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Competing Conventions with Costly Information
Acquisition
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Abstract

We consider an evolutionary model of social coordination in a 2x2 game where
two groups of players prefer to coordinate on different actions. Players can
pay a cost to learn their opponent’s group: if they pay it, they can condition
their actions on the groups. We assess the stability of outcomes in the long-
run using stochastic stability analysis. We find that three elements matter for
the equilibrium selection: the group size, the strength of preferences, and the
information’s cost. If the cost is too high, players never learn the group of
their opponents in the long-run. If one group is stronger in preferences for its
favorite action than the other, or its size is sufficiently large compared to the
other group, every player plays that group’s favorite action. If both groups
are strong enough in preferences, or if none of the group’s size is large enough,
players play their favorite actions and miscoordinate in inter-group interactions.
Lower levels of the cost favor coordination. Indeed, when the cost is low, in
inside-group interactions, players always coordinate on their favorite action,
while in inter-group interactions, they coordinate on the favorite action of the
group that is stronger in preferences or large enough.

1 Introduction

Since the seminal contribution of Kandori et al. , evolutionary game theorists have
used stochastic stability analysis and 2x2 coordination games to study the formation
of social conventions[l] Some of these works focus on coordination games such as the
battle of sexes: a class that describes situations in which two groups of people prefer
to coordinate on different actions. In this framework, the long-run convention may
depend on how easily people can learn each other’s preferences.

Think about Bob and Andy that want to hang out together: they can either go
to a football match or to the cinema. Both Andy and Bob prefer football, but
they do not know what the other prefers. In certain contexts, learning each other’s
preferences may require too much effort. In these cases, if Bob and Andy know that
everybody usually goes to the cinema, they go to the cinema without learning each
other’s preferences. In other situations, learning each other’s preferences may require
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a small effort (for instance, watching each other’s Facebook walls). In this case,
Bob and Andy learn that they both prefer football, so they go to a football match
together.

In this work, we contribute to the literature on coordination games. We show which
conventions establish between two groups of people different in preferences if people
can learn each other’s preferences by exerting an effort. We do so, formalizing the
example previously made and studying the evolution of conventions in a dynamic
setting. We model the coordination problem as a repeated language game (Neary
[7]): we use evolutionary game theory solution concepts and characterize the long-
run equilibrium as the stochastically stable state (see Foster & Young , Kandori
et al. [1] and Young [9]).

We consider a population divided into two groups, which repeatedly play a 2x2 co-
ordination game. We assume that one group is larger than the other, and the two
groups differ in preferences towards the coordination outcomes. At each period, play-
ers can learn the group of their opponent if they pay a cost. Such a cost represents
the effort to exert if they want to learn their opponent’s group. If they pay this cost,
they can condition the action to the player they meet. If they do not pay it, they
can only play the same action with every player. Given this change in the strategic
set, we introduce a new possible perturbation. Players can make a mistake in the in-
formation choice and a mistake in the coordination choice. We model two situations:
one where the cost is equal to zero, and players always learn their opponent’s group,
and one where the cost is strictly positive and players can learn their opponent’s
group only if they pay that cost. Players decide myopically their best reply based
on the current state, which is always observable. We say that a group is stronger
in preferences for its favorite action than the other if it assigns higher payoffs to its
favorite outcome or lower payoffs to the other outcome compared to the other group.

We find that cost level, strength in preferences, and group size are crucial drivers for
the long-run stability of outcomes. Two different scenarios can happen, depending
on the cost. Firstly, low cost levels favor coordination: players always coordinate
on their favorite action with players of their group. If one group is stronger in
preferences for its favorite action or its size is sufficiently large compared to the other,
every player plays the action preferred by that group in inter-group interactions.
Interestingly, players from the group that is stronger in preferences never need to
buy the information because they play their favorite action with everyone, while
players from the other group always need to buy it.

Secondly, when the cost is high, players never learn the group of their opponents,
and they play the same action with every player. Some players coordinate on one
action that they do not like, even with players of their group. Indeed, we find that
when one group is stronger in preferences than the other for its favorite action, or if
its size is sufficiently large compared to the other, every player coordinates on that
group’s favorite action. Even worse, the two groups may play their favorite action
and miscoordinate in inter-group interactions. We find that this outcome occurs when
both groups are strong enough in preferences for their favorite action or if the two
groups are sufficiently close in size.

Neary [7] considers a similar model, where each player decides one single action valid
for both groups. Hence, it is as if learning an opponent’s group requires too much
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effort, and no player ever learns it. Given this scenario, Neary’s results are the same
as in our analysis when the cost is high.

It is helpful to highlight our analysis with respect to the one proposed by Neary,
from which we started. We firstly enlarge Neary’s analysis to the case when players
learn their opponent’s group at zero cost. In this case, only states where all the
players in one group buy the information can be stochastically stable: this result was
not possible in the analysis of Neary. Overall, controlling for the cost equal to zero
may be seen as a robustness exercise; nevertheless, we find that the model is more
tractable under this specification than under Neary’s one. Indeed, if the cost is equal
to zero, we can consider inter-group dynamics separated from inside-group ones, and
hence, we can consider two absorbing states at a time.

The behavioral interpretation is similar for high and low levels of the cost: either
the minority adapts to the majority, or the weaker group in preferences adapt to
the strongest. Indeed, when the cost is low, the weakest group always needs to
buy the information, while the strongest group does not, since it plays its favorite
action with everyone. Similarly, when the cost is high, everybody will play the action
favorite by the strongest group in preferences in the long-run. However, comparing
the high cost case with the low cost case enriches the previous analysis. From this
comparison, we can say that reducing the cost of learning the opponent’s group
increases the probability of inter-group coordination in the long-run. Indeed, inter-
group miscoordination does not occur without incomplete information and a high
cost. Unlike in Neary, strength in preferences or group size alone does not cause
inter-group miscoordination.

The paper is organized as follows: In Section 2| we explain the model’s basic features.
In Section [3, we determine the results for the complete information case where the
cost is 0. In Section {4 we derive the results for the case with incomplete information
and costly acquisition. We distinguish between 2 cases: low cost and high cost. In
Section [5 we discuss results, and in Section [6] we conclude. We give all proofs in the

2 The Model

a b a b
a HA,HA 0,0 a | T, T 0,0
b 0,0 TA,TA b 0,0 HB,HB
Table 1: Interactions inside group A. Table 2: Interactions inside group B.
a b

a HA,’/TB 0,0
b [ 0,0 |mallp

Table 3: Inter-group Interactions.
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We consider N players divided into two groups A and B, N = N4y + Ng. We assume
N4 > N+ 1 and Np > 1. Each period, players are randomly matched in pairs to
play the 2x2 coordination game represented in Matrix (1] to |3} Matching occurs with
uniform probability, regardless of the group. Matrix 1 and [2] represent inside-group
interactions, while Matrix 3 represents inter-group interactions (group A row player
and group B column player). We assume that 114 > 74 and thus, we name a the
favorite action of group A. Equally, we assume Il > w5 and hence, b is the favorite
action of group B. We do not assume any particular order between Ilg, and Il4.
However, without loss of generality, we assume that I[14 + 74 = [l + 7. Consider
K € {A, B}, and K’ # K € {A, B}. We say that group K is stronger in preferences
for its favorite action than group K’ if [Ix > Ilg: or equivalently mx < mx-.

Each period, players choose whether to pay a cost to learn their opponent’s group or
not before choosing between action a and b. If they do not pay it, they do not learn
the group of their opponent, and they play one single action valid for both groups.
If they pay it, they can condition the action on the two groups. We call information
choice the first and coordination choice the second.

Consider player ¢ € K. 7; is the information choice of player i: if 7; = 0 player ¢ does
not learn the group of her/his opponent. If 7; = 1, player i pays a cost ¢, and learns
the group. We assume ¢ > 0. zq; € {a, b} is the coordination choice when 7; = 0. If
7, = 1, 2K € {a,b} is the coordination choice when player i meets group K, while
z&" € {a, b} is the coordination choice when player ¢ meets group K'.

A pure strategy of a player consists of her/his information choice, 7;, and of her/his
coordination choices conditioned on the information choice, i.e.

S; = (Ti,l'()i,JTﬁ,lEﬁ/) €S =1{0,1} x {a, b}?’.

Each player has sixteen strategies. However, we can safely neglect some strategies
because they are both payoff equivalent (a player earns the same payoff disregarding
which strategy s/he chooses) and behaviorally equivalent (a player earns the same
payoff independently from which strategy the other players play against her/him).

We consider a model of noisy best response learning in discrete time (see Kandori
et al. [1], Young [9]).

Each period ¢t = 0,1,2,..., independently from previous events, there is a positive
probability p € (0,1) that a player is given the opportunity to revise her/his strategy.
When such an event occurs, each player that is given the revision opportunity chooses
with positive probability a strategy that maximizes her/his payoff at period ¢. s;(t)
is the strategy played by player i at period t. U(s', s_;) is the payoff of player ¢ that
chooses strategy s’ against the strategy profile s_; played by all the other players
except i. Such a payoff depends on the random matching assumption and the payoffs
of the underlying 2x2 game. At period t + 1, player i chooses

si(t+1) € arg max Ul(s', s_i(t)).
s'e

If there is more than one strategy that maximizes the payoff, player i assigns the
same probability to each of those strategies. The above dynamics delineates a Markov
process that is ergodic thanks to the noisy best response property.
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We group the sixteen strategies into six analogy classes that we call behaviors. We
name behavior a (b) as the set of strategies when player i € K chooses 7; = 0, and
xo; = a (b). We name behavior ab as the set of strategies when player i chooses 7; = 1,
¥ = a, and :c{i/ = b, and so on and so forth. Z is the set of possible behaviors:
Z = (a,b,ab,ba,aa,bb). z(t) is the behavior played by player i at period ¢ as implied
from s;(t). z_;(t) is the behavior profile played by all the other players except ¢ at
period t as implied from s_;(¢). Note that behaviors catch all the relevant information
as defined when players are myopic best repliers. U!(2’, z_;(t)) is the payoff for player
i that chooses behavior 2z’ against the behavior profile z_;(¢). Such a payoff depends
on the random matching assumption and the payoffs of the underlying 2x2 game.
The dynamics of behaviors as implied by strategies coincide with the dynamics of
behaviors, assuming that players myopically best reply to a behavior profile. We
formalize the result in the following lemma.

Lemma 1. Given the dynamics of z(t + 1) as implied by s;(t + 1), it holds that
zi(t + 1) € argmaz UL(Z', z_(t)).
ez

We provide the proof in the appendix, and we give an example here. Consider a
player ¢ € A such that the best thing to do for her/him is to play a with every
player s/he meets regardless of the group. In this case, both (0, a, a,b) and (0, a, b, b)
maximize her/his payoff. Differently, (0,b,a,b), does not maximize her/his payoff
since in this case, s/he plays b with every player s/he meets. Moreover, the payoff
of player i is equal whether s_; = (0,a,a,b)" ! or s_; = (0,a,b,b)" !, but different
if s_; = (0,b,a,b)N~1. Therefore, all the strategies that belong to the same behavior
are payoff equivalent and behaviorally equivalent.

A further reduction is possible because aa (bb) is behaviorally equivalent to a (b) for
each player. The last observation and the fact that we are interested in the number
of players playing a with each group lead us to introduce the following state variable.
We denote with n4 (n®P) the number of players of group A (B) playing action a
with group A (B), and n? (n®4) the number of players of group A (B) playing
action a with group B (A). We define states as vectors of four components: w =
{nAA, nAB nBA, nBB}, with 2 being the state space, and w; = {n;f‘A, niB nBA ntBB}
the state at period t. At each t, all the players know all the components of w;.
Consider player ¢ playing behavior z;(t) at period t. Ui(t)(z’ ,wy) is the payoff of ¢ if
s/he chooses behavior 2z’ at period ¢ 4+ 1 against the state w;. All that matters for a
decision-maker is w; and z;(t). We formalize the result in the following lemma.

Lemma 2. Given the dynamics of wy,1 generated by z;(t+1), it holds that Ul(2', z_;(t))
U;(t)(z’,wt). Moreover, Ui (2 w;) = Ul (2 wi) = Ul (2, wy), and Ui (2, wy) = Ujy (7, w
Ui (2 wy).

We prove the result in the appendix, and we give a short explanation here. If players
are randomly matched, it is as if each player plays against the entire population.
Therefore, each player of group K myopically best responds to the current period by
looking at how many players of each group play action a with group K. Moreover, a
player that is given the revision opportunity subtracts her/himself from the compo-
nent of w; where s/he belongs. If ¢ € K is playing behavior a, aa or ab at period t,
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s/he knows that n*% — 1 players of group K are playing action a with group K at
period t.

Define with 6;,; the set of players that are given the revision opportunity at period .
Given Lemma , it holds that w;,, depends on w; and on ;1. That is, we can define
a map F'(-) such that w;,; = F(wy, 0p41). The set 6,41 reveals whether the players
who are given the revision opportunity are playing a behavior between a, aa, and ab,
or a behavior between b, bb, and ba. In the first case we should look at U!, while in
the second at Uj.

From now on, we will refer to behaviors and states following the simplifications de-
scribed above.

We illustrate here the general scheme of our presentation. We divide the analysis
into two cases: complete information and incomplete information. For each case, we
consider unperturbed dynamics (players choose the best reply behavior with prob-
ability 1) and perturbed dynamics (players choose a random behavior with a small
probability). First, we help the reader understand how each player evaluates her/his
best reply behavior and which states are absorbing. Second, we highlight the general
structure of the dynamics with perturbation and then determine the stochastically
stable states. We provide the proofs of all the results in the appendix and their
intuition in the main text. In the next section, we analyze the case with complete
information, hence, when the cost is zero.

3 Complete Information with Free Acquisition

In this section, we assume that each player can freely learn the group of her/his
opponent when randomly matched with her/him. Without loss of generality, we
assume that players always learn the group of their opponent in this case. We refer to
this condition as free information acquisition. Each player has four possible behaviors
as defined in the previous section. Z = {aa, ab, ba,bb}, with a = aa, and b = bb in

this case.
K HA fK=A TA ifK=A

a — TR ifK=RB HB ITK=B"
Equation to are the payoffs for a player ¢« € K playing aa or ab at period t.

Define 7 and 7 =

KK 1 K'K

Uilaa,w) = “——r + —r, L
. KK _q Nr — nkK'K
Uilab,wy) = “4—mlf + S, (2)
' Ny — nKKE nk'K
Uilba,w) = =t + ol 3)
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3.1 Unperturbed Dynamics

We begin the analysis for complete information by studying the dynamics of the
system when players play their best reply behavior with probability one.

We can separate the dynamics of the system into 3 different dynamics. The two

regarding inside-group interactions i.e. n** and nPP and the one regarding inter-

group interaction, i.e. ni*? and nf*. We call this subset of states n] = (nj*?,nf4).

Both n# and nP? are one-dimensional; n! instead is two-dimensional.

Lemma 3. Under free information acquisition, njy = Fi(ni**, 0,41), 25 = Fy(nf?,0,.1)

and (n25,nfA) = Fas(ni® nP4,0,44).

The intuition behind the result is as follows. If players always learn their opponent’s
group, the inter-group dynamics does not interfere with the inside-group and vice-
versa. If player i € K is given the revision opportunity, s/he chooses 2 only based

on nkk.

Consider a subset of 8 states: w® = {(N4, Na, N, Ng), (0, Na, Ng, Np),
(NAaNAaNBaO)7 (NA70707NB)a (OaN/hNB)O)a (NA70a070)7 (0,0,0,NB) and (0707()’0)}

R

Lemma 4. Under free information acquisition, the states in w™ are the unique ab-

sorbing states of the system.

We call (Na, Na, Ng, Ng) and (0,0,0,0) Monomorphic States (M.S from now on).
Specifically, we refer to the first one as M S, and to the second as MS,. We label
the remaining six as Polymorphic States (PS from now on). We call (N4, N4, Ng,0)
PS, and (N4, 0,0,0) PSy. In M S, every player plays the same action with any other
player; in PS, at least one group is conditioning the action. In MS,, every player
plays aa, in M .Sy, every player plays bb. In PS,, group A plays aa and group B plays
ba. In PS,, group A plays ab while group B plays bb. Both in PS, and PS,, all
players coordinate on their favorite action with their similar.

In the model of Neary, only three absorbing states were possible: the two M S and a
Type Monomorphic State where group A plays aa, and group B plays bb. The PS
were not present in the previous analysis. We observe these absorbing states in our
analysis, thanks to the possibility of conditioning the action on the group.

We can break the absorbing states in w’ into the three dynamics in which we are
interested. This simplification helps in understanding why only these states are ab-
sorbing. For instance in inter-group interactions there are just two possible absorbing
states, namely (N4, Ng) and (0,0). For what concerns inside-group interactions, N4
and 0 matters for n*4, N and 0 for n?B. For each dynamics, the states where every
player plays a or where every player plays b with one group are absorbing. In this
simplification, we can see the importance of Lemma [3] As a matter of fact, in all the
dynamics we are studying, there are just two candidates to be stochastically stable.
This result simplifies the stochastic stability analysis.

3.2 Perturbed Dynamics

We now introduce perturbations in the model presented in the previous section,
that is, players can make mistakes while choosing their behaviors: there is a small
probability that a player does not choose her/his best response behavior when s/he

7
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is given the revision opportunity. We use tools and concepts developed by Freidlin
& Wentzell and refined by Ellison [11].

Given perturbations, w;11 depends on wy, 6;11, and on which players make a mistake
among those who are given the revision opportunity. We define with ;.1 the set of
players that do not choose their best reply behavior among those who are given the
revision opportunity. Formally, w1 = F'(wy, Oy i1, a1)-

We use uniform mistakes: the probability of making a mistake is equal for every
player and every state. At each period, if a player is given the revision opportunity,
s/he makes a mistake with probability €. In this section, we assume that players
make mistakes only in the coordination choice: assuming ¢ = 0, adding mistakes also
in the information choice would not influence the analysis. Note that Lemma 3 is
still valid under this specification.

If we consider a sequence of transition matrices { P}, ,, with associated stationary
distributions {y°}.., by continuity the accumulation point of {u°}__, that we call
(*, is a stationary distribution of P := lim._,o P°. Mistakes guarantee the ergodicity
of the Markov process and the uniqueness of the invariant distribution. We are
interested in states which have positive probability in u*.

Definition 1. A state @ is stochastically stable if p*(w) > 0 and it is uniquely
stochastically stable if p*(w) = 1.

We define some useful concepts from Ellison [11]. Let w be an absorbing state of the
unperturbed process. D(w) is the basin of attraction of w: the set of initial states
from which the unperturbed Markov process converges to w with probability one.
The Radius of @ is the number of mistakes needed to leave D(w), when the system
starts in @. Define a path from state @ to state w’ as a sequence of distinct states
(w1, ws, ... ,wr), with w1 =@ and wr = w'. T(w,w’) is the set of all paths from @ to
w’. Define r(wy,ws, . ..,wr) as the resistance of the path (wy,ws, ..., wr), namely the
number of mistakes that occurs to pass from state @ to state w’. The Radius of @ is
then

R(w) = min r(wy,wa, ..., wr).
(w1,wg,...,wT)ET((D,Q—D(tD))
Now define the Coradius of @ as
CR(w) = max min
w¢D(®) (w1,w2,...,wr)EY (w,D(@))

Thanks to Theorem 1 in Ellison [11], we know that if R(w) > CR(w), then @ is
uniquely stochastically stable.
We are ready to calculate the stochastically stable states under complete information.

r(wy,wa, ..., wr)

Np
Na’

then PSy is uniquely stochastically stable. If z—j > %—i, then PS, is uniquely stochas-
tically stable.

Theorem 1. Under free information acquisition, for N large enough, if 1—‘; <

When the cost is null, players can freely learn the group of their opponent. Therefore,
in the long-run, they succeed in coordinating on their favorite action with their simi-
lar. Hence, n* always converges to N4, and n’B always converges to 0. This result
rules out Monomorphic States and other 4 Polymorphic States: only PS, and P.S,
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are left. Which of the two is selected depends on strength in preferences and group
size. Two effects determine the results in the long-run. Firstly, if 74 = 75, PS,
is uniquely stochastically stable. The majority prevails in inter-group interactions if
the two groups are equally strong in preferences.

Secondly, if 74 7é g, there is a trade-off between strength in preferences and group
size. If 22 > B 2, either group A is stronger in preferences than group B, or group
A s sufﬁmently larger than group B. In both of the two situations, the number of
mistakes necessary to leave P.S, is bigger than the one to leave PSy: in a sense, more
mistakes are needed to make b best reply for A players than to make a best reply for
B players. Therefore, every player will play action a in inter-group interactions. A
similar reasoning applies if =2 <

Interestingly, in both cases, only players of one group need to learn their opponent’s
group: the players from the group that is weaker in preferences or sufficiently smaller
than the other.

Unlike in the analysis of Neary, if learning the opponent’s group is costless, the
Monomorphic States are never stochastically stable. This result is a consequence of
the possibility to condition the action on the group. Indeed, if players can freely learn
the opponent’s group, they will always play their favorite action inside-group.

We provide two numerical examples to explain how the model works in Figure[I]and [2]
We represent just n!, hence, a two-dimensional dynamics. Red states represent the
basin of attraction of (0,0), while green states the one of (N4, Ng). From gray
states there are paths of zero resistance both to (0,0) and to (N4, Ng). Any path
that involves more players playing a within red states has a positive resistance. Every
path that involves fewer people playing a within green states has a positive resistance.
The Radius of (0,0) is equal to the Coradius of (N4, Ng), and it is the minimum
resistance path from (0,0) to gray states. The Coradius of (0,0) is equal to the
Radius of (N4, Np), and it is the minimum resistance path from (N4, Ng) to gray
states.

5 [ ] [ ] [ ] ° ° ° L] ° ° [ ] .

4 . . . . . . . . . .
3 . . . . . . . . . . .
2 e . . . . . . . . . .
1 . . . . . . . . . .

0‘

0 1 2 3 4 5 6 7 8 9 10

Figure 1: PS, = (0,0) is uniquely stochastically stable: & < %—i

TA
Firstly, consider the example in Figure 1. Ny = 10, Ng = 5, m4 = 8, 1[I, = 10,

mp =3, IIp = 15. Clearly, 78 = S = %—i. In this case R(10,5) = CR(0,0) =1,
while R(0,0) = C'R(10,5) = 3. Hence, (0,0) is the uniquely stochastically stable

9



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2021

4 . . . . . . . . . .
3 . . . . . . . . . . .
2 . . . . . . . . . . .
1 . . . . . . . . . .

O . L] L] ° ° L] [ ] [ ] ° ° °

0 1 2 3 4 ) 6 7 8 9 10

Figure 2: PS, = (10,5) is uniquely stochastically stable: => %—f.

state. We give here a short intuition. Starting from (0,0), the minimum resistance
path to gray states is the one that reaches (0, 3). The minimum resistance path from
(10,5) to gray states is the one that reaches (9,5). Hence, fewer mistakes are needed
to exit from the green states than to exit from the red states and PS, = (10,0, 0,0)
is uniquely stochastically stable.

Secondly, consider the example in Figure 2. Ny = 10, Ng = 5, m4 = 3, II4 = 15,
75 = 8, lIp = 10. Note that 72 = 8> 2 =22 Tn this case, R(10,5) = CR(0,0) =
4, CR(10,5) = R(0,0) = 1. Hence, PS, = ?10, 10,5,0) is uniquely stochastically
stable. In this case, the minimum resistance path from (10,5) to gray states is the
one that reaches (6,5) or (10,1). The one from (0,0) to gray states is the one that
reaches (0, 1).

4 Incomplete Information with Costly Acquisition

In this section, we assume that each player can not freely learn the group of her/his
opponent. Each player can buy this information at cost ¢ > 0. We refer to this
condition as costly information acquisition f

This time, Z = {a,b,ab,ba,aa,bb}. Tt is trivial to show that there are 4 strictly
dominant behaviors, indeed, U, (aa,w;) = U ;(a,w;) — ¢ and UL, (bb,w;) =
Ul (b w;) — c. Hence, UL (aa,w;) < UL, (a,w) and UL ;) (bd,w;) < UL ) (b,wr),
Vi € N and Vw, € Q. We define strictly dominant behaviors as Z° = {a, b, ab,ba},
with z? being a strictly dominant behavior of player 7.

Equation (j5)) to are the payoffs at period ¢, for a player ¢ € K currently playing
a or ab.

' nKK L pK'K
Uz(a,w;) = : N _t 1 Wf? (5)

2Tt is trivial to notice that Lemma 3 is not valid anymore. Indeed, since players learn the group
of their opponent conditional on paying a cost, not every player pays it, and the dynamics are no
longer separable.

10
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' N _ pKK _ KK
Ué(ba wt) = n]i[ 1 & 7T15(7 (6)
KK K'K
i _ngt =1 g N —my K
U’ (ab,w;) N1 M N1 T ~C (7)
i Ny — nkE nEK'K
U, (ba,w;) = N { 7+ ﬁw}f —c. (8)

Note that if ¢ = 0, then aa = a and bb = b. We begin the analysis with the
unperturbed dynamics.

4.1 Unperturbed Dynamics

State Condition on group size and payoffs | Conditions on ¢
MS, none none
MS, none none
5 Np—1 Np_ Na_
TS e < °F c> maX{N_lwA, N_17TB}
PS, none c < %7@4
3 ~ Np—T1 Np—1
pg 1) HB>NNA1 1)e< %B_lﬂB
a TR B— A
2) E < ]]\\[]—A 2) c < mﬂ'B
A B Np—1
(0, N4, No, Ng) | ) T = R e
BB gy 1A e 2) ¢ < eI
T4 Na—1 N—1'4
(N4,0,0, Np) none ¢ < min {%WA, ]\]7\?__117@}
Ni—1 Np—1 -
1) < T4, and 2 > =5 1) ¢ < min ]X‘;‘ 117TA, J\JI\}B 11HB}
TA Np—1 B Np—1 Np Np—1
(0, N4, N3, 0) 2) 1y > Wz and 17 > i 2) e < mln{%—l}—lf“’ N I }
) ) ) — — : —
3) i < " and £ <~ 3) ¢ < min {fa=tmy, 247}
TA Nja—1 B Np—1 : NB Na
4) E>N—Bandﬂ< Na 4)C<m1H{N71HA, Nflﬂ-B}
(0,0,0,Np) none c < ]\1@3:11%3

Table 4: Necessary and sufficient conditions for absorbing states.

So far, there are no more random elements with respect to Section 3. Therefore,
wir1 = F(wy, 0441). Nine states can be absorbing under this specification.

Lemma 5. Under costly information acquisition, there are nine possible absorbing
states: wi U (N, Ny, 0,0).

We summarize all the relevant information in Table 4l The reader can note two
differences with respect to Section 3: firstly, some states are absorbing if and only if
some conditions hold, and secondly, there is one more possible absorbing state, that
is (N4, N4,0,0). Such an absorbing state was also possible in Neary under the same
conditions on payoffs and group size.

Where we write “none”, we mean that a state is always absorbing for every value of
group size, payoffs, and/or the cost. We name (N4, N4, 0,0) the Type Monomorphic
State (7'S from now on): each group is playing its favorite action in this state, causing
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miscoordination in inter-group interactions. In both M.S and T'S, no player is buying
the information, while in PS, at least one group is buying the information.
Monomorphic States are absorbing states for every value of group size, payoffs, and
cost. Indeed, when every player is playing one action with any other player, players
do not need to learn their opponent’s group (the information cost does not matter):
they best reply to these states by playing the same action.

Polymorphic States are absorbing if and only if the cost is low enough: if the cost is too
high, buying the information is too expensive, and players best reply to Polymorphic
States by playing a or b. The Type Monomorphic State is absorbing if group B
is either sufficiently close in size to group A or strong enough in preferences for its
favorite action and if the cost is high enough. The intuition is the following. On the
one hand, if the cost is high and if group B is weak in preferences or small enough,
every player of group B best replies to TS by playing a. On the other hand, if the
cost is low enough, every player best replies to this state by buying the information
and conditioning the action.

4.2 Perturbed Dynamics

We now introduce perturbed dynamics. In this case, we assume that players can
make two types of mistakes: they can make a mistake in the information choice and
in the coordination choice. Choosing the wrong behavior, in this case, can mean
both. We say that with probability 7, a player that is given the revision opportunity
at period t chooses to buy the information when it is not optimal. With probability
g, s/he makes a mistake in the coordination choice. We could have chosen to set only
one probability of making a mistake with a different behavior or strategy.

The logic behind our assumption is to capture behaviorally relevant mistakes. We as-
sume a double punishment mechanism for players choosing by mistake the information
level and the coordination action. Specifically, our mistake counting is not influenced
by our definition of behaviors. We could have made the same assumption starting
from the standard definition of strategies assuming that players can make different
mistakes in choosing the two actions that constitute the strategy. Our assumption is
in line with works such as Jackson & Watts and Bhaskar & Vega-Redondo [13],
which assume mistakes in the coordination choice and the link choice.

Formally, wip1 = F(wy, 01,05, ). Where o7, = {t7,,4/,} is the set of players
who make a mistake at period ¢ among those who are given the revision opportunity.
Y5, is the set of players that make a mistake in the coordination choice, and ¢/,
the set of players that make a mistake in the information choice.

Since we assume two types of mistakes, the concept of resistance changes, we then
need to consider three types of resistances. We call r.(wy,...,ws) the path from
state w; to state w, with ¢ mistakes (players make a mistake in the coordination
choice). We call r,(wy, . ..,ws) the path with n mistakes (players make a mistake in
the information choice). Finally, we call r.,(wy, . .. ,w,) the path with mistakes both
in the coordination choice and the information choice. Since we do not make further
assumptions on ¢ and 7 (probability of making mistakes uniformly distributed), we
can assume 7 x €.

We count each mistake in the path of both € and 1 mistakes as 1, however, re, (w, . .., ws)
is always double since it implies a double mistake. Indeed, we can see this kind
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of mistake as the sum of two components, one in n and the other in ¢, namely
Ten(Wey o Ws) = T (Wey - oo W) + e, (e, -0 W),

For example, think about w; = M S, and that one player from B is given the revision
opportunity at period t. Consider the case where s/he makes a mistake both in the
information choice and in the coordination choice. For example, s/he learns the group
and s/he plays a with A and b with B. This mistake delineates a path from M S, to
the state (N4, Na, Ng, Ng—1) of resistance r.,(MS,, ..., (Na, Na, Ng, Ng—1)) = 2.
Next, think about w; = T'S: the transition from 7'S to (N4, N4 — 1,0,0) happens
with one 7 mistake. One player from A should make a mistake in the information
choice and optimally choosing ab. In this case, r,(T'S,...,(Na, Na —1,0,0)) = 1.
With a similar reasoning, r.(MS,,...,(Na —1,Ng — 1, Ng, Ng)) = 1: a player of
group A makes a mistake in the coordination choice and chooses b.

Before giving the results, we explain why using behaviors instead of strategies does
not influence the stochastic stability analysis. Let us consider all the sixteen strategies
as presented in Section 2, and just one kind of mistake in the choice of the strategy.
Let us take two strategies ', s” € 2’ and a third strategy s” € z”. Now consider the
state w, where s; = &', Vi € N and the state o', where s; = ', Vi € {0,..., N—m—1}
and s; = ", Vj € {N —m,...,N}. Since s’ and s” are both payoff equivalent and
behaviorally equivalent, s’ and s” are the best reply strategies Vi € N, in both states
w and w’. Therefore at each period, every player who is given the revision opportunity
in state @ or w’ chooses s’ and s” with equal probability. Now let us consider the
state @’ where s; = s, Vi € N. When considering the transition between w and &',
the number of mistakes necessary for this transition is the same whether the path
passes through w’ or not because the best reply strategy is the same in both w’ and
@. Therefore, when computing the stochastically stable state we can neglect s” and

w'.

We divide this part of the analysis into two cases, the first one where the cost is low
and the second one when the cost is high.

4.2.1 Low Cost

This section discusses the case when c is as low as possible but greater than 0.

Corollary 1. Under costly information acquisition, if 0 < ¢ < ﬁmin{ﬂA,wB},

MS and PS are absorbing states, while T'S is not an absorbing state.

The proof is straightforward from Table 4. In this case, there are 8 candidates to be
stochastically stable equilibria.

Theorem 2. Under costly information acquisition, for N large enough, take 0 <

¢ < sy min{ma, w5} If < %—’j, then PSy is uniquely stochastically stable. If

fr—i > J]\V,—f, then PS, is uniquely stochastically stable.

The conditions are the same as in Theorem[I} When the cost is low enough, whenever
a player can buy the information, s/he does it. Consequently, the basins of attraction
of both Monomorphic States and Polymorphic States have the dimension they had
under free information acquisition. Due to these two effects, the results are the same
as under free information acquisition. This result is not surprising per se but serves
as a robustness check of the results of Section [3.21
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4.2.2 High Cost

In this part of the analysis, we focus on a case when only M S and T'S are absorbing
states.

Define the following set of values:

Eps = {Npma, Namp, (Np — 1)1, (N4 — 1) ma, Nplla, (Np — 1) 7R} .

Corollary 2. Under costly information acquisition, if ¢ > ﬁ max{Z=pgs} and ﬁ—’; <

Np—1 : s Np—1
PR then only M.S and T'S are absorbing states. If = then only MS are

absorbing states.

The proof is straightforward from Table 4 and therefore, we omit it. We previously
give the intuition behind this result. Let us firstly consider the case in which T'S is

not an absorbing state, hence, the case when & > Ne=1
3 3 g Ny

Theorem 3. Under costly information acquisition, for N large enough, take g—i >

Np—1 1 = 2Ny +11,4— S
& and ¢ > g max{Epg}. If Ny > W’ then M S, is uniquely stochas-

tically stable. If Ny < W, then M Sy is uniquely stochastically stable.

If group A is sufficiently large or strong enough in preferences, the minimum number
of mistakes to exit from the basin of attraction of MS, is higher than the mini-
mum number of mistakes to exit from the one of M S,. Therefore, M S, is uniquely
stochastically stable: every player plays behavior a in the long-run.

Now we analyze the case when also T'S is a strict equilibrium.

Theorem 4. Under costly information acquisition, for N large enough, take g—g <
Np—1
Ny

and ¢ > ' max{Zpg}.

o [f N(mp—ma) > Npllg — Namp — llg + wp + 4, then MS, is uniquely
stochastically stable.

o [fN (ma—mp) > Nally— Npma—ls+1p+ma, then MSy is uniquely stochas-
tically stable.

[ [fmln{NAHA —NBWA+7TA,NBHB —NA’]TB—{—’]TB}—HA—HB > N(’iTA —|—’/TB),
then T'S is uniquely stochastically stable.

Moreover, when all the above conditions simultaneously do not hold:

° IfN(?TB—ﬂ'A) > NB(HB-i-?TA) —NA(HA+7TB) + 1l — g + g — Ilg, then
MS,, is uniquely stochastically stable.

° ]fN(?TA—ﬂ'B) > NA(HA+7TB) —NB<HB+7TA) — Iy + w4 — 7 + Ilp, then
M Sy, is uniquely stochastically stable.

° ]fN(?TA—TrB) = NA(HA+7TB) —NB(HB+7TA) — Iy + 74 — 7 + Ilp, then
both M S, and M S, are stochastically stable.
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We divide the statement of the theorem into two parts for technical reasons. How-
ever, the reader can understand the results from the first three conditions. The first
condition expresses a situation where group A is stronger in preferences than group
B or group A is sufficiently larger than group B. In this case, there is an asymme-
try in the two costs for exiting the two basins of attraction of M'S, and MS,. Exit
from the first requires more mistakes than exit from the second. Moreover, reaching
MS, from T'S requires less mistakes than reaching M.S, from T'S. For this reason
R(MS,) > CR(MS,) and MS, is uniquely stochastically stable in this case. A
similar reasoning applies to the second condition.

The third condition expresses a case where both groups are strong enough in prefer-
ences or have sufficiently similar sizes. Many mistakes are required to exit from T'S,
compared to how many mistakes are required to reach T'S from the two M S. Indeed,
TS is the state where both groups are playing their favorite action. Since they are
both strong in preferences or large enough, in this case, all the players play their
favorite action in the long-run, but they miscoordinate in inter-group interactions.

The results of Theorem [3| and 4] reach the same conclusions as Neary. However,
our analysis allows us to affirm that only with a high cost, the MS or the T'S are
stochastically stable. This result enriches the previous analysis.

As a further contribution, comparing these results with those in Section [£.2.1] we can
give the two conditions for inter-group miscoordination to happen in the long-run.
First, the cost to pay to learn the opponent’s group should be so high that players
never learn their opponent’s group. Second, both groups should be strong enough
in preferences or sufficiently close in size. The following lemma states what happens
when the cost takes medium values.

Lemma 6. If ' max {74, mp} < ¢ < 7 min{Eps}, then the stochastically stable

states must be in the set M = {PS,, PSy, MS,, M Sy}.

When the cost lowers a tiny quantity from the level of Section [£.2.2] T'S is not
absorbing anymore. Therefore, only PS and M S can be stochastically stable when
the cost is in the interval above. However, not all the PS can be stochastically
stable, only the two where all the players play their favorite action in inside-group
interactions. The intuition of this result is simple: if players condition their action
on the groups in the long-run, they play their favorite action with their similar.

We do not study when do M .S are stochastically stable and when do PS are: we
leave this question for future analysis. Nevertheless, given the results of Section 4.2.1
and 4.2.2, we expect that for higher levels of the cost M .S are stochastically stable,
and for lower levels, PS are stochastically stable.

5 Discussion

The results of our model involve three fields of the literature. Firstly, we contribute
to the literature on social conventions. Secondly, we contribute to the literature
on stochastic stability analysis, and lastly, we contribute to the literature on costly
information acquisition.

For what concerns social conventions, many works in this field study the existence
in the long-run of heterogeneous strategy profiles. We started from the original
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model of Neary [7], which considers players heterogeneous in preferences, but with
a smaller strategic set than oursEl Neary’s model gives conditions for the stochastic
stability of a heterogeneous strategy profile that causes miscoordination in inter-
group interactions in a random matching case. Neary & Newton expands the
previous idea to investigate the role of different classes of graphs on the long-run
result. It finds conditions on graphs such that a heterogeneous strategy profile is
stochastically stable. It also considers the choice of a social planner that wants to
induce heterogeneous or homogeneous behavior in a population.

Carvalho considers a similar model, where players choose their actions from a
set of culturally constrained possibilities, and the heterogeneous strategy profile is
labeled as miscoordination. It finds that cultural constraints drive miscoordination
in the long-run. Michaeli & Spiro studies a game between players with hetero-
geneous preferences and who feel pressure from behaving differently. Such a study
characterizes the circumstances under which a biased norm can prevail on a non-
biased norm. Tanaka et al. studies how local dialects survive in a society with
an official language. Naidu et al. studies the evolution of egalitarian and inegal-
itarian conventions in a framework with asymmetry similar to the language game.
Likewise, Belloc & Bowles [24] examines the evolution and the persistence of inferior
cultural conventions.

We introduce the assumption that players can condition the action on the group
if they pay a cost. This assumption helps to understand the conditions for the
stability of the Type Monomorphic State, where players miscoordinate in inter-group
interactions. We show that a low cost favors inter-group coordination: incomplete
information, high cost, strength in preferences, and group size are key drivers for inter-
group miscoordination. Like many works in this literature, we show the importance
of strength in preferences and group size in the equilibrium selection.

Concerning network formation literature, Goyal et al. experiments the language
game, testing whether players segregate or conform to the majority. van Gerwen &
Buskens suggests a variant of the language game similar to our version but in a
model with networks to study the influence of partner-specific behavior on coordina-
tion. Concerning auctions theory, He studies a framework where each individual
of a population divided into two types has to choose between two skills: a “majority”
and a “minority” one. It finds that minorities are advantaged in competition context
rather than in coordination one. He & Wu tests the role of compromise in the
battle of sexes with an experiment.

Like these works, we show that group size and strength in preferences matter for the
long-run equilibrium selection. The states where the action preferred by the minority
is played in most of the interactions (M S, or PS,) are stochastically stable provided
that the minority is strong enough in preferences or sufficiently large.

A parallel field is the one of bilingual games such as the one proposed by Goyal &
Janssen or Galesloot & Goyal : these models consider situations in which
players are homogeneous in preferences towards two coordination outcomes, but they
can coordinate on a third action at a given cost.

Concerning the technical literature on stochastic stability, we contribute by applying
standard stochastic stability techniques to an atypical context, such as the costly

3Heterogeneity has been discussed in previous works such as Smith & Price , Friedman [15],
Cressman et al. [16], Cressman et al. [17] or Quilter et al. .
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information acquisition. Specifically, we show that with low cost levels, Polymorphic
States where all players in one group condition their action on the group are stochas-
tically stable. Interestingly only one group of players needs to learn their opponent’s
group. With high cost levels, Monomorphic States where no player conditions her/his
action on the group are stochastically stable. Since the seminal works by Bergin &
Lipman and Blume [32], many studies have focused on testing the role of dif-
ferent mistake models in the equilibrium selection. We use uniform mistakes, and
introducing different models could be an interesting exercise for future studies.

Among the many models that can be used, there are three relevant variants: payoff/cost-
dependent mistakes (Sandholm [33], Dokumaci & Sandholm [34], Klaus & Newton
[35], Blume and Myatt & Wallace [37]), intentional mistakes (Naidu et al.
and Hwang et al. [39]), and condition dependent mistakes (Bilancini & Boncinelli
[40]). Important experimental works in this literature have been done by Lim &

Neary [41], Hwang et al. [42], Mas & Nax [43], and Bilancini et al. [44].

Other works contribute to the literature on stochastic stability from the theoretical
perspective (see Newton for an exhaustive review of the field). Recently, Newton
has expanded the domain of behavioral rules regarding the results of stochastic
stability. Sawa & Wu [47] shows that with loss aversion individuals, the stochas-
tic stability of Risk-Dominant equilibria is no longer guaranteed. Sawa & Wu [4§]
introduces reference-dependent preferences and analyzes the stochastic stability of
best response dynamics. Staudigl examines stochastic stability in an asymmetric
binary choice coordination game.

For what concerns the literature on costly information acquisition, many works inter-
pret the information’s cost as costly effort (see the seminal contributions by Simon
or Grossman & Stiglitz ) Our paper is one of those. Many studies place this
framework in a sender-receiver game. This is the case of Dewatripont & Tirole ,
which builds a model of costly communication in a sender-receiver setup.

More recent contributions in this literature are Dewatripont , Caillaud & Tirole
, Tirole , and Butler et al. . Bilancini & Boncinelli [57] applies this model
to persuasion games with labeling. Both Bilancini & Boncinelli and Bilancini
& Boncinelli consider coarse thinkers receivers, combining costly information
acquisition with the theory of Jehiel El To the best of our knowledge, we are the
first to use costly information acquisition in an evolutionary model.

Many works use similar concepts of cost in the evolutionary game theory literature.
For example, Staudigl & Weidenholzer [62] considers a model where players can pay a
cost to form links. The main finding is that when agents are constraint in the possible
number of interactions, the Payoff-Dominant convention emerges in the long-run.
The work by Bilancini & Boncinelli [63] extends Staudigl & Weidenholzer [62]. The
model introduces the fact that interacting with a different group might be costly for
a player. It finds that when this cost is low, the Payoff-Dominant strategy is the
stochastically stable one. When the cost is high, the two groups in the population
coordinate on two different strategies: one on the Risk-Dominant and the other on the
Payoff-Dominant. Similarly, Bilancini et al. studies the role of cultural intolerance

4Rational inattention is a recent field where the information cost is endogenous (see Mackowiak
et al. for an exhaustive review). We assume that the cost is exogenous and homogeneous for
each player.
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and assortativity in a coordination context. In that model, there is a population
divided into two cultural groups, and each group sustains a cost from interacting
with the other group. It finds interesting conditions under which cooperation can
emerge even with cultural intolerance.

6 Conclusions

We can summarize our results as follows. When players learn the group of their
opponent at a low cost, they always coordinate: they play their favorite action with
their similar, while in inter-group interactions, they play the favorite action of the
group that is stronger in preferences or with size large enough. If the cost is high,
players never learn the group of their opponent. All the players play the same action
with every player, or they play their favorite action.

Comparing sections 4.2.1 and 4.2.2, we can see the impact of varying the cost levels
on the long-run results. Surely a low cost favors inter-group coordination. However,
a change in the cost level produces two effects that need perhaps further investiga-
tion. The first effect concerns the change in the payoff from the interactions between
players. The second concerns the change in the purchase of the information.
Consider a starting situation where the cost is low. Players always coordinate on
their favorite action in inside-group interactions. If the cost increases, players stop
learning their opponent’s group (hence, they stop paying the cost), and they begin
to play the same action with any other player. If this happens, either Monomorphic
States establish in the long-run, or the Type Monomorphic State emerges. In the first
case, a group of players coordinates on its second best option, even in inside-group
interactions. For this group, there could be a certain loss in terms of welfare. In the
second case, players miscoordinate in inter-group interactions, and hence, all of them
could have a certain loss in welfare.

Nevertheless, when the cost is low, there is a “free-riding” behavior that vanishes
if the cost increases. In fact, with low cost levels, only one group needs to pay the
cost, and the other never needs to pay it. In one case, players of group A play their
favorite action both in inside-group and inter-group interactions; hence, they never
need to pay the cost, while group B always needs to afford it. In the other case,
the opposite happens. Therefore, when the cost increases, one of the two groups will
benefit from not paying for the information anymore. Future studies could address
the implications of this trade-off between successful coordination and the possibility
of not paying the cost.

We conclude with a short comparison of our result with the one of Neary [7]. Indeed,
it is worthwhile to mention a contrast that is a consequence of the possibility of
conditioning the action on the group of the player. In the model of Neary, a change
in the strength of preferences or the group size of one group does not affect the
behavior of the other group. We can find this effect even in our model when the
cost is high. For example, when M S, is stochastically stable, and group B becomes
strong enough in preferences or sufficiently large, the new stochastically stable state
becomes T'S. Therefore, group A does not change its behavior. However, when the
cost is sufficiently low, the change in payoffs or group size of one group influences
the other group’s behavior in inter-group interactions. For instance, when PS, is
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stochastically stable, if group B becomes strong enough in preferences or sufficiently
large, P.S, becomes stochastically stable. Hence, both groups change the way they
behave in inter-group interactions.

Nevertheless, we can interpret similarly the passing from M S, to T'S and the one
from PS, to PS,. In both cases, both groups keep playing their favorite action in
inside-group interactions, and what happens in inter-group interactions depends on
strength in preferences and group size. Therefore, under this aspect, the behavioral
interpretation of our results is similar to Neary’s.
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A Proofs
Proof of Lemma

We have to formally show that each strategy inside the same behavior is behaviorally
and payoff equivalent for each player. Consider a player i € K. Define g/(s_;) and
g% (5_;) as the frequencies of successful coordination for 4 on action a with group K
and K’ given strategy profile s_;.

Ui((0.0.,a), 55) = U((0,a,b.b),5) =
N —1
N -1

Ni' g
N-1

9i (S—i)ﬂf-

U;((07 a,b, a), S—i) = U;((Ov a,a, b)? S—i) = gz‘K(S—i)ﬂ-f +
Therefore, if (0, a, a, a) is the maximizer, then also (0, a, a,b), (0, a,b, a) and (0, a, b, b)
are so. Hence, in this case, i maximizes her/his payoff choosing behavior a. More-
over, consider s’ ; = (0,a,a,b)"!, and s”, = (0,a,a,a)V"!. In this case g (s" ;) =

gk (s",), so for g&'. Contrarily, if s, = (0,b,a,a)N"", g5(s" ;) # g¥(s",), so for

—i —1
gi'. Therefore, Ul(a, s';) = Ui(a,s",) = Ui(a,a ). Thanks to symmetry in payoff
matrix the argument stands for all strategies and behaviors. This passage completes

the proof.

0
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Proof of Lemma 2

Consider a player ¢ € K currently playing behavior a that is given the revision oppor-
tunity at period t. gX(z_;(t)) is the frequency of successful coordinations of player i
on action a with group K at period ¢, given z_;(t). In this case, Ui(a,z_;(t)) =
]f\? 29K (2i(0)ml + 5595 (i)l Note that gf(=i(t)) = gF(zi(t),wr) and
¥ (z_i(t)) = gK'(z(t),w,). Where gX(z(t),w,) is the frequency of successful co-
ordinations of player ¢ on action a with group K at period ¢, given w; and that player
i is currently playing 2;(t). Therefore, Ul(a, z_(t)) = UL ,(a,w;). With 2(t) = a in
our case.

Note that g (a, w;)

gk (ab, wt) and gk (b,
gF (wr) = ", V(1)
Therefore, Ua(a W) = Uaa(a,wt) = Ul (a,w;). Equally, Ui(a,w;) = Ujy(a,w;) =
U}, (a,w;). Thanks to symmetry in payoff matrix the argument stands for all strategies
and behaviors.

-, and g (b, w,) =

N 13 K(a,wr) = g{(aa, w;)
w) = gK(bb,w;) = ¢ (ba,wt). Contra,rlly, gK (zi(t),w,) =
ez

O

A.1 Proofs of Section 3
Proof of Lemma 3:

Consider a player ¢ € K currently playing aa who is given the revision opportunity
at period t. On the one hand, VnXX  Ui(ab,w;) = Ul(aa,w;). On the other hand,
vni'K | Ui(ba,w,) = Ul(aa,w,). Therefore, player i chooses aa or ab depending on

nf< K and ba or aa depending on nX%.
Moreover, if player i chooses ab instead of aa, njiff = n/**, but nfi{( < nfEIf
player i chooses ba instead of aa, nff < nf{K but nfX'K = pf’% This passage
completes the proof.

U

With abuse of notation, we call best reply (BR), the action optimally taken by a
player in one of the three dynamics. For example, if a player of group A earns the
highest payoff by playing a against a player of group B, we say that a is her/his BR.
We do this in the context of complete information because of the separability of the
dynamics.

Proof of Lemma [{:

Thanks to Lemma 3, we can consider the 3 separated dynamics: n*4, nPB. and n!.

Inside-group interactions.

Firstly, we prove the result for n/4 and then the argument stands for n?? thanks
to symmetry of payoff matrix. We have to show that all the states in w’ have an
absorbing component for n4, that is 0 or Ny. When n?4 = Ny, Vi € A, a is BR
against group A at period t. Hence, Fi(Na,0,41) = N4 Symmetrically if n44 = 0,
b is always BR and so, F;(0,6;,1) = 0. Therefore, N4 and 0 are fixed points for n/4.
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We need to show that these states are absorbing, that all the other states are tran-
sient, and that there are no cycles. Consider player i € A who is given the revision
opportunity at period t. We define 7 as the minimum number of A players such
that a is BR, and n* as the maximum number of A players such that b is BR. From

Equation (1) to (4), we know that n* = ]\II@[LJ:TTA and that n = % Assume

n4 > n. There is always a positive probablhty that a player not playing a is given
the revision opportumty Hence, Fy(n*,0,11) > n4. Symmetrically, we can say
that if n < 04, Fy(n4,0,,,) < niA
We now prove that it n; A <n? #£0,

Pr <hm Fy(n*,0,41) = an> =0.

Equally, if n* > nt # Ny,

Pr (hm Fi (4 0,4,) = n;‘A) ~0.

We prove the first case, and the result stands for the second thanks to symmetry
in payoff matrices. Consider to be at period s in a state n4 < n? # 0. For every
player, b is BR. Define Pr ( n +1 = nAA) =p. Such a probablhty represents the event
that only players playing b are given the rev1s1on opportumty Pr ( nily = nAA) = p?,
Pr(nf, =nt) =p*. It k — oo, Pr (n, = n2*) = 0. Therefore,

If ng‘A <n?, Pr (hm Fl( 9t+1) = O) =1,

If nd4 > 74, Pr <hm Fi(n4,0,4) = NA> ~ 1.

Next, consider n* < n* < nt. For every i playing a, b is BR while, for every ¢

playing b, a is BR. There are no absorbing states between these states. If only players
playing a are given the revision opportunity, they all choose b, and if enough of them
are given the revision opportunity, n{4 < n“. The opposite happens if only players
playing b are given the revision opportumty.

Inter-group interactions.

We now pass to the analysis of n/. We define 4 important values for n48 and n4
Ty = min {nBA|nBA > Tale }, Tp = min {nAB|nAB > dlalNa },

Ha+ma Hp+mp
— BA|,,BA maNB — AB|,,AB HOpNa
Dy = mazx {n In?% < qarE- b, and Dp = max {n In?" < pEoA }

Given these values we also define two sets of states, Q5 and Q¢:

= {n'|nB* > Ty and n*? > T} and Q} = {n1|nBA < Dy and n*8 < Dp}.
Wlth similar computatlon as for n, we can say that (0,0) and (N4, Np) are two
fixed points for n!. Are they absorbing states?
Consider the choice of a player i € A against player j € B and vice-versa. There
can be four possible combinations of states. States in which a is BR for every player,
states in which b is BR for every player. States, in which Vi € A, a is the best reply,
and b is the best reply Vj € B, and states for which the opposite is true. Let us call
the third situation as Q% and the fourth as Q4.
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Firstly, we prove that Q¢ and QY are the regions where a and b are BR for every player.
Secondly, we prove that there is no other absorbing state in Q9 than (Na, Np), and
no other absorbing state in Q4 than (0, 0).

Assume that player ¢ € A is given the revision opportunity at period ¢. From Equa-
tion (1) to (4), a is the BR against group B if n?4 > % Since T4 is defined
as the minimum value s.t. the latter holds, Vn?4 > Ty, Vi € A, a is BR against
B groups. Now, assume that j € B is given the revision opportunity, a is the BR
against group A if n/P > % Since Tp is defined as the minimum value s.t.
this relation is true, Vn® > Tp, a is the best reply Vj € B. Therefore, if nl € Q4
nl € Q% Vs > 0. Similarly, if n} € Q% nl € Q, Vs > 0.

Consider being in a generic state (T + d,T4 + d') € Qf at period t, with d €
[0,Ng —Tg) and d’ € [0, Ng — T4). In such a state, there is always a probability p
that a player not playing a is given the revision opportunity.

Therefore, if n! € Q¢\ (N4, Np), Pr (Fg’g (n{, 9t+1) > n{) > p Similar to what we
proved before,

if ny € Q7 \ (Na, Np), Pr (tlgglo Fas(n{,0i41) = ntI) =0,

if n! € Q%\ (0,0), Pr (tlim Fys(nf,01) = ntI) = 0.
—00

Consequently,

It né €eQy Pr <t1im F2,3(n£ra9t+1) = (NA:NB)> =1,
— 00

if np € Q4 Pr (tlim F2,3(nf79t+1) = (0:0)> =1
— 00

We now consider Q% and Q4. Take an nl € Q9: at each period, there is a positive
probability that only players of group A are given the revision opportunity, since for
them a is the best reply, in the next period, there will be more or equal players in
A playing a. Hence, if enough players of A that are currently playing b are given
the revision opportunity, n! € Q¢. By the same reasoning, there is also a positive
probability that only players from B are given the revision opportunity, hence, that
nl € Q4. The same can be said for every state in Q%. Hence, starting from every
state in Q% |J Q% there is always a positive probability to end up in Q% or Q5.

O

Lemma 7. Under complete information,

Pr (limyoo n] = (Na,Ng)) =1 — Pr (limyon{ = (0,0)).
Pr (limt_mo an = NA) =1-—Pr (limt_m an = O).

Pr (limt_m nFB = NB) =1-—Pr (limt_)oo ntBB = O).

Proof:

We prove the result for n!, and the argument stands for the two other dynamics
thanks to symmetry in the payoff matrix. Firstly, note that whenever the process

SMeaning that n;/ > n; ! if either nA% > n;

’ 1" ’ " ’ "
nAB =n, 48 or both n,24 > n, B4 and n,A8 > n, 4B,

’ " ’ "
1 AB and ’I’LtBA = n, BA ntBA > n, BA

or and

25



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2021

starts in Q2U Q% the lemma is always true thanks to the proof of Lemma 4. We need
to show that this is the case, also when the process starts inside Q9 Q5¢. We prove
the result for Q% using the same logic, and the result stands for Q% for symmetry of
payoff matrix.

Take nl € Q9 define as p, the probability of extracting m players from A that are
currently playing b, and that would change action a if given the revision opportunity.
Define as p, the probability of picking m players from B currently choosing a that
would change action to b if given the revision opportunity. The probability 1 —p, — py
defines all the other possibilities.

Let us take k steps forward in time:

Pr(ng € QF) > (pa)"
Pr (né S QI}) > (pb)k

Pr (ng oy Ql;a) < (1 pa— ).
Consider period k + d:

Pr(ng.q € Q%) > (pa)*
Pr (n£+d € Q?) > (py)F

Pr <n£+d e Qe UQI}“) < (1 —pg —pp)*te.

Clearly, the probability of being in 2¢(Q%) is now greater or equal than (p,)*((ps)*):
we know that once in Q%(Q%) the system stays there. The probability of being in
Q9 J Q% consequently, is lower than (1 — p, — pp)* 7.

Taking the limit for d that goes to infinity

lim <Pr <n£+d e Qg’)) ~0.

d—o0

This means that if we start in a state in Q% there is no way of ending up in Q4% J Qb
in the long-run; hence, the system ends up either in Q¢ or in Q% but given this, we
know that it ends up either in (0,0) or in (N4, Np).

O

Corollary 3. Under complete information,

Pr (limyeon! = (Na,Ng)) =1 IFF n} € Q.

Pr (limyyoonj = (0,0)) =1 IFF nf € Q.

Pr (limyeo n* = Ny) =1 IFF ng* € [n4, N4], and
Pr (limyo0 nf'* = 0) = 1 IFF ni* € [0,n%].

Pr (lim;_, o nfB = NB) =1 IFF nOBB € [ﬁB,NB}, and
Pr (limieonf? = 0) =1 IFF nf? € [0,n”].
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This result is a consequence of the previous lemmas, and therefore, the proof is
omitted. Since the only two absorbing states in the dynamics of n/ are (0,0) and
(N4, Np), they are the only two candidates to be stochastically stable states. From
now on we call (0,0) as I° and (N4, Ng) as I¢. We define as 04 the state where all
players of group A play b with group A and Op the state where all players of group
B play b with group B.

Let us call E4 and Ep the two values for which players in A and in B are indifferent
in playing a or b in inter-group interactions. E4 = [%—‘ and Ep = [%-‘
From now on we often use values of N large enough to compare the arguments inside
ceiling functions.

Lemma 8. Under free information acquisition, for N large enough, R(I?) = CR(I%) =
E 4 for all values of payoffs and sizes of groups, while

Ny—Ep if & <3

R(I%) = CR(I") = N
NB — EA Zf g—i > %—i

Proof:

Firstly we know from Ellison [11] that if there are just two absorbing states, the Ra-
dius of one is the Coradius of the other and vice-versa. Hence, R(I?) = CR(I%), and
R(I%) = CR(I%). Moreover, from the proof of Lemma 4, we know that D(I2) = Q4
and D(I?) = Q8.

We prove that the minimum resistance path to exit the basin of attraction of I? is the
one that reaches (Ep,0) or (0, E4), and that the one to exit the basin of attraction of
I% is the one that reaches either (Eg, Ng) or (N4, E4). To prove this statement for
Ib, firstly, note that once inside Q% every step which involves a passage to a state with
more people playing a requires a mistake. Secondly, note that in a state that is out of
Qb at least one of the two groups is indifferent in playing b or a. In other words, in a
state where either n4% = Ep or n®4 = E, or both. Hence, the minimum resistance
path to exit from I® is the one either to (Ep,0) or to (0, E4). It is straightforward
to show that all the other paths have greater resistance than the two above. Since
we use uniform mistakes, every mistake counts the same value, and without loss of
generality, we can count each of them as 1. Since every resistance counts as 1, then
R(I?) = min{Ep; E4} = E4. Similarly, R(I%) = min{N4 — E; Ng — Ea}, and

B Np
No—FEp < Np—Ejp<= — < —.
A B B A T, = N,
O
Lemma 9. Under free information acquisition, for N large enough, R(04) = [%

R(N4) = [M] R(0p) = {M] and R(Np) = [M]

IMa+ma Iig+7mp IIp+7p

Proof:

The proof is straight forward, indeed, the minimum resistance path in terms of mis-
takes required to reach one absorbing state starting from the other one is the cost
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of exit from the basin of attraction of the first. As a matter of fact, let us consider
R(04), we know from the proof of Lemma 4 that we are out of the basin of attraction

of 04 when we reach the state n*. Hence, R(0,) = {m-‘ . The same applies to

IMa+ma
the other states.
O
Proof of Theorem 1:

We divide the proof for the three dynamics described so far: for what concerns
n4 Ny is uniquely stochastically stable and for what concerns n2?, 0p is uniquely
stochastically stable, this proof follows directly from Lemmal9] and therefore is omit-
ted. Let us pass to n/. We know from Lemma [§]that R(I?) = E, and that the value
of R(I?) depends on payoffs and group size. Let us firstly consider the case when
g—i < %—i and R(I%) = Ny — Ep. It is sufficient that E4 > N4 — Ep for I? to be
uniquely stochastically stable. Indeed, if this happens, R(I%) > CR(I?). This is the
case [FF

TaNpB TNa s _ Np

=< —. 9)

Il + 7y IIg+ 7R TA Ny

To complete the proof, we show that whenever :—f > %—i, then I is the uniquely

stochastically stable state. Firstly, note that }r[—i < :—i, hence, for :—’j > %—i > ﬁ—i,

R(I%) = Ny — Ep and E4 = R(I?). However, Equation (9) is reversed, so, I2 is

uniquely stochastically stable. For 72 > p& > %—’j, R(I%) = Np — E4 and still

R(I%) = E4. In this case, I% is the uniquely stochastically stable if E4 < Np — E4,
hence, IFF

TaNp - IIANp
Oy+ma  TMa+7ma

This happens for every value of the payoffs (given that I14 > m4) and of the group
size. We conclude that whenever 7;—’;’ < %—f, PSS}, is uniquely stochastically stable and

when z—i > %—f, PS, is uniquely stochastically stable.

O

A.2 Proofs of Section 4

For convenience, we call behavior 7; the optimal behavior when a player decides to
acquire the information: 7 = max(ab, ba, aa, bb).

We will use in some proofs the concept of Modified Coradius from Ellison [11]. We
write here the formal definition. Suppose @ is an absorbing state and (wq,ws, ... wr)
is a path from state w’ to w. Let L, Lo,...,L, = @ be the sequence of limit sets
through which the path passes consecutively. The modified resistance is the original
resistance minus the Radius of the intermediate limit sets through which the path
passes,
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r—1
r*(wi, wa, . ..wr) = r(wy,wa, ... wr) — ZR(Li).
i=2
Define
(W, w) = min r*(wy,ws, . .. wr),

(w1,w2,..wr)EY (W, @)
the Modified Coradius is defined as follows
CR*(w) = max r* (W', @).
Note that CR*(w) < CR(w). Thanks to theorem 2 in Ellison [11], we know that
when R(w) > CR*(w), w is uniquely stochastically stable.

Proof of Lemma [3]:

We first show that the nine states are effectively strict equilibria, that there is no
other possible equilibrium, and that a state is absorbing if and only if it is a strict
equilibrium.

Monomorphic States.

It is easy to show that (N4, Na, Ng, Ng) and (0,0,0,0) are two strict equilibria.
We take the first case, and the argument stands also for the second, thanks to the
symmetry of the payoff matrix. Consider player ¢ € K who is given the revision
opportunity at period ¢:

Ula,w) = N1 T =T,

N — Nk — Ngr g

Ul(b,w,) = N1 m, =0,
, Nk + Nk —1
Uiy, wy) = =& —{];[ —Kl i —c=7F—c

(N4, Na, Np, Np) is a strict equilibrium since 7 > 0 and ¢ > 0.
Polymorphic States.

Firstly let us consider the case of (N4,0,0, Ng). Since in this case, every player is
playing ab, the state is a strict equilibrium IFF max z{ = ab, Vi € N. If player i € K
is given the revision opportunity at period ¢:

. Ng —1
Ué<a7wt) - ]\;{_ 1 Wf,

i Nk
Ua(b,wt) = mﬂ'g(,

Ni—1 o N x

U1y, w;) = N1 " + N 1™
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For group A players, Ui(a,w;) > Ui(b,w;) since o Zmy < J4=1I1,. For group B
players, U!(b,w;) > U'(a wy) as St < MATlp. Ul(ri,w,) is the highest of the

three Vi € N IFF ¢ < 57— min {Np7m4, Np — lng}.
Consider the case of (0 N 4, Np,0), since every player is playing ba, it must be that
max z{ = ba. 1 € K faces the following payoffs

. N /
Ug(a7wt) = N I_< 171—5(7
NK 1

Ul§<7-17wt) = + T —C.

N1 N1
Note that Uj(a,w;) > Ui(b, wt) IFF i N’ and therefore ba is the best reply

Ng—1’
NK’
—17

. When the opposite happens and so, K >
NK’

ba is the best reply behav1or 1f c < 7TK . These conditions take the form of the

ones in Table 4.

Consider the remaining 4 PS, they are characterised by the following fact BR(n®%) =
BR(n®'%) but BR(n®"'%") # BR(n®X"). In this case it must be that 7; = 0 is optimal
for i € K while 7; = 1 is optimal for j € K’. Thanks to the symmetry in payoff
matrices we can say that the argument to prove the results for these 4 states is
similar to the one for (N4,0,0, Ng) and (0, N4, Ng,0). All the conditions are listed
in Table 4.

Type Monomorphic State.

(N, Na,0,0) is a strict equilibrium if a is the BR Vi € A and b, Vj € B. Consider a
player i € A, who is given the revision opportunity at period ¢:

. Ny—1
Usla.wp) = <o I,
. N
Ualb,we) = =7,
. Ny—1 N
Ug(T1,wp) = ]\?_1HA+N_317TA—C.

Given that U}(a,w;) > Ul(b,w;), a is the best reply behavior IFF ¢ > 2 ,. Con-
sider player j € B:

. N
Ug(a’awt) N_Alﬂ—Ba
. N 1
Ug<b7wt) ]VB_ 1 HB7
. N N —1
Ui (11, wt) NflﬂB—i— ]\f—l Iz —c
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Ne—l '} is never best reply and a is best reply hence, the

B

Na : '

stgmte can not ‘be a strict equilibrium. When £ < Nﬁ;, Ul (b,w:) > Uj(a,w:), and
Ui (b,wy) > U} (11, w;) IFF ¢ > %WB.

No other state is a strict equilibrium.

In this case when ﬁ—B >
B

For what concerns states where not all players of a group are playing the same action
with the same group, this is easy to prove. Indeed, by definition, in these states,
either not all players are playing their best reply action, or players are indifferent
between two or more behaviors. In the first case, the state is not a strict equi-
librium by definition; in the second case, there is no strictness of the equilibrium
since there is not one best reply, but more behaviors can be best reply simultane-
ously. Hence, such states can not be strict equilibria. We are left with the 7 states
where every player of one group is doing the same thing against the same group. Such
states are: (0,0, Ng, Ng), (0, N4,0, Ng), (Na,0,Ng,0), (0,0, Ng,0), (Na, Na,0, Ng),
(0, N4,0,0), and (Na,0, Ng, Ng). It is easy to prove that these states enter in the
category of states where not every player is playing her/his best reply. Therefore,
they can not be strict equilibria.

Strict equilibria are always absorbing states.

We first prove the sufficient and necessary conditions to be a fixed point, and second
that every fixed point is an absorbing state. To prove the sufficient part we rely on
the definition of strict equilibrium. In a strict equilibrium, every player is playing
her/his BR, and no one has the incentive to deviate. Whoever is given the revision
opportunity does not change her/his behavior. Therefore, F(wy, ;1) = w;. To prove
the necessary condition think about being in a state that is not a strict equilibrium;
in this case, by definition, we know that not all the players are playing their BR.
Among them, there are states in which there are no indifferent players, in this case,
with positive probability one or more players who are not playing their BR are given
the revision opportunity and they change action, therefore, F'(w;, 0;11) # w; for some
realization of #;,1. In states where some players are indifferent between two or more
behaviors, thanks to the tie rule, there is always a positive probability that the
indifferent player changes her/his action since s/he is randomizing her/his choice.
Moreover, there is also a positive probability to select a player indifferent between
two or more behaviors. In this case, s/he changes the one that is currently playing
with a positive probability too. Knowing this, we are sure that no state outside strict
equilibria can be a fixed point. In our case, a fixed point is also an absorbing state
by definition. Indeed, every fixed point absorbs at least one state: the one where all
players except one are playing the same behavior. In this case, if that player is given
the revision opportunity s/he changes for sure her/his behavior into the one played
by every player.

OJ
Here we prove the results of the stochastic stability analysis of Section 4.

Proof of Theorem [J:

We split the absorbing states into 2 sets and then apply Theorem 1 by Ellison [11].
Define the following two sets of states: M; = {PS,, PS,} and My = (PS\ M;)UMS.
Similarly, define M| = PS, and My = MS U (PS\ M]).
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Analysis with My and Ms.

R(My) is the minimum number of mistakes to escape the basins of attraction of both
PS, and PS,. The dimension of these basins of attraction is determined by the value
of c. In a state inside D(PS,), ba is BR for B, and a is BR for A. Similarly, ab is
optimal for A inside D(PS,) and b is optimal for B. The minimum resistance paths
that start in P.S,, and P.S, and exit from their basins of attraction involve ¢ mistakes.
We calculate the dimension of these basins of attraction for 0 < ¢ < ﬁ min{m4, 75}
We start from PS, and the argument stands for the other states in P.S for symmetry
of payoffs matrix.

Firstly, we consider the minimum number of mistakes that makes a BR for B play-
ers. Consider the choice of a B player inside a category of states where n®8 ¢

[0, %) and n48 € (%, NA]. Referring to Equation (5) to (8), the opti-

mal level of ¢ s.t. 1 is the best reply for B players is

NBHB — nBB(HB + 7TB> - HB nAB(HB + 7TB) - NAHB}

c<m1n{ N1 , N1

1 : BB Npllp—1Ilp AB Nallp
If0 < ¢ < = min{m4, 75}, whenever n”" ¢ [0, i ) and n“* € (H R NA},

1 is the BR for B. Therefore, a path towards a state where n8 2 %, is a
transition out of the basin of attraction of PS,. Starting from n®Z = 0, the cost of

this transition is ]\%H—T This cost is determined by € mistakes, since once in PS,

it is sufficient that a number of B plays by mistake b. Another possible path is to

make ba BR for A. The cost of this transition is J\[‘r“ln—_‘f’“ With similar arguments,

it is possible to show that the cost of exit from M, starting from PSj, is the same.

. s Nplip+nmp Nalla+ma
For this reason, R(M;) = mm{ T }

We can show that the minimum resistance path to exit from the basin of attrac-
tion of Mj reaches either PS, from MS,, or PS, from MS,. Therefore, R(Msy) =

. Nama+1lp Nprnp+Ilp
mln{ MMa+ms > Ilp+7p

size: the stochastically stable state must be in M;.
Analysis with M, and M.

Let us consider the path that goes from M| to PS,. Starting in PS}, it is sufficient
that NB“A players from A play a for a transition from PS, to D(PS,) to happen.

Since HNTA < min { Nptotns, lei‘[fi::f‘} we can say that R(M]) = f2%- With a
similar argument it can be shown that R(M}) = H]\;AIB When R(M}) > R(M’) PS,
is uniquely stochastically stable. When R(M]) > R(M)), PS, is uniquely stochasti-

cally stable.
R(Mj) = R(M{) when 22 = 12,

No > 74

R(M;) > R(Ms;) for every value of payoffs and group

Proof of Theorem 3:

In this case R(MS,) = CR(MS,) and R(MS,) = CR(MS,). Therefore, we just need
to calculate the two Radius.
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Radius of each state.

Let us consider R(MS,). Since the basin of attraction of M S, is a region where a is
the best reply behavior for both groups, many players should make a mistake such
that b becomes BR for one of the two groups. For b to be BR for B players, it must

be that n48 + nBB < ]\%HB—JFHB This state can be reached with ¢ mistakes, at cost

%. In a state where n44 + nf4 < % b is BR for A, this path happens

at cost ST AT In principle fpAtra > SrEEUE hence, R(MS,) should be JFttz.
However, it may not be sufficient to reach such a state.

Consider to reach a state s.t. n4% + nBB = MJFWHB, since N&TBJFWF;B 1\1117;A+WZA7
it must be that a is still the best reply Vi € A, and therefore there is a path of
zero resistance to M S,. Nevertheless, once in that state, it can happen that only
B players are given the revision opportunity, and that they all choose behavior b.
This creates a path of zero resistance to a state (74, 74%,0,0). Once in this state,

if 44 < M the state is in the basin of attractlon of M Sp. This happens only if

Nrpg—ma NHB Noa—ma

TP +N —HB o More generally, considering k£ > 0, this happens if HATAY
— NHB NHB HB _ NTI'A ™A

Np = = + — k. Fixing payoffs and groups size, k = TP Ta-ra — N,

hence, the cost of this path would be

Nrg+1Ilg Nllg—1Ilg Nmwgq—7a Ny — g
+ — —Ng=Ny— ——.
Il + 7 Il +7p Iy +7ma Mg +7a

With a similar reasoning R(M.Sy) = %

We prove that all the other paths with n mistakes are costlier than ones with €. We
know that a is the BR for every state inside the basin of attraction of M.S,, nobody
in the basin of attraction of M.S, optimally buys the information, and every player
once bought the information (by mistake) plays behavior aa. Every path with an 7
mistake also involves an ¢ mistake, and hence, is double that of the one described
above.

Conditions for stochastically stable states.

MS, is stochastically stable IFF N, — &ra—ma ~ Nmatlla © this s verified when

IMa+7ma IMa+7ma
Ny > W Therefore, we conclude that M.S, is stochastically stable in the

above scenario, while if the opposite happens, M.S; is stochastically stable.

O
Proof of Theorem

We first calculate Radius, Coradius, and Modified Coradius for the three states we are
interested in, and then we compare them to draw inference about stochastic stability.

Radius of each state.

The Radius of M.S, is the minimum number of mistakes that makes b BR for B
players. This number is J\QB—J:{IB The alternative is to make b BR for A: hence, a
path to state (0,0 NB,NB) and then to (0,0,0,0). The number of ¢ mistakes for

this path is ]\I[THA—:” Therefore, R(MS,) = 5FZE2E. With a similar reasoning we

can conclude that R(MS,) = fFatia.
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Consider T'S: the minimum resistance path to exit from its basin of attraction reaches
either M S, or M S}, depending on payoffs. In other words, the minimum number of
mistakes to exit from D(T'S) is the one that makes either a or b as BR. Consider
the path from T'S to M S,: in this case, some mistakes are needed to make a BR for
B. The state in which a is BR for B depends on payoffs and group size. In a state
(N4, Na,K' k"), ais BR for every player in B if (Nga+k'—1)mg > (N — N4 — K)1p.
This inequality is obtained declining Equation (5) to (8), comparing B playing a/ab
or b/ba. Fixing payoffs, we can calculate the exact value of k' that is Yele—N A”BJ”FB

this would be the cost of the minimum mistake transition from 7'S to M S Wlth

a similar argument, the cost of the minimum mistake transition from 7'S to MS}, is
Nally—Npmatma

Ma+ma . . .
There are no paths involving 1 mistakes that are lower than the two proposed above.

The intuition is the following. Consider a situation in which m players of A are given
the revision opportunity at one period and they all choose to buy the information. In
this case, they all optimally choose behavior ab. This means that at the cost of n there
is a path to a state in which N4 —m players are playing b against B, in this state b is
still the BR for group B, while a is still the BR for A. Hence, from that state, there is
a path of zero resistance to T'S. The same happens when B players choose by mistake

to buy the information. Therefore, R(T'S) = min ¢ Yella—Namstms Nalla—Npmatma
IIp+7p Ma+ma

Coradius of each state

We start from T'S: in this case, we have to consider the two minimum resistance
paths to reach it from MS, and MS,. Therefore, Aﬁ”‘—:nﬁ and ]\{{FB—:HB Firstly, the
argument to prove that these two are the minimum resistance paths to reach T'S
from M S, and M .S, are given by the previous part of the proof. Secondly, we have to
prove that this path is the maximum among the minimum resistance paths starting
from any other state and ending in T'S. There are three regions from which we can
start and end-up in T'S: the basin of attraction of M Sy, the one of M S,, and all the
other states which are not in the basins of attraction of the three states considered.
We can say that from this region, there is always a positive probability to end up
in MS,, MSy, or T'S. Hence, we can consider as 0 the cost to reach T'S from this
region. The other two regions are the one considered above, and since we are taking

the maximum path to reach T'S from any other state we have to take the sum of this

two. Hence, CR(T'S) = Aﬁ”j&"‘ + Ag}f:glg

Let us think about M S. Similarly to the two previous proofs we can focus only on ¢
paths. Note that in this case, T'S is always placed between the two M S. Let us start
from M Sy: in this case we can consider 3 different path starting from any state and
arriving to M.S,. The first one starts in T'S, the second starts in every state outside
the basin of attractions of the three absorbing states, and the last starts in MS,.
In the second case there is at least one transition of zero resistance to MS,. Next,
assume to start in 7'S: the minimum number of mistakes to reach M S, from TS is
the one that makes b BR for A players. Therefore, & AH“}.IAN BlAtTA

Now, we need to consider the case of starting in M S,. F 1rstly, cons1der the minimum
number of mistakes to make b BR for A players. This number is M Secondly,
consider the minimum number of mistakes to make b BR for B players and then

once reached T'S the minimum number of mistakes that makes b BR for A players.
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NII N [z Nully— N
minr(MS,, MSy) zmin{ A+7TA7 g +1lp alla B7TA+7TA}.
HA+7TA HB+7TB HA+7TA
NAHA—NBWA—‘,-WA
HA"‘TI'A

Since the two numbers in the expression are all greater than
say that CR(MSy) = minr(MS,, MSy).
Reaching a state where b is BR for group A from TS is for sure less costly than

reaching it from MS,, since in T'S there are more people playing b. Therefore,
Nllatma ~ Nrptlip Nalla—Npma+ma _ N=np+llp Nalla—Npma+ma
Tome 2 o + Ty , hence, CR(M S,) = e TyE— .

With a similar reasoning, CR(MS,) = Aﬁ“jj&“ + NBH%;]YF‘?‘TZB”B.
Modified Coradius of each state.

Firstly, note that CR(T'S) = CR*(TS), since between M S and T'S there are no
intermediate states. Formally,

we can

N Iy N II
CR*(TS) =minr*(MS,,...,TS)+minr*(MS,,...,TS) = At 44 5t B
a+ma  Up+7p

The maximum path of minimum resistance from each M.S to the other M.S passes
through T'S. Hence, for each M.S, we need to subtract from the Coradius the cost of
passing from T'S to the other MS. Let us consider CR*(MS,), we need to subtract
to the Coradius the cost of passing from 7'S to M Sj: this follows from the definition
of Modified Coradius. Hence,

_N7TA+HA Ngpllg — Ngmg + g Nuyllg — Npmg + 74

CR*(MS,) = + _
( ) Iy + 74 IIg + 7R Iy + 74
Similarly,
N I1 Nully — N Npllg — N
CR*(MS,) = B+ 5 Nalla BTAt+ma  Npllp A7TB+7TB.
HB+7TB HA+7TA 1_IB"i_T‘-B

Note that CR*(MS,) < CR(MS,) and CR*(MS,) < CR(MS}).
Conditions for stochastically stable states.

By comparing all the possibilities it is possible to verify that if R(MS,) > CR(MS,),
both R(MSy) < CR(MS,) and R(T'S) < CR(TS). Similar for R(MSy) > CR(MS,)
or R(TS) > CR(TS). When R(MS,) < CR(MS,), R(MS,) < CR(MS,), and
R(TS) < CR(TS), we need to use Modified Coradius. Given that CR(TS) =
CR*(TS) it will never be that R(T'S) > CR*(T'S). We can show that when R(M S,) >
CR*(MS,), then R(MS,) < CR*(MS,) and vice-versa.

When R(MS,) = CR*(MS,), it is also possible that R(MS,) = CR*(MS,). Thanks
to Theorem 3 in Ellison [11], we know that either both states are stochastically
stable, or none of the two is. Note that for the ergodicity of our process the second
case is impossible, hence, it must be that when both R(MS,) = CR*(MS,) and
R(MSy) = CR*(MS,), both M S, and M S, are stochastically stable.

O
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Proof of Lemma [f]

Recall from Section 3 that w® = {PS,MS}. Firstly, if w5 max{ma, 75} < ¢ <

= min {Epg}, T'S is not an absorbing state (see Corollary , all PS are absorb-

ijilglstates (see Corollary [1)), and M S are absorbing states (see Table 4). Secondly,
consider the set M = {PS,, PSy, MS,, M Sy} and the set wf\ M containing all the
PS not in M. If R(M) > R(w®\ M) then the stochastically stable state must be in
M. Since the level of the cost is not fixed the Radius of these two sets depend on the
cost level. Following the same logic as in Theorem 2 but computing the result as a

function of ¢ we can calculate the two Radius.

N N—-1) N N —1) NII NII
R(M):min{ AT + ¢ ) Npma+ ¢( ) A+ T B+7rB}

IIg+ma ’ IIg+ma " Ha+ma lp+7p

R(wR\M) :min{NBWB —c¢(N—=1)+1lp Ngmg—c(N —1) Namp —c(N — 1)}

IIg + 7R ’ g + 74y ’ Il + 7R

By comparing all the twelve possibilities case by case, it is possible to show that for
every value of payoffs, group size, and of the cost R(M) > R(w®\ M). Therefore the
stochastically stable state must be in the set M.

O
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