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Abstract: The testing of high-dimensional normality is an important issue and has been intensively1

studied in the literature. It depends on the variance–covariance matrix of the sample and numerous2

methods have been proposed to reduce the complexity of the variance-covariance matrix. Principle3

component analysis (PCA) has been widely used in high dimensions, since it can project the high-4

dimensional data into lower dimensional orthogonal space. The normality of the reduced data can5

then be evaluated by Jarque–Bera (JB) statistics in each principle direction. We propose a combined6

statistics—the summation of one-way JB statistics upon the independence of each principle7

direction—to test the multivariate normality of data in high dimensions. The performance of the8

proposed method is illustrated by the significance level and empirical power of the simulated9

normal and non-normal data. Two real examples show the validity of our proposed method.10

Keywords: Principal component; Jarque–Bera statistic; Normality testing; Empirical power;11

Simulation12

1. Introduction13

Normality plays an important role in statistical analysis, and there are numerous14

methods for normality testing presented in the literature. Koziol [1] and Slate [2] used15

the properties of normal distribution function to assess multivariate normality. [3]16

checked normality using a class of goodness-of-fit tests, and this kind of method was17

also discussed in [4,5]. Various statistics have also been used in recent years, such as18

the Cramér-Von Mises(CM) statistic [5], skewness and kurtosis [6], sample entropy [7],19

Shapiro–Wilk’s W statistic [8], and the Kolmogorov-Smirnov(KS) statistic (see also in20

[9–11]).21

It is noticed that many studies of the aforementioned statistics are based on univari-22

ate normality, while the practical research we concentrate on is based on multivariate23

normality. Therefore, generalization should be used to enlarge the conclusions from24

univariate to multivariate. This is a common practice in multivariate normality testing25

when some useful statistics are adopted. Projection methods such as principle com-26

ponent analysis (PCA) can be exploited to obtain such achievement, as described in27

[8,12]. Convenient principle component analysis can project a high dimensional dataset28

into several lower dimensions in independent directions, then statistical tests in each29

direction can be summarized together to give a total test for multivariate normality, using30

the fact that the joint probability distribution is the product of all marginal probability31

distributions for independent variables. With the help of these orthogonal projections,32

the dimension can be reduced and the computation can be more efficient.33

In this paper, the Jarque–Bera statistic, a combination of skewness and kurtosis,34

instead of the two statistics, as in [8], is investigated to test the normality in each principle35

direction. Then, a new kind of statistic JBsum is constructed to test the high-dimensional36

normality. The performance of the proposed method and its power of testing are37

illustrated based on some high-dimensional simulated data.38
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This paper is organized as follows. Section 2 provides the theory of principle39

component analysis and gives the methodologies of statistical inference for multivariate40

normality. In Section 3, some simulated examples of normal data and non-normal data41

are used to illustrate the efficiency of our proposed method. Two real examples are then42

investigated in Section 4 to verify the methods’ effectiveness.43

2. High-dimensional Normality Test Based on PC-type JB statistic44

For observed data X = (xij)n×p with sample size n and dimension p, the principle45

component analysis reduces the dimension of p-variate random vector X through linear46

combinations, and it searches the linear combinations with larger spread among the47

observed value of X, i.e., the larger variances. Specifically, it searches for the orthogonal48

directions ωi(i = 1, 2, . . . , p), which satisfy49

ω = arg max
ω

Var(Xω) = arg max
ω

ωTVar(X)ω

s.t. ωTω = 1 (1)

Denoted by ΣΣΣ, the covariance matrix of X, the eigenvalue λi and principle compo-50

nents ωi(i = 1, 2, . . . , p) can be obtained by spectral decomposition of the covariance51

matrix ΣΣΣ. Therefore, the observed data can be projected to the archived lower-dimension52

space {ω1, ω2, . . . , ωp} by zi = Xωi, which gives the projected observed matrix z.53

For each zi, the skewness and kurtosis can be calculated by

Sk(zi) =
1
n ∑n

j=1
(
zij − zi

)3(
1
n ∑n

j=1
(
zij − zi

)2
)3/2 (2)

Ku(zi) =
1
n ∑n

j=1
(
zij − zi

)4(
1
n ∑n

j=1
(
zij − zi

)2
)2 (3)

where zi stands for the sample mean. Then, the univariate JB statistic can be given by

JB(zi) =
n
6

(
S2

k(zi) +
(Ku(zi)− 3)2

4

)
(4)

To test the normality of high-dimensional data, z = (z1, z2, . . . , zr), define

JBsum(z) =
r

∑
i=1

JB(zi), (5)

where r stands for the number of principle components ultimately selected, which
satisfies:

r

∑
i=1

λi

/
p

∑
i=1

λi ≤ 1− s.

Considering the hypothesis:

H0 : the data is normally distributed; v.s. H1 : the data is nonnormally distributed

Under the null hypothesis H0, the JB statistic will be asymptotically χ2(2) distributed[13],
then the JBsum will be asymptotically χ2(2r) distributed. For a given significance α, the
critical region will be

R1(Z) = {Z|JBsum(Z) > χ2
α(2r)}. (6)

Upon JBsum, an exact critical region R(X) can be deduced, and therefore the testing54

can be implemented based on these critical regions.55
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Evaluating the performance of the proposed PC-type Jarque–Bera testing depends
on 1) whether the orthogonal axes are chosen due to the cumulative proportion; and 2)
whether the hypothesis is rejected or accepted. Composed by the well known power
function, the error will be:

Power =
{

α with H0
s + (1− s)(1− β) = sβ + (1− β) with H1

, (7)

where α is the probability of a Type-I error and β is the probability of a Type-II error.56

Therefore, we can see that the power is a non-decreasing function of the parameter s.57

3. Numerical Simulations58

To evaluate the performance of the aforementioned testing, some simulation experi-59

ments are carried out in this section.60

3.1. Normally distributed data61

A series of normally distributed data were investigated with different data dimen-62

sion p and different sample size n. Let n× p simulated data matrix Xn×p ∼ N(µµµ, ΣΣΣ),63

where µµµ = 0. Consider two kinds of covariance matrix:64

(I) ΣΣΣ = ρI(|i−j|6=0) ;65

(II) ΣΣΣ = 0.5ρI(|i−j|6=0) + 0.5ρ|i−j|.66

Table 1 and Table 2 describe the significance level of the PC-type JB testing JBsum com-67

pared with Mardia’s method Z∗M1[19], Kauyuki’s method MJB∗m[17], and Rie’s method68

ZNT[18] in these two different situations, respectively.69

From the table above we can conclude that the significance level of JBsum is close70

to the specified value whenever p/n is large or small. For a given sample size n, with71

the increase in dimension p, Z∗M1, MJB∗m and ZNT perform poorly, whereas JBsum still72

performs well.73

3.2. Non-Normally distributed data74

In this part, non-normal datasets are simulated to evaluate the performance of the75

proposed method according to empirical power. The performance is evaluated in three76

databases as follows:77

(III) Shi f ted χ2(1) : every variable in Xn×p was centralized, with independently identi-78

cal distribution χ2(1).79

(IV) Shi f ted exp(1) : every variable in Xn×p was centralized, with independently iden-80

tical distribution exp(1).81

(V) N(0, 1) + χ2(2) : the first [p/2] variables in Xn×p are from N(0, 1) distribution,82

while the last p− [p/2] variables independently identically distributed from χ2(2),83

where [p/2] stands for the integer part of p/2.84

The performance of JBsum compared with the Sk-type statistics χ2
sk, Skmax [14], Ku-85

type statistics χ2
ku, Kumax [14], Mardia’s statistics Z∗M1, Z∗M2 [19], Srivastava’s statistics86

Z∗S1, Z∗S2 [17], Kazuyuki’s statistic mJBM [16] and Rie’s statistic ZNT [18] are illustrated87

in Figures 1–5. Since JBsum, χ2
sk, and χ2

ku are based on the sum of χ2, we call them88

sum-type. Skmax and Kumax come from the maximum of χ2, and thus we call them89

max-type.90

All of these methods are studied in 2000 simulated data. Figure 1– 5 show the91

comparisons of the power of different dimensions p and various sample sizes n.92

(1) Figure 1 indicates that in the case of p = 5, Z∗M1’s performance is best in all three93

cases. Though Z∗M2 performs well in Case I and Case II, it is not as good in Case V.94

Comparatively, Z∗S1, χ2
sk and JBsum perform similarly well and better than χ2

ku and95

Kumax.96
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Table 1: Significance level of PC-type Jarque–Bera (JB) testing for normally distributed data for Case-I compared with
other methods

α = 0.01 α = 0.05 α = 0.10

n Z∗M1 MJB∗m ZNT JBsum Z∗M1 MJB∗m ZNT JBsum Z∗M1 MJB∗m ZNT JBsum
p = 5
n = 25 0.0195 0.0310 0.0005 0.0215 0.0605 0.0695 0.0205 0.0345 0.1090 0.1140 0.0635 0.0455
n = 50 0.0195 0.0280 0.0025 0.0250 0.0735 0.0815 0.0330 0.0500 0.1250 0.1305 0.0765 0.0725
n = 100 0.0205 0.0290 0.0105 0.0245 0.0675 0.0765 0.0510 0.0530 0.1205 0.1160 0.0970 0.0865
n = 200 0.0130 0.0140 0.0040 0.0275 0.0560 0.0630 0.0465 0.0680 0.1080 0.1085 0.0985 0.0985
n = 500 0.0110 0.0125 0.0070 0.0255 0.0540 0.0590 0.0485 0.0690 0.1110 0.1075 0.0900 0.1110
p = 30
n = 25 0.1880 0.1880 0.3030 0.0215 0.1900 0.1900 0.3050 0.0345 0.1905 0.1905 0.3050 0.0450
n = 50 0.0005 0.0025 0.0000 0.0265 0.0195 0.0215 0.0000 0.0570 0.0540 0.0570 0.0000 0.0805
n = 100 0.0195 0.0220 0.0005 0.0335 0.0670 0.0685 0.0105 0.0700 0.1060 0.1070 0.0345 0.1020
n = 200 0.0175 0.0180 0.0030 0.0265 0.0755 0.0760 0.0295 0.0715 0.1390 0.1400 0.0715 0.1085
n = 500 0.0115 0.0120 0.0115 0.0250 0.0550 0.0560 0.0425 0.0680 0.1030 0.1040 0.0870 0.1130
p = 50
n = 25 0.1890 0.1890 0.3000 0.0190 0.1900 0.1900 0.3000 0.0340 0.1905 0.1905 0.3000 0.0470
n = 50 0.1215 0.1215 0.1435 0.0255 0.1280 0.1280 0.1505 0.0495 0.1340 0.1340 0.1540 0.0725
n = 100 0.0050 0.0050 0.0000 0.0340 0.0350 0.0375 0.0005 0.0630 0.0850 0.0850 0.0030 0.0900
n = 200 0.0265 0.0270 0.0010 0.0295 0.0655 0.0660 0.0130 0.0660 0.1175 0.1170 0.0370 0.1000
n = 500 0.0180 0.0195 0.0060 0.0210 0.0595 0.0595 0.0330 0.0590 0.1130 0.1130 0.0815 0.1035
p = 100
n = 25 0.1840 0.1840 0.3075 0.0135 0.1840 0.1840 0.3075 0.0225 0.1840 0.1840 0.3075 0.0410
n = 50 0.1260 0.1260 0.2055 0.0210 0.1265 0.1265 0.2060 0.0420 0.1270 0.1270 0.2060 0.0625
n = 100 0.0875 0.0875 0.1070 0.0285 0.0940 0.0940 0.1090 0.0560 0.0960 0.0960 0.1105 0.0845
n = 200 0.0080 0.0080 0.0000 0.0305 0.0355 0.0355 0.0000 0.0640 0.0715 0.0720 0.0005 0.0945
n = 500 0.0225 0.0225 0.0030 0.0160 0.0820 0.0820 0.0230 0.0615 0.1375 0.1375 0.0550 0.1030
p = 200
n = 25 0.1730 0.1730 0.3055 0.0145 0.1735 0.1735 0.3055 0.0240 0.1735 0.1735 0.3055 0.0330
n = 50 0.1540 0.1540 0.2295 0.0225 0.1540 0.1540 0.2295 0.0395 0.1540 0.1540 0.2295 0.0580
n = 100 0.1235 0.1235 0.1815 0.0310 0.1235 0.1235 0.1815 0.0660 0.1235 0.1235 0.1815 0.0905
n = 200 0.0835 0.0835 0.0915 0.0205 0.0855 0.0855 0.0940 0.0540 0.0875 0.0875 0.0945 0.0905
n = 500 0.0090 0.0090 0.0000 0.0165 0.0505 0.0505 0.0000 0.0585 0.1095 0.1095 0.0010 0.0960
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Table 2: Significance level of the PC-type JB testing for normally distributed data for Case-II compared with other methods

α = 0.01 α = 0.05 α = 0.10

n Z∗M1 MJB∗m ZNT JBsum Z∗M1 MJB∗m ZNT JBsum Z∗M1 MJB∗m ZNT JBsum
p = 5
n = 25 0.0245 0.0385 0.0005 0.0230 0.0735 0.0795 0.0260 0.0390 0.1195 0.1230 0.0665 0.0490
n = 50 0.0190 0.0275 0.0050 0.0255 0.0620 0.0700 0.0320 0.0505 0.1070 0.1090 0.0780 0.0705
n = 100 0.0195 0.0250 0.0055 0.0260 0.0715 0.0770 0.0370 0.0585 0.1215 0.1215 0.0925 0.0860
n = 200 0.0150 0.0220 0.0115 0.0230 0.0580 0.0660 0.0420 0.0565 0.1070 0.1060 0.0970 0.0925
n = 500 0.0095 0.0110 0.0090 0.0205 0.0515 0.0595 0.0460 0.0675 0.1010 0.1040 0.0915 0.1075
p = 30
n = 25 0.1985 0.1985 0.3480 0.0180 0.2010 0.2010 0.3500 0.0300 0.2015 0.2015 0.3525 0.0430
n = 50 0.0015 0.0020 0.0000 0.0310 0.0170 0.0175 0.0000 0.0535 0.0470 0.0495 0.0000 0.0735
n = 100 0.0235 0.0250 0.0015 0.0260 0.0670 0.0680 0.0145 0.0580 0.1115 0.1110 0.0400 0.0920
n = 200 0.0225 0.0230 0.0035 0.0245 0.0715 0.0725 0.0345 0.0670 0.1300 0.1290 0.0740 0.1090
n = 500 0.0140 0.0140 0.0075 0.0205 0.0685 0.0680 0.0460 0.0640 0.1235 0.1240 0.0870 0.1150
p = 50
n = 25 0.2605 0.2605 0.4230 0.0150 0.2610 0.2610 0.4240 0.0295 0.2620 0.2620 0.4265 0.0435
n = 50 0.1075 0.1075 0.1615 0.0245 0.1130 0.1130 0.1690 0.0470 0.1175 0.1175 0.1720 0.0710
n = 100 0.0065 0.0070 0.0000 0.0260 0.0475 0.0480 0.0005 0.0570 0.0875 0.0885 0.0030 0.0810
n = 200 0.0155 0.0155 0.0015 0.0275 0.0645 0.0645 0.0135 0.0615 0.1185 0.1190 0.0400 0.0925
n = 500 0.0240 0.0240 0.0100 0.0180 0.0705 0.0705 0.0420 0.0710 0.1210 0.1210 0.0775 0.1130
p = 100
n = 25 0.2600 0.2600 0.4315 0.0145 0.2600 0.2600 0.4315 0.0305 0.2600 0.2600 0.4315 0.0400
n = 50 0.1970 0.1970 0.3345 0.0265 0.1975 0.1975 0.3345 0.0490 0.1975 0.1975 0.3345 0.0650
n = 100 0.0845 0.0845 0.1310 0.0295 0.0900 0.0900 0.1355 0.0605 0.0930 0.0930 0.1385 0.0865
n = 200 0.0075 0.0080 0.0000 0.0260 0.0395 0.0395 0.0000 0.0665 0.0740 0.0740 0.0005 0.1020
n = 500 0.0250 0.0250 0.0040 0.0210 0.0755 0.0760 0.0210 0.0665 0.1295 0.1295 0.0515 0.1025
p = 200
n = 25 0.3050 0.3050 0.4800 0.0110 0.3050 0.3050 0.4805 0.0225 0.3050 0.3050 0.4810 0.0340
n = 50 0.2500 0.2500 0.4035 0.0265 0.2510 0.2510 0.4040 0.0515 0.2510 0.2510 0.4040 0.0740
n = 100 0.1475 0.1475 0.2465 0.0245 0.1475 0.1475 0.2465 0.0560 0.1475 0.1475 0.2465 0.0785
n = 200 0.0650 0.0650 0.0960 0.0250 0.0685 0.0685 0.0980 0.0545 0.0710 0.0710 0.0985 0.0830
n = 500 0.0100 0.0100 0.0005 0.0195 0.0570 0.0570 0.0010 0.0615 0.1055 0.1055 0.0030 0.1025
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Figure 1. Empirical power of proposed PC-type JB testing compared with other methods (p=5)

Figure 2. Empirical power of proposed PC-type JB testing compared with other methods (p=30)

Figure 3. Empirical power of proposed PC-type JB testing compared with other methods (p=50)
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Figure 4. Empirical power of proposed PC-type JB testing compared with other methods (p=100)

Figure 5. Empirical power of proposed PC-type JB testing compared with other methods (p=200)
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(2) In the case of p = 30, as in Figure 2, although Z∗M1 and Z∗M2 perform better than97

JBsum in Case IV, they do not maintain stable results like JBsum in Case III. In fact,98

JBsum’s performance is generally better than the other methods mentioned here99

among all three cases.100

(3) In Figure 3, where p = 50, JBsum’s performance is best among others except Z∗M2. As101

in Figure 2, Z∗M2 is unstable in Case V when p is close to n. This phenomenon can102

also be seen in mJBM. Combining the information shown in Figure 2, we can see103

that Z∗M1, Z∗M2, and mJBM are not as stable as JBsum.104

(4) With the increase in dimension, as seen in Figure 4, Z∗M1 no longer performs as well105

as before, and mJBM is still not stable enough when n is close to p. Although106

Kumax’s performance is better than JBsum’s at first, it is surpassed by the latter when107

n > 100.108

(5) In Figure 5, as in p = 100, the power of Kumax is initially higher than JBsum, and is109

eventually surpassed by JBsum. Except for Z∗M2 and Kumax, JBsum’s performance is110

the best.111

From the phenomenon above, we may conclude that JBsum performs well compared112

to the other statistics, in that its power is relatively higher than the others and the113

corresponding simulation results are more stable. Thus, it can be used to test the non-114

normality of low- or high-dimensional data effectively.115

4. Two Real Examples116

In this section, we investigated two real examples to illustrate the performance of117

our proposed method compared with the nine aforementioned existing methods.118

4.1. SPECTF Heart data Example119

The SPECTF heart dataset [15] provides data on cardiac single proton emission120

computed tomography (SPECT) images. It describes the diagnosis of cardiac single121

proton emission computed tomography (SPECT) images, and each patient is classified122

into two categories: normal and abnormal. The data contain 267 instances, with each123

instance belonging to a patient along with 44 continuous feature patterns summarized124

from the original SPECT images. The other attribute is an binary variable that indicates125

the diagnosis of each patient, with 0 for normal and 1 for abnormal.126

In this dataset, we simultaneously evaluate the normality of the whole dataset and127

each class within it. The testing p-value of each method mentioned above is shown in128

Table 3.129

Let S0 describe the whole data set and S1 and S2 denote the normal class dataset and130

abnormal class dataset, respectively. We calculate the p-values of our PC-type statistic131

as well as the Sk-type and Ku-type statistics and other methods mentioned in [16,17] of132

these three datasets. Since all ten statistics’ p-values of data S0 and S1 are very close to 0,133

we will not describe them here, which indicates a non-normal distribution of the whole134

dataset and abnormal dataset.135

We may see from Table 3 that S2’s corresponding p-values are a little different from136

the former two sets, in which the p-values of χ2
sk, Z∗M1 and MJB∗M depart from 0. The137

relatively high p-values motivate us to conduct a detailed survey to investigate the138

normality of the SPECTF heart data’s normal class by selecting some kinds of different139

variables that belong to a variety of degrees of normality.140

In this normal category, we extract some variables and construct a new dataset S3141

from several experiments. The selected variables included in S3 are X2, X4, X6, X7, X9 ∼142

X12, X14 ∼ X21, X23 ∼ X28, X31 ∼ X34, and X37 ∼ X43. We then compute the p-143

values of this dataset, and the results are shown in Table 3. It can be seen that all144

normality testing methods have a relatively high p-value, which demonstrates the mul-145

tivariate normality of set S3. For comparison, we constructed another two datasets,146
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Table 3: p-values of the six statistics of single proton emission computed tomography (SPECT) heart data

data set χ2
sk χ2

ku Skmax Kumax Z∗M1 Z∗S1 MJB∗m MJB∗s mMJB JBsum
S2 0.2076 0.0141 0.0713 0.0000 0.4533 0.0329 0.4553 0.0241 0.1367 0.0138
S3 0.5345 0.5318 0.6518 0.4207 0.0087 0.2109 0.0066 0.1935 0.4567 0.5560
S4 0.1956 0.1201 0.3231 0.0728 0.0000 0.0244 0.0000 0.0050 0.0212 0.0780
S5 0.0096 0.0045 0.0056 0.0038 0.0000 0.0415 0.0000 0.0111 0.0464 0.0003

S4 and S5, which consist of several verified normal variables and non-normal vari-147

ables, respectively. Specifically, S4 contains the variables X3, X5, X6 ∼ X8, X11 ∼148

X14, X17, X21, X22, X27 ∼ X32, X35, X36, X38, X40, X43, andX44, while S5 contains variables149

X3 ∼ X8, X13, X15, X22, X29, X30, X35, X36, X42, andX44. From Table 3 we can see the re-150

sults of these two sets. This time, the p-values of the ten methods are no longer as high151

as before, meaning that our method performs well in assessing the normality of normal152

and non-normal data.153

4.2. Body data example154

In this part, we analyze the normality of body data investigated in [14] to show the155

consistency of our method with other existing methods and conclusions before. This156

data set contains 100 human individuals and each individual has 12 measurements of157

the human body (see [14] for details). As before, the p-values of the PC-type statistics158

and the Sk-type, Ku-type, and Kazuyuki’s statistics are computed.159

Let B0 describe the whole dataset, and the multivariate normality of it can be inves-160

tigated by the resulting p-values of each method shown in Table 3. Since all the p-values161

approach 0, we may conclude that this dataset contains non-normal data. As with the162

discussion in [14], we also investigate the other six datasets to show the validity of our163

proposed method, as well as making a comparison with other methods. For convenience,164

we denote B1 = (X1, X3, X8, X10, X12), B2 = (X1, X3, X8, X10), B3 = (X1, X8, X10, X12),165

B4 = (X3, X8, X10, X12), B5 = (X4, X5, X6, X11), and B6 = (X2, X4, X6, X11). From Ta-166

ble 4, we can conclude that the normality testing results of our proposed PC-type167

statistic JBsum are nearly the same as those for Sk-type statistics, Ku-type statistics, and168

Kazuyuki’s methods. Since B1, B2, B3, and B4 have multivariate distribution, whereas B5169

and B6 have non-normal distribution [14], our method is closer to the truth in the sense170

of higher p-values in multivariate normal situations and lower p-values in non-normal171

situations compared with the Sk-type and Ku-type statistics.172

This phenomenon indicates that when testing real multivariate normal distributed173

data, our method results in a slightly higher p-value than the compared Sk-type and Ku-174

type statistics, whereas for non-normal distribution data, our method shows a relatively175

lower p-value. Thus, our PC-type statistic JBsum constitutes a more effective way of176

testing normality both in normal data and non-normal data, with more stable testing177

results.178

5. Conclusion179

The purpose of this paper is to use a JB-type testing method to test high-dimensional180

normality. The statistics we proposed here used the generalized statistic JBsum of JB181

statistics to test normality based on the dimensional reduction performed by PCA.182

Through simulated experiments, we find that in both low and high dimensions,183

JBsum performs well in testing normal and non-normal data, and it is more stable than184

many other compared methods. Therefore, it can be used to test normality effectively.185

From two real examples, we can also see that our proposed method possesses the186

superiority of stability in performing the normality testing of real datasets, as well as the187

inclination of detecting the true normality from the perspective of p-values.188
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Table 4: p-values of the six statistics of body data

data set χ2
sk χ2

ku Skmax Kumax Z∗M1 Z∗S1 MJB∗m MJB∗s mMJB JBsum
B0 0.0005 0.0046 0.0007 0.0007 0.0018 0.0051 0.0014 0.0037 0.0253 0.0000
B1 0.6148 0.7214 0.5606 0.6502 0.5602 0.5568 0.5632 0.6345 0.9584 0.7879
B2 0.3568 0.5468 0.3083 0.4704 0.1893 0.2897 0.2303 0.3771 0.8128 0.5087
B3 0.6069 0.4335 0.5813 0.5116 0.3277 0.5817 0.3309 0.6405 0.8588 0.6097
B4 0.6447 0.4297 0.5759 0.5776 0.7257 0.5863 0.5275 0.5285 0.5483 0.6280
B5 0.0109 0.0628 0.0338 0.0422 0.0028 0.0163 0.0014 0.0099 0.0405 0.0048
B6 0.0538 0.2003 0.1183 0.2662 0.1124 0.0290 0.1252 0.0221 0.0777 0.0533
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