield

_oM. _ h
M., 2h|v2|, My =—q >h’M,, —2h°M, +hk2|v|i+1—k'Ei
K

r

W =—gh’  asy

M =—El VVi—l_zvvi + Wiy

| | 2 = h M+ BW, —2BW, + W, =0 (15b)
k
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At any point on the grid, Equations (15a-b) are applied. The unknowns are the deflection and bending moment. The

application of Equations (2b), (2c), and (14b) yields the shear force and slope:

deMW)Z—Mu+Mm (150
dx |; 2h,
_ dW(X) . _\Ni—l + Wi+1
P77 | 2h, (150

2.1.2.3 Analysis of a tapered beam at positions of discontinuity
Concentrated loads (force P and moment M") are applied at point i (see Figure 4). A change in grid spacing is also

assumed at this position. As described in section 2.1.1.5, an opening of the beam at point I introduced additional points

(points ia and id) in the opening, as represented in Figure 8a,b.

(8a)

—————— - —— (8b)
i Ir +1 i+? i+§
| y 1 o | o 1 y |

Figure 8a,b. Opening of the beam and introduction of additional points at the left side (8a) and right side (8b).

The additional points are la and id, and the unknowns are Wia, Mia, Wid, and Mid.
The continuity equations express the continuity of the deflection and slope (Equation (15d)), and the equilibrium of the

bending moment and shear force (Equation (15c)) as follows:

Wy =w, > W, =W, (162)
W, +W. W, +W.
El  — E| S i-1 ia _ id i+1 b
r¢|l r¢|r th th (16 )
M, -M. =M’ (160)
Vil _Vir:P_)_Mi—1+Mia__Mid+Mi+1:P (16d)
2h, 2h,

At a point i with a hinge the slopes are not more equal, and the moments Mil and Mir are zero.
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2.1.3  First-order element stiffness matrix of a tapered beam
2.1.3.1  4x4 element stiffness matrix

The sign conventions for bending moments, shear forces, displacements, and slope adopted for use in determining the

element stiffness matrix in local coordinates is illustrated in Figure 9.

M P

Figure 9. Sign conventions for moments, shear forces, displacements, and slopes for stiffness matrix.
Let us define following vectors:
- - - T
=[ViiM;iV; M ] (172)
T
_ . . 17b
Vred_[Wi’¢i'Wk’¢k] (170)
The 4x4 element stiffness matrix in local coordinates of the tapered beam is denoted by Kaa.

The vectors above are related together with the element stiffness matrix Kas as follows:

—_—

Sred = K44 ><Vred (18)

Let us divide the beam in n parts of equal length h (I =nh) as shown in Figure 10.

‘
L = nh

© 6 @ & & O @ @

Figure 10. Finite difference method (FDM) discretization for 4x4 element stiffness matrix.

Equations (15a) with i =0 and (15b) are applied at any point on the grid (positions 1; 2; ...n+1 of Figure 10).

Considering the sign conventions adopted for bending moments and shear forces in general (see Figure 1) and for bending
moments and shear forces in the element stiffness matrix (see Figure 9), we can set following static compatibility
boundary conditions in combination with Equations (2b) and (14b):
dM ()| _ M, —M,

V=V =——
X | 2h

—2hV, +M,-M, =0 (192)

(19b)
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:M :M_)th - M
n+1 2h ‘

—->M,+M_,=0 (19d)

Vk = Vn+1 dX

M, =—M

+M, =0 (19¢)

n+2

n+1

Considering the sign conventions adopted for the displacements and slope in general (see Figure 1) and for displacements
and slope in the element stiffness matrix (see Figure 9), we can set following geometric compatibility boundary

conditions in combination with Equations (2c) and (14b):

w, =W, ->W, =El xw, (20a)
dw(x)|  —w, +w, W, +W,
AT T o T T A 20
Wi = W _>Wn+l = El r X W (20c)
dw(x) W, +W,, -W_+W. |
Pt =7 TS =0, %Tz =El, x¢, (20d)
n+l

The number of equations is 2(n+1) + 4 +4 = 2n + 10. The number of unknowns is 2(n+3) + 4 = 2n + 10,
especially 2(n+3) unknowns (M; W) at points on the beam and additional points at beam’s ends, and 4 efforts at

beam’s ends (Vi; Mi; Vk; M. Let us define following vector

S1=[Mg;Wys MW, M i W T (21)

n+2?

The combination of Equations (15a,b) applied at any point on the grid, Equations (19a—d), and Equations (20a—d) can
be expressed with matrix notation as follows, the geometric compatibility boundary conditions (Equations (20a—d))

being at the bottom.

— —

S 0 S 0
Tx| ™ = S T =T (22)

—

Sred Elr XV red Sred Elr XV red

The matrix T has 2n+10 rows and 2n+10 columns. The zero vector above has 2n+6 rows.

T T
T -1 — aa ab (23)
Tba Tbb

The matrix T aa has 2n+6 rows and 2n+6 columns, the matrix Tab has 2n+6 rows and 4 columns, the matrix T ba has 4

rows and 2n+6 columns, and the matrix Tbb has 4 rows and 4 columns.

The combination of Equations (18), (22), and (23) yields the element stiffness matrix of the beam.

Ky =El xT, (24a)
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A general matrix formulation of Ky is as follows:
T

0
K44:Elr><[0 I]><T_1>< | (24b)

In Equation (24b), O is a zero matrix with four rows and 2n+6 columns, | is the 4 x 4 identity matrix.

2.1.3.2 3x3 element stiffness matrix

Assuming the presence of a hinge at the right end, the sign convention for bending moments, shear forces, displacements,

and slope is illustrated in Figure 11.

Vi, v
e ——

Figure 11. Sign conventions for moments, shear forces, displacements, and slope for stiffness matrix.

The 3x3 element stiffness matrix in local coordinates of the tapered beam is denoted by Kaza.

The vectors of Equations (17a), (17b), and (18) become

ﬂ = [Vi; MV, ]T (252)
Vig = [Wisoiw, | (250)
S,q = Ky xV 4 (250)
The matrix K33 can be formulated with the values of the matrix K4 (see Equations (24a—b)).
K44 _ Eaa :zab (26)
ba bb

K44 has 4 rows and 4 columns. The matrix Kaa has 3 rows and 3 columns, the matrix Kab has 3 rows and 1 column,

the matrix Kba has 1 row and 3 columns, and the matrix Kbb has 1 row and 1 column (a single value).
The combination of Equation (18) with the presence of a hinge at position k (Mg = 0), and Equation (25c) yields the

matrix Kz3 as follows:

1
K33 — Kaa - Kab X=X Kba (27)
bb
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2.1.4 First-order element stiffness matrix of a uniform beam

The beam is divided in n parts of equal length h (I =nh) as shown in Figure 12.

H | |_=nh |

L | | ]
@000 6 ® O ¢ 2
Figure 12. FDM discretization for 4x4 element stiffness matrix.
Equation (6) with Qi = 0 is applied at any point on the grid (positions 1; 2; ...n+1 of Figure 12).

The static compatibility boundary conditions (Equations (19a—d)) become
W, —2W, +2W, —W, 2h3

V, =V, =—f, x e ﬂk V,+W, —2W, +2W, -W, =0 (28a)
W, —-16W, +30W, —16W, +W.
Mi — Ml :ﬂk % 1 0 21 2 3
12h
12h?
—-—M, -W_ +16W, —-30W, +16W, -W, =0 (28b)
k
_ 4 x W, —-2W, +2W ,, -W_,
k 2h3
2h?
7\/ W, +2W -2W_,+W, .,=0 (28¢)
k
W_,-16W, +30W ,, -16W ., +W, .,
M. =—M - _ X n-1 n n+1 n+2
k n+1 ﬂk 12h2
12h?
- —M, +W _, -16W +30W , -16W ,+W =0 (28d)

k
The geometric compatibility boundary conditions (Equations (20b,d)) become

dw(x)|  w, —8w, +8w, —w,

G 12h —¥
W, —8W, +8W, -W,
— =El, x
12h i (292)
_aw(x)|  w, —8w, +8w, W, .,
n+l dX o 12h (Dk
W, -8WN +8W ,-W, ,
N n-1 n n+2 E| X @, (29b)
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Equations (20a) and (20c) stay unchanged.
Thus, the number of equations is n+9. The number of unknowns is n+5 + 4 = n + 9, especially n+5 unknowns W

(at points on the beam and additional points at beam’s ends) and 4 efforts at beam’s ends (Vi; Mi; Vk; Mk).

The vector §1 becomes,
Sl — [W—l;WO;W]_"""'\N

The use of Equations (22) to (24b) yields the element stiffness matrix of the uniform beam.

W, W] (29¢)

n+1? " 'n+27?

2.2 Second-order analysis

The equation of static equilibrium can be expressed as follows:
d’M (x dw(x
M, (N() ()j—k00wa>=—q0) @

o

The axial force (positive in tension) is denoted by N(x), and the stiffness of the elastic Winkler foundation by k(x).

Let us also consider an external distributed axial load n(x) positive along the + x axis

n(x)=— dl\(;(x) (31)
Combining Equations (30) and (31) yields X
d“M (x d *w(x dw(x
IMO9 g 4o MO0 ) = g -

2.2.1 Constant stiffness EI within segments of the beam

A beam with constant stiffness in segments was considered. Substituting Equation (2a) into Equation (32) yields

d w( X d *w(x dw(x
I N - n ) B kw0 =00 @
dx* dx
Substituting Equations (4a), (4c), (4d), (5), and (5a) into Equation (33) yields the following governing equation,
N.h*  nh® 4N h? 2nh3 5N h2 k.h4
g L —4B - W, +(6 )W,
(ﬂ' 12E1, 12EI) HAh 3EI.  3El Moy + (04 + l, Elr) '
4N, h2 2nh3 N.h? n.h3
443 — W, o+ 1 )W =qgh’ 34
( ﬂ r 3 ) (ﬂ| 12E|r 12E|r) i+2 ql ( )

Equation (34) is applied at any point on the grid with spacing h. At point I, the external distributed axial load Ni is

calculated similarly to Equations (8g—i). The transverse force T (x) is related to the shear force V(x) as follows:

dw(x) (35)

T(X) =V (X)+ N(x)
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Substituting Equations (2b), (4b), (4d), (5), and (5a) into (35) yields the FDM formulation of the transverse force
3

| d w| dw (36)

' "ax® |i " dx|,

20T = (B + Nh AT (Zﬂ—4Nh)W (28 + 4Nh)w (ﬂ—é\g

) i+2

The bending moment and the slope are formulated using Equations (7a) and (7c), respectively.
The analysis at positions of discontinuity is conducted similarly to that of the first-order analysis; however the shear

force is replaced by the transverse force.

2.2.2 Second-order analysis of a tapered beam
Applying Equations (5), (5a), (14a-b), in Equation (32) yields The FDM formulation of Equation (32) as follows:

2 3 2 :
WM., — 2h2M, +h?M | Nl Dy 2Nk,
El,  2El e El

2 3
T —

Equations (37) and (15b) are applied at any point on the grid.

The combination of Equations (35), (15c¢), and (15d) yields the FDM formulation of the transverse force

2
2h°T. =h?M,, —h°M,_ +%(W W) 8)

r
The slope is calculated similarly to Equation (15d).
The analysis at positions of discontinuity is conducted similarly to that of the first-order analysis; however the shear

force is replaced by the transverse force.

2.2.3 Second-order element stiffness matrix of a tapered beam
The sign conventions for bending moments, transversal forces, displacements, and slopes adopted for use in determining

the element stiffness matrix in local coordinates is illustrated in Figure 13.

Tk. Wi

Mk (P N

Figure 13. Sign conventions for moments, transversal forces, displacements, and slopes for stiffness matrix.
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The FDM discretization is the same as Figure 10. Equations (17a) becomes,
o T
Sred:[Ti’Mi’Tk’Mk] (39)
Equations (37) and (15b) are applied at any point on the grid (the distributed load (i being zero).

The static compatibility boundary conditions are expressed similarly to Equations (19a—d); however in Equations (19a)
and (19c), the shear forces are replaced by the transverse forces (Equation (38)). The analysis continues similar to the

first-order element stiffness matrix (Equations (20a—24b)).

2.3 Vibration analysis of the beam

2.3.1 Free vibration analysis
Our focus here is to determine the eigenfrequencies of the beams. Damping is not considered. A second-order analysis

is conducted; the first-order analysis can easily be deduced.

2.3.1.1 Beam with constant stiffness EI within segments
The governing equation is as follows:

o'W (x,t) o°w (x t)
Y N(X)———

W(x t)

El W (x,t
5

)+k(x)w (x,t)+ pA

+n(x) =0 (0

where p is the beam’s mass per unit volume, A is the cross-sectional area, N(x) is the axial force (positive in tension),

n(x) is the external distributed axial load positive along + x axis, and K is the stiffness of the elastic Winkler

foundation. A harmonic vibration being assumed, w’(x,t) can be expressed as follows:
W (X, 1) = w(x) xsin(et + 6) (41)

Here, @ is the circular frequency of the beam. Substituting Equation (41) into Equation (40) yields
d W(x)

~N(x )OIZ () 4000 ) |k w0 — pAGAW(X) = 0 “2)
dx* dx

A uniform grid with spacing h is assumed in the segment k.

Substituting Equations (4a), (4c-d), (5), and (5a) into Equation (42) yields the following governing equation:

N.h2  nh? AN;h2  2nh 5N kihe A<a)h
+— 4 W, + (68, +—+-
i 12EI, 12EI) H4- 3El.  3EI Mo+ (64, 2El.  EI, |, W
4N, h2 2n h? N.h? nh3
—4 W, T
HAA - 1, T 3E ) A, 12El, 12EI) (43a)
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Equation (43a) is applied at any point on the grid. The slope, the bending moment, and the transverse force are

determined using Equations (7c), (7a), and (36), respectively.

Let us define a reference length |, a reference cross-sectional area A, and the vibration coefficient A as follows

h =B, (43b)

El 2
Ac=PBuA @ w=x | —>pA*E‘;’ = B BLAE s

A change in grid spacing can be modeled by means of the reference length and the parameters Blk-

For the special case of a uniform beam without an axial force or a Winkler foundation, Equation (43a) becomes

W, — AW, +(6— BLADW. — AW, , +W, , =0 (43¢)

i+1

Effect of a concentrated mass, or a spring

We analyzed the dynamic behavior of a beam carrying a concentrated mass or having a spring, as represented in

Figure 14.

Mp

T._

Figure 14. Vibration of beam having a concentrated mass and a spring.

The stiffness of the spring is Kp, and the concentrated mass is Mp.
_ 3
K, =k, xEI [l (44a)
M, =m,xpAl, (44b)

The continuity equations for deflection, slope, and bending moment are defined in Equations (10a), (10b), and (11),

respectively. Equation (11) is applied with M"= 0. The reference length of the beam is |, ((Equation (43b)).

Applying Equations (43d) and (44a-b), the balance of vertical forces in case of a concentrated mass or a spring yields

M @? m
T,-T.——W, =0->T,-T —2 AW, =0 (452)
| Ir Elr | | Ir Ir3 |

K, k
T, —Tir-i-EI W, =0T, -T, —|—I W =0 (45b)

The transverse forces Til and Tir are calculated using Equation (36).
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Effect of a spring—mass system: We analyzed the dynamic behavior of a beam carrying a spring—mass system, as

represented in Figure 15. The deflection of the mass is denoted by Wip.

o =
P
‘Mp
Figure 15. Vibration of a beam carrying a spring—mass system.

Applying Equations (43d) and (44a-b), the balance of vertical forces yields
2

m
M pa)2 K,

2.3.1.2 Tapered beam

The governing equations are as follows:

oO°M *EX,t) PN WY o*w (X t) _n(x) Y 8W*(X,t) k(X)W (x,1) - A(X)M 0 (46a)
OX OX
M (x,t) = —EI (X )M (46b)

A harmonic vibration being assumed, M"(x,t) can be expressed similarly to Equation (41). Equations (46a-b) become

IV N ) T o9 M)k sgm + pAGIOWOO =0
M (x) = EI()dW(X) (1)

A uniform grid with spacing h is assumed.

The grid at the beam’s ends and at positions of discontinuity is the same as represented in Figure 8a,b.
Substituting Equations (5a), (14a-b), and (43c) into Equations (47b) and (47a) yields Equation (15b) and the following
equation:

h2M. . —2h2M. + h®M. . + Nih2+nih3 W 2Nih2 kh4_ﬁ ,0A|,Cl)2h4 W
i-1 i i+1 Elr 2EIr i-1 Elr Ai Elr |

N.h*> nh®
J{ El 2FI ij:O (48a)



https://doi.org/10.20944/preprints202102.0559.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 March 2021 d0i:10.20944/preprints202102.0559.v2

EULER-BERNOULLI BEAM THEORY USING THE FINITE DIFFERENCE METHOD

The application of Equations (43D, d) yields
El »°h*
A | Ehe  PAOT g
pAI'II’ EII’

For the special case of a tapered beam without an axial force or a Winkler foundation, Equation (48a) becomes

(48b)

h*M. , —2h*M, +h*M.  + B, B A°W. =0 (48c)

i+1

Equations (15b) and (48a) are applied at any point on the grid. The slope and the transverse force are determined using
Equations (15d) and (38), respectively.

Effect of a concentrated mass, a spring, or a spring—mass system
The analysis is conducted similarly to the section above; the transverse forces Til and Tir in Equations (45a-c) are

calculated using Equation (38).

2.3.2 Direct time integration method

The direct time integration method developed here describes the dynamic response of the beam as multi-degree-of-

freedom system. The viscosity 1] and an external loading p(x,t) are considered.

Uniform beam : The governing equation is applied at any point on the beam as follows:

o'W (x,1) N(x )82W (X, t) n(x) oW’ (X,1)

ox*

o°W (x,t)  ow (x,t)
X,t)— pA —

Pix.0 ot? T

The derivatives with respect to x are formulated with Equations (4a), (4c), and (4d); those with respect to t (the time

El +k (X)W (x,t) =

(49)

increment is At) are formulated considering a three-point stencil with Equations (50a-c),

200 F 7
5W (X t)‘ Wi at +W|t+At o'W (X;t)‘ _ Wi,t—At 2W +W|t+At (50a)
ot Lt 2t ot | AE
At the initial time t = 0, we apply a three-point forward difference approximation (Equation (8b))
2 * * * * * *
oW _ Wi,O_ZWi,At+Wi,2At ow 3W +4W|At Wi oat
At the final time t =T, we apply a three-point backward difference approximation (Equation (8d))
82W* W*i,T72At - 2W*i,T—At + W*i,T aW — w i, T-2At _4W i,T—At + 3W i,T (500)
o | At? ot 2At
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The governing equation (Equation (49)) can be formulated with FDM for x = i at time t. The FDM formulation of this
equation is applied at any point of the beam at any time t using a seven-point stencil. Additional points are introduced
to satisfy the boundary and continuity conditions. The boundary conditions are satisfied using a five-point stencil.
Thus, the beam deflection w(x,t) can be determined with the Cartesian model represented in Figure 16. The bending

moments M"(x,t) and the shear force VV"(x,t) are calculated using Equations (7a,b).

t
Ty
A

At

At

At

Figure 16. Model for the calculation of time-dependent vibration of a uniform beam.

Tapered beam: a similar analysis can be conducted. Thus Equation (49) becomes
0*M ™ (x,t O*W (Xt
FMIKY) 50 OW (D)

OX OX

“p(x,t)+ pA(X) 0 Wat(zx,t) +nawa(tx,t)

n(x)w— KW (X,1) =

(51)

The derivatives with respect to x are formulated with Equations (14a-b); those with respect to t are formulated with
Equations (50a-c).

The FDM formulation of Equations (51) and (46b) are applied at any point on the beam and at any time t using a five-
point stencil and a three-point stencil, respectively. Additional points are introduced to satisfy the boundary and

continuity conditions. The boundary conditions are satisfied using a three-point stencil. Thus, the bending moment
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M’ (x,t) and beam deflection w"(x,t) can be determined with the Cartesian model represented in Figure 17. The

transverse force T (x,t) is calculated using Equation (38).

‘N

Tf

at

At

At

A

h - h h h h h h h 3
/IV L -"IV

Figure 17. Model for the calculation of time-dependent vibration of a tapered beam.

With this model, the assumptions previously made can be verified, namely the separation of variables and the

harmonic vibration (Equation (41)).

2.4 Extrapolation to approximate the exact result

The analysis with the FDM is an approximation. Generally, the accuracy of the results increases by increasing the
number of grid points. This means that when the number of points is infinitely high, the results tend toward the exact
result. However, in first-order analysis, the exact result is rapidly obtained since the FDM polynomial approximation
can match the exact results.

We assume that the relationship between the results R and the number of grid points on the beam N follows a

hyperbolic curve with the constants A, B, and C, as follows:

AN + B
R=—«—— (52)
N+C
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Three couples of values (N ; R;) are then necessary to determine A, B, and C. Solving the following equation system

yields A, B, and C.

AN, +B-RC=RN, (53a)
AN, +B-R,C=R,N, (53b)
AN, +B-R,C =R;N, (53¢)

The exact result Re is approximated when the number of grid points N — oc:

R = limANFB_ A
Noo N +C

(54)

3 Results and discussions

3.1 First-order analysis
3.1.1 Beam subjected to a uniformly distributed load

We analyzed a uniform fixed—pinned beam subjected to a uniformly distributed load, as shown in Figure 18.
p=10.0 kN

ANS

4xh = 8.0m |

@ © ® @ ©) ® ® ® @

Figure 18.  Uniform fixed—pinned beam subjected to a uniformly distributed load.

The governing equation (Equation (6)) is applied at grid points 1, 2, 3, 4, and 5. The boundary conditions are satisfied
using Equations (7a) and (7c).

Details of the analysis and results are presented in the supplementary material “fixed—pinned beam subjected to a
uniformly distributed load”. Table 1 lists the results obtained with the classical beam theory (CBT) and those obtained in
the present study. Furthermore, the results are presented for a three-point stencil (TPS) considered for the slope (Equation
(14b)) and bending moment (Equation (14a)) when satisfying the boundary conditions. Finally the results for a number of

grid points n = 4, 3, and 2 are presented.
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Table 1. Bending moments (KNm) in the beam for various number of grid points: classical beam theory (CBT),
present study, present study (three-point stencil (TPS))

Five-point grid Four-point grid
4 x2.0m 3x2.67m
Position CBT Present study Present study Position CBT Present study
X(m)  (exact results) (TPS) X(m)
0.0 -80.00 -80.00 -72.73 0.00 -80.00 -80.00
2.0 0.00 0.00 5.45 2.67 17.78 17.78
4.0 40.00 40.00 43.64 5.33 44.44 44.44
6.0 40.00 40.00 41.82 8.00 0.00 0.00
8.0 0.00 0.00 0.00
Three-point grid Two-point grid
2 x4.0m 1 x8.0m
Position CBT Present study Position CBT Present study
X(m)  (exact results) X(m)
0.00 -80.00 -80.00 0.00 -80.00 -80.00
4.00 40.00 40.00 8.00 0.00 0.00
8.00 0.00 0.00

The results of the present study are exact for a uniformly distributed load whatever the discretization, since the exact
solution for the deflection curve is here a fourth-order polynomial which corresponds to the FDM approximation.
It is noted that the use of a three-point stencil for the bending moment and slope yields less accurate results since a

five-point stencil is used for the governing equations.
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3.1.2 Beam subjected to a concentrated load

We analyzed a uniform fixed—pinned beam subjected to a concentrated load, as shown in Figure 19.

P=10.0kN

a=4hi=50m . b =3h2=3.0m |

@ © ©® o ® ® & ® 0 6 ©® O

Figure 19. Uniform fixed—pinned beam subjected to a concentrated load

The model showing the grid points, as represented in Figure 5a,b, is considered.

The governing equation (Equation (6)) is applied at grid points 1, 2, 3, 4, 51, 5r, 6, 7, and 8. The boundary and
continuity conditions are satisfied using Equations (7a) and (7c), and Equations (10a-12), respectively.

Details of the analysis and results are presented in the supplementary material “fixed—pinned beam subjected to a
concentrated load”. Table 2 lists the results obtained with the classical beam theory (CBT) and those obtained in the

present study (FDM). The results are also presented for a three-point discretization of the beam.

Table 2. Bending moments (kNm) in the beam: CBT, FDM

Eight-point grid Three-point grid
4 x1.25m+ 3 x1.0m 5.0m + 3.0m
Position CBT Position
FDM FDM
X(m) (exact results) X(m)
0.00 -12.89 -12.89 0.00 -12.89
1.25 -6.19 -6.19 5.00 13.92
2.50 0.51 0.51 8.00 0.00
3.75 7.21 7.21
5.00 13.92 13.92
6.00 9.28 9.28
7.00 4.64 4.64

8.00 0.00 0.00
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The results of the present study are exact for a concentrated load whatever the discretization, since the exact solution
for the deflection curve is here a third-order polynomial which is exactly described with the fourth-order polynomial

FDM approximation.

3.1.3 Beam subjected to a linearly distributed load

We analyzed here a uniform fixed—pinned beam subjected to a linearly distributed load, as shown in Figure 20.

T

qi = 25.0 kNim T T T
gk =10.0 kN/m

nh = 8.0m I

Figure 20.  Uniform fixed—pinned beam subjected to a linearly distributed load

The beam is calculated at one hand with a five-point grid, and at another hand with a six-point grid.
Details of the analysis and results are presented in the supplementary material “fixed—pinned beam subjected to a linearly
distributed load”. Table 3 lists the results obtained with the classical beam theory (the exact results) and those obtained in

the present study (FDM).

Table 3. Bending moments (kNm) in the beam: CBT, FDM

Position CBT FDM Difference  Position CBT FDM Difference
X(m)  (exactresults) Five-point grid % X(m) ‘exact results)  Six-point grid %
0.00 -144.00 -144.38 0.26 0.00 -144.00 -144.15 0.10
2.00 4.50 4.22 -6.22 1.60 -17.92 -18.04 0.67
4.00 68.00 67.81 -0.28 3.20 51.84 51.75 -0.17
6.00 61.50 61.41 -0.15 4.80 72.96 72.90 -0.08
8.00 0.00 0.00 6.40 53.12 53.09 -0.06
8.00 0.00 0.00

The results of the present study have a high accuracy. It is noted that the exact results cannot be achieved since the
exact solution of w(x) for a linearly distributed loading is a fifth-order polynomial and the FDM approximation is a

fourth-order polynomial. However the accuracy increases with increasing number of grid points.
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3.1.4 Tapered pinned—fixed beam subjected to a uniformly distributed load

We analyzed a tapered pinned—fixed beam subjected to a uniformly distributed load, as shown in Figure 21.

p = 10.0 KN/m
| X1
f
| -
X
| Lo : L i
l L1 |

Figure 21.  Tapered pinned—fixed beam subjected to a uniformly distributed load.

At a position x; of the beam the second moment of area I(x1) is defined as follows,
4
(x)=1(x/L)". (55)

I, is the second moment of area at x; = L;.

L=8.0mand Ly=2.0m
First, the beam is calculated with the force method of the classical beam theory (exact results). Then, the calculation is
conducted with the FDM using n =9, 13, and 17 grid points. The results are extrapolated to obtain those for infinite
grid points. Details of the analysis and results are presented in Appendix A and in the supplementary material “tapered
pinned —fixed beam subjected to a uniformly distributed load”. Table 4 lists the results obtained with the classical

beam theory (the exact results) and those obtained in the present study (FDM).

Table 4. Bending moments (kNm) in the tapered beam: CBT, FDM

Position CBT FDM FDM FDM FDM
X(m) (exact results) Nine-point grid Thirteen-point grid  Seventeen-point grid n= oo

0.00 0.00 0.00 0.00 0.00

2.00 17.36 17.70 17.45 17.39 17.30

4.00 -5.29 -4.61 -5.11 -5.22 -5.40

6.00 -67.93 -66.91 -67.66 -67.83 -68.10

8.00 -170.58 -169.22 -170.22 -170.44 -170.80

The results of the present study have a high accuracy.
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3.2 Second-order analysis

3.2.1 Beam subjected to a uniformly distributed load and a compressive force

We analyzed a uniform fixed—free beam subjected to a uniformly distributed load and a compressive force, as shown

in Figure 22.
p=10.0 kN/m

N N
, -

L = nh = 8.0m ]

Figure 22.  Fixed—free beam subjected to a uniformly distributed load and a compressive force.

N
El
The governing equation (Equation (6)) is applied at grid points.

= -1.50

Details of the analysis and results are presented in the supplementary material “fixed—free beam subjected to a uniformly
distributed load and compressive force”. The analysis is conducted with n =9, 13, and 17 grid points. The results are then
extrapolated to obtain those for infinite grid points (Equation (54)). Table 5 lists the results obtained with the classical
beam theory (CBT) and those obtained in the present study (FDM).

Table 5. Bending moments (kNm) in the fixed—free beam: CBT, FDM

Position CBT FDM FDM FDM FDM
X(m) (exact results) Nine-point grid Thirteen-point grid  Seventeen-point grid n= oo
0.00 -618.05 -625.45 -621.31 -619.88 -616.93
2.00 -451.63 -457.83 -454.36 -453.16 -450.70
4.00 -282.90 -287.31 -284.84 -283.99 -282.23
6.00 -127.54 -129.79 -128.53 -128.09 -127.20
8.00 0.00 0.00 0.00 0.00 0.00

The results of the present study have a high accuracy. The extrapolation towards the exact results (n= o) delivers good

results.
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3.2.2 Buckling load of a fixed—pinned beam

We determined the buckling load of a fixed—pinned beam, as shown in Figure 23.

N} ‘EN
' AN
|

A

L=nh

Figure 23.  Buckling load of a fixed—pinned beam.

The analysis is conducted with n =9, 13, and 17 grid points. The results are then extrapolated to obtain those for
infinite grid points. Details of the analysis and the results are listed in the supplementary material “stability of a

fixed—pinned beam”. The buckling load N, is defined as follows:
N, =-72El/(Bl)? (56)

Values of the buckling factor B are listed in Table 6.

Table 6. Buckling factors of the beam: CBT, present study

CBT FDM FDM FDM FDM
(exact results) Nine-point grid Thirteen-point grid Seventeen-point grid n= oo
0.699 0.7176 0.7073 0.7038 0.6963

The results of the present study have a high accuracy.

3.2.3 Buckling load of a tapered beam
We determined here the buckling loads of tapered beams with various support conditions, as shown in Figure 21.
The analysis is conducted with n =9, 13, and 17 grid points. The results are then extrapolated to obtain those for
infinite grid points. Details of the analysis and the results are listed in the supplementary material “stability of a

tapered beam”. The buckling load N, is defined as follows:
2 2
N, =—2EL /(Bl) (57)

The buckling factors 3 are listed in Table 7 for g = Lo/L; = 0.25
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Table 7. Buckling factors B of tapered beams with &g = Lo/L; = 0.25

FDM FDM FDM FDM

Nine-point grid Thirteen-point grid ~ Seventeen-point grid n=oo
Pinned—pinned 4.0255 4.0249 4.0167 4.0263
Pinned—fixed 2.8403 2.8411 2.8268 2.8396
Free—fixed 5.1245 5.1284 5.1310 5.1452
Fixed—fixed 2.4584 2.2153 2.1017 1.7884

3.3.1 Free vibration analysis of a fixed—fixed beam
We determined here the vibration frequencies of a fixed—fixed beam.
The analysis is conducted with n =9, 13, and 17 grid points. The results are then extrapolated to obtain those for
infinite grid points. The details of the analysis and results are listed in the supplementary file “vibration analysis of a

fixed—fixed beam”.

The coefficients A (Equation (43c)) are listed in Table 8 below.

Table 8. Coefficients A of natural frequencies (first mode) of a fixed—fixed beam

CBT FDM FDM FDM FDM
(exact results) Nine-point grid Thirteen-point grid  Seventeen-point grid n=oo
22.40 22.00 22.21 22.28 22.43

The results of the present study have a high accuracy.

3.3.2 Free vibration analysis of a tapered free—fixed beam

We determined the vibration frequencies of the tapered beam represented in Figure 24.

X1

| L1 I

Figure 24.  Vibration analysis of a tapered free—fixed beam.
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At a position x; of the beam, the second moment of area 1(xy) is defined in Equation (55). The cross-sectional area

A(Xy) is defined as follows:

A=A (% 1L, e

A being the cross-sectional area at X; = L;. The analysis is conducted with n =9, 13, and 17 grid points. The results
are then extrapolated to obtain those for infinite grid points. The details of the analysis and results are listed in the

supplementary file “vibration analysis of a tapered free—fixed beam”.

The vibration frequency ® is defined as follows (definition adopted from Torabi [3]).

(59)
Table 9 lists the results obtained by Torabi [3] and those obtained in the present study.
Table 9. Coefficients A of natural frequencies (first mode) of a tapered beam
. FDM FDM FDM Present study
Torabi [3]
Nine-point grid Thirteen-point grid ~ Seventeen-point grid n=oo
& =0.10 2.6842 2.7100 2.6957 2.6906 2.6798
£ =0.30 2.3471 2.3548 2.3506 2.3491 2.3459
&o =0.50 2.1504 2.1493 2.1500 2.1503 2.1511
& =0.70 2.0165 2.0101 2.0137 2.0135 2.0133
£ =0.90 1.9166 1.9062 1.9120 1.9157 1.9324

The results of the present study are identical to those presented by Torabi [3].

4 Conclusions

The FDM-based model developed in this paper enables, with relative easiness, first-order analysis, second-order analysis,
and vibration analysis of Euler—Bernoulli beams. The results showed that the calculations conducted as described in this
paper yielded accurate results. First- and second-order element stiffness matrices (the axial force being tensile or

compressive) in local coordinates were determined. The analysis of tapered beams was also conducted.

The following aspects were not addressed in this study but could be analyzed with the model in future research:

v" Analysis of Timoshenko beams.
v" Analysis of linear structures, such as frames, through the transformation of element stiffness matrices from local

coordinates in the global coordinates.
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Second-order analysis of frames free to sidesway, the P-A effect being examined.
Euler—Bernoulli beams resting on Pasternak foundations.

Elastically connected multiple-beam system.

Warping torsion of beams.

Lateral torsional buckling of beams.

Classical plate theory by considering additional points at boundaries.

Boundary value problem.

Initial value problem.

AN Y U N U NN

Linear ordinary differential equation with constants or variable coefficients.

Supplementary Materials: The following files are uploaded during submission:

° “fixed—pinned beam subjected to a uniformly distributed load”

. “fixed—pinned beam subjected to a concentrated load”

. “fixed—pinned beam subjected to a linearly distributed load”

. “tapered pinned—fixed beam subjected to a uniformly distributed load”

. “fixed—free beam subjected to a uniformly distributed load and compressive force”
. “stability of a fixed—pinned beam”

. “stability of a tapered beam”

o “vibration analysis of a fixed—fixed beam”

° “vibration analysis of a tapered free—fixed beam”
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Appendix A: Tapered pinned—fixed beam subjected to a uniformly distributed load

The tapered beam (Figure 21) subjected to a uniformly distributed load was analyzed here with the force method of the
classical beam theory. The bending moment at the fixed-end was the redundant effort.
In the associated statically determinate system, Mg(x) and m(x) are the bending moment due to the distributed load and

to the virtual unit moment at the fixed-end, respectively.

Let us introduce the dimensionless ordinate & = X/l and &g = Lo/L;.

Mo(x), m(x), and |(x) can be expressed as follows
Mo (x) = px(I =x)/ 2= pI*§(1- &) /2
m(x)=x/1=¢& (A1)

1(x)=1,(x /L) =1,[&+E0-&)]

The bending moment M; at the fixed end is the solution of the following equations:

o= [MaXmO) g PEp FA-D) e
©78 ENX) ElL, 32[&+£0-&)]

¢ m(x)xm(x) | &2
Oy = dx = X -0 (A3)
! El(x) " El, .([[50"'5(1_50)] :

Equations (A2) and (A3) are solved numerically.
The combination of Equations (Al) and (A4) yields the bending moment at any position X, as follows:
M (X) = M, (X) + M, xm(X) (A5)

Details of the results are presented in the supplementary file “tapered pinned—fixed beam subjected to a uniformly

distributed load”.
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