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Abstract 
The development of microbial products for cancer treatment has been in the spotlight in recent years. In 

order to accelerate the lengthy and expensive drug development process, in silico screening tools are 

systematically employed, especially during the initial discovery phase. Moreover, considering the steadily 

increasing number of molecules approved by authorities for commercial use, there is a demand for faster 

methods to repurpose such drugs. Here we present a review on virtual screening web tools, publicly 

available databases of molecular targets and libraries of ligands, with the aim to facilitate the discovery 

of potential anticancer drugs based on microbial products. We provide an entry-level step-by-step 

description of the workflow for virtual screening of microbial metabolites with known protein targets, as 

well as two practical examples using freely available web tools. The first case presents a virtual screening 

study of drugs developed from microbial products using Caver Web, a web tool that performs docking 

along a tunnel. The second case comprises a comparative analysis between a healthy isocitrate 

dehydrogenase 1, a mutant that results in cancer, using the recently developed web tool PredictSNPOnco. 

In summary, this review provides the basic and essential background information necessary for virtual 

screening experiments, which may accelerate the discovery of novel anticancer drugs.        
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Introduction 

Cancer is the umbrella name given to a group of diseases that manifest themselves in a very 

similar fashion, namely by abnormal, uncontrolled cell multiplication and growth.1–4 Certain cancers have 

the potential to spread from their place of origin to other parts in the body,5,6 at which point treatment 

by surgically removing the diseased cell agglomeration (tumour) becomes very difficult. This spread of 

diseased cells, or metastasis,7 is what differentiates malignant tumours from benign tumours.8–11 The 

latter type may also multiplicate in an uncontrolled fashion but does not metastasise and can therefore 

often be removed through surgery relatively easily.12 According to the World Health Organization, the 

yearly number of deaths caused by cancer worldwide is approximately 10 million.13,14 Currently available 

treatment options for cancer include surgery, chemo and radiotherapy15, RNA-binding proteins16, 

personalised treatment in the form of targeted therapy, and immunotherapy. The latter includes the use 

of microbial products: anything from secondary metabolites of microorganisms, or even their cellular 

components, to viral particles. The virtual screening of such microbial products against known molecular 

targets will be the focus of this review. One of the main advantages17 of microbial-based therapies is their 

relatively low cost compared to other cancer therapies, which could allow for improved access to effective 
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treatments in low- and medium-income countries. Although this approach had already been suggested 

and used as early as the 1880s18–21, it was not until recently that the usage of microbial-based cancer drugs 

gained increasing attention.22 Approval of the drug Talimogene laherparepvec23, a genetically engineered 

herpes virus, by the Food and Drug Administration and the European Medicines Agency in 2015 marked 

the beginning of a series of publications and special issues dedicated to microbial products in cancer 

treatment.  

Microbial secondary metabolites represent a wide range of complex molecules, targeting and 

inhibiting proteins involved in carcinogenesis. Molecular recognition and binding of these metabolites to 

the clefts and cavities of target proteins is essential for their biological activity. Given the number of 

secondary metabolites of microbial origin, virtual screening is an essential tool to increase drug design 

efficiency or drug repurposing studies. This computational technique enables the docking24–27 of 

thousands or even millions of biologically active compounds for binding to various cancer-related target 

proteins at a very low cost. Such virtual screening efforts can identify potential inhibitors of individual 

proteins or entire signalling pathways involved in the relevant cancer pathology. The most promising hits 

can then be studied in vitro and later in vivo using cellular assays, which not only improves cost efficiency, 

but also shortens the time of the study and allows for a much more extensive library of compounds to be 

tested. There are different approaches to virtual screening, and the choice of the most suitable one 

depends on the kind of information available (Figure 1A). This review will focus mostly on the scenario in 

which the user has access to a 3D structure of the molecular target of interest, and virtual screening of 

the protein and ligand can be performed (Figure 1A, left).28 However, when no such target structure is 

available, there are two ligand-based approaches that can be used: (i) the similarity search method and 

(ii) machine learning (Figure 1A, right). The former is based on the assumption that similar ligands have 

similar characteristics and bind to the same target. In the latter, knowledge of ligands that are active, as 

well as ligands that are inactive against a given target, is used to train a dataset in order to predict the 

activity of newly tested ligands. Machine learning is also the basis for Quantitative-Structure Activity 

Relationships studies and has been widely used for some time, but has recently gained broader 

applicability with increasing computational power and research advances.29–31  

A typical workflow for the scenario where a 3D structure of the target is available is depicted in 

Figure 1B. The first step includes target specification, followed by the selection of a corresponding 

structure as discussed in Section 2, "Selection of molecular target structures". The second step of the 

workflow consists of choosing a ligand library and preparing the ligands for the screening, which will be 

discussed in Section 3, "Selection and preparation of the ligand library". The subsequent virtual screening 

calculation step can be performed using different web tools, which will be the topic of Section 4, "Web-

based software tools for virtual screening". This review is meant to guide beginners or non-experts in 

conducting virtual screening studies, critically interpreting the results, and analysing limitations of the 

studies. It focuses on databases, web tools and free stand-alone software with graphical user interfaces 

that support the user in different steps of the virtual screening process. Finally, Section 5, "Applications 

of Virtual Screening", includes two case studies with web tools and workflows that were developed in-

house that can be used as tutorials.  
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Figure 1 Virtual screening strategies depend on the knowledge and available data. (A) Virtual screening 

with a known molecular target structure (left), where the goal is to inhibit the target with one or several 

ligands. Virtual screening against an unknown target structure (right) can be performed using similarity 

search and pharmacophore mapping or by means of machine learning methods employing both positive 

and negative hits. (B) Step-by-step workflow for virtual screening with a known molecular target structure, 

which is the focus of this review. 
  

 

2. Selection of molecular target structures 
The first step of a virtual screening project consists of identifying molecular targets (Figure 1B) - 

typically proteins such as receptors or enzymes. However, in principle, any macromolecule that changes 

its behaviour upon ligand binding can be considered a biological target. Structures of macromolecules 

that have been experimentally solved by means of X-ray crystallography, Nuclear Magnetic Resonance 

spectroscopy or cryogenic electron microscopy are publicly available in databases such as RSCB – PDB or 

PDBe (Table 1A-B). In order to ensure the maximum possible validity of the virtual screening study, several 

properties of the chosen target structure should be carefully considered. The resolution at which the 

structure was solved and constructed should be as high as possible. Although there is no exact cut-off 

value for obtaining reliable results, a general consensus exists that says that a structure solved with a 

resolution above 2.5Å can be used, but with care.  

In case there is no solved structure available for the target of interest, it is often possible to obtain 

one by means of homology modelling32 and recently also to use machine learning.33–35 Homology 

modelling makes use of the fact that protein structure is more conserved than sequence36,37 and predicts 

a structure of the target protein based on its amino acid sequence alone. Homology modelling tools will 

either ask the user to provide a template structure of a protein that is homologous to the target of interest 

or search for possible templates in available protein databases. A distinction can thus be made between 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 February 2021                   doi:10.20944/preprints202102.0529.v1

https://doi.org/10.20944/preprints202102.0529.v1


   
 

4 
 

molecular target databases that contain solved 3D structures (Table 1A-B) and databases that store 

structures built by homology models (Table 1C) using the structures from the databases in Table 1A-B as 

templates.  

In addition to performing virtual screening studies on one single structural conformation (the one 

that has been experimentally solved), it is also possible to run virtual screening studies using several 

structures of one molecular target.29 There are also web tools solely dedicated to building homology 

models (Table 1D), but that usually do not store the models built by the users for more than two months. 

As a consequence, if a user has a similar request to a previous user, the model will be rebuilt from scratch 

and might differ slightly from the previous model.38–41 To this end, a couple of databases contain data 

from molecular dynamics (MD) simulations that have been performed with various families of proteins 

(Table 1E) and are available for non-experienced users or users without access to a supercomputer. 

In summary, a number of aspects need to be considered when using databases and web tools for 

the selection of the molecular target structure. Firstly, if there is more than one experimentally solved 

structure available, it is wise to choose the one with the highest resolution. It is also important to confirm 

that the structure contains all (relevant) amino acids from the sequence, or at least the amino acids lining 

the active site. In case there is no complete 3D structure available in the databases, certain concessions 

can be made, but one needs to keep in mind that the quality of the results will be highly dependent on 

the quality of the input.  

 

 
 

Table1 List of sources with available molecular targets. All databases present on the list are free to 

access, but some request the user to register with an academic verifiable email account.  

Database Link Type of Database 

A. General database of experimental protein structures 

wwPDB42–44 wwpdb.org General Database 

PDBe45,46 ebi.ac.uk/pdbe General Database 

RCSB PDB47 rcsb.org General Database 

PDBJapan48 pdbj.org General Database 

Biological Magnetic 
Resonance DB49 

bmrb.io General Database 

SCOP50 scop.mrc-lmb.cam.ac.uk General Database 

B. Specialized databases of experimental protein structures  

AmyPDB51 amypdb.genouest.org Amyloid proteins 

CAZy52 cazy.org Carbohydrate-Active enzymes 
Database 

CyBase53 cybase.org.au Cyclic proteins 

CYPED54 cyped.biocatnet.de Cytochrome P450 Engineering 
Database 

GLYCO3D55 glyco3d.cermav.cnrs.fr Carbohydrates 

GlyGen56 glygen.org Glycosylated Proteins 

Homeodomain 
Resource57 

research.nhgri.nih.gov/homeodomain Homeodomain family 

KNOTIN58 dsimb.inserm.fr/KNOTTIN Disulphide Rich Proteins 
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MEROPS59 ebi.ac.uk/merops Peptidases 

RNA FRABASE60 rnafrabase.ibch.poznan.pl RNA fragments database 

SAAPdb61 bioinf.org.uk/mutations/saapdb/ Mapping SNPs and pathogenic 
deviations  

SDAP62 fermi.utmb.edu/SDAP Allergenic proteins 

C. Database of protein models from homology modelling 

Swissmodel63 swissmodel.expasy.org/repository General Database  

PMP64 proteinmodelportal.org General Database 

MODBASE65 modbase.compbio.ucsf.edu General Database 

D. Web tools for protein structure prediction 

iTasser38 zhanglab.ccmb.med.umich.edu/I-
TASSER 

Homology modelling 

Modeller39 salilab.org/modeller Homology modelling 

Phyre2 40 sbg.bio.ic.ac.uk/~phyre Homology modelling 

E. Database of trajectories from molecular dynamics  

Dynameomics66 dynameomics.org Dynamics database 

 

3. Selection and preparation of the ligand library 
Once a suitable target structure has been obtained, a collection of potential ligands can be 

selected for virtual screening. Similarly to the case of molecular targets described in the previous section, 

several databases exist that contain libraries of ligands.67 These libraries include information about the 

ligand molecules, such as their molecular formula, 3D structure, physicochemical properties, as well as 

other features that will be further discussed in this section.68 A library of ligands can be designed with a 

specific aim or a general-purpose. Whereas the former is typically done with a specific protein target in 

mind and with some previous knowledge, the latter is based on the idea that the library might be used for 

a variety of targets. As the aim of this review is to assist non-experienced users in their virtual screening 

projects, the main focus will be on the second type of library. 

An essential feature of a library is that it contains molecular representations of the ligands that 

can easily be translated into 3D structures by means of software such as open babel.69 The de facto 

standard, simplified molecular-input line-entry system (SMILES), was first proposed in 1980. It reads a 

specific chemical notation and uses a software tool to translate them into 3D structures.70 In addition to 

SMILES, there are other notations that can be used with similar outcomes, and many libraries contain 

more than one notation. For instance, the International Chemical Identifier (InChI) is a notation developed 

by the International Union of Pure and Applied Chemistry to create a standard for molecular information 

encoding.71 Notations such as SMILES and InChI also have some drawbacks, most notably the 

representation of only one tautomeric or ionisation state per molecule. On the other hand, they allow for 

non-experienced users to make use of these notations, and experienced users will have the know-how to 

use additional tools69,72,73. Other ligand-specific features that should be included in the library are 

characteristics related to absorption, distribution, metabolism, and excretion characteristics, e.g., 

polarity, pH range or even toxicity features such as LD50. One very important piece of information is 

whether molecules have been approved for use in humans, are currently included in clinical trials, or are 

possible to purchase. This information is crucial if the virtual screening is done with the aim of immediate 

use in a patient, in contrast to being part of an exploratory protocol to develop new drugs for a certain 
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target. Although there are many ligand databases available (Table 2), only some of them will have libraries 

that contain the type of molecules that is relevant for the selected target; anything from biomimetic 

peptides to natural product-like molecules to lead-like molecules and drug-like molecules. Within these 

libraries, sub-libraries may exist for particular targets such as kinase-specific libraries, which are the most 

important for cancer treatment. Providing details on all available databases is beyond the scope of this 

review, but we refer the reader to the more comprehensive studies on this subject.74–78 

Once a ligand library has been selected, it needs to be prepared for the docking calculations. This 

preparation step entails converting the ligand structures from a common 3D file format (.mol2, .xyz, .pdb) 

to a format that is accepted by the docking algorithm, e.g. the .pdbqt format. Some scripting knowledge 

may be recommended when performing a conversion for thousands of ligands. 

 

Table 2 List of freely accessible databases of ligands with classification. Some of the databases also contain 

microbial metabolic products. 

Database Link Type of Database 

ZINC68 zinc.docking.org/ Generalist 

Drugbank79 go.drugbank.com/ Generalist 

3DMET80 integbio.jp/dbcatalog/en/record/nbdc00351 Generalist 

BiGG81 bigg.ucsd.edu/ Metabolites 

Binding DB82 bindingdb.org/bind/index.jsp Drug-Like 

BRENDA83 brenda-enzymes.org/ Metabolites 

ChEBI84 ebi.ac.uk/chebi/ Chemicals 

ChEMBL85 ebi.ac.uk/chembl/ Chemicals 

ChemSpider86 chemspider.com/ Chemicals 

DNP dnp.chemnetbase.com/ Generalist 

BIOFAQUIM87 biofacquim.herokuapp.com/ Plant, Fungi 

ChemDB88 cdb.ics.uci.edu/ Plants 

NPASS89 bidd.group/NPASS/ Plants, Bacteria, 

Metazoan, Fungi 

NPAtlas90 npatlas.org/joomla/ Bacteria, Fungi 

StreptomeDB91 132.230.56.4/streptomedb/ Bacteria 

 

4. Performing virtual screening with web-based software tools 
Once the selected target structure and ligand library are in place, the virtual screening can be set 

up. This section explains the workflow of starting, running, and analysing results of a virtual screening 

calculation, focusing specifically on inexperienced users. For more experienced users, we refer to the 

following articles and reviews on molecular docking,92,93 virtual screening,94 molecular docking 

algorithms,95 molecular docking stand-alone tools,96–98 and the bridging between molecular docking and 

MD simulations.99  

There are two different algorithms that run sequentially in a docking calculation (Figure 1B). First, 

a search algorithm92,100–103 looks for possible conformations in which the ligand fits the active pocket. 

Several possible conformations and positions are saved, which are subsequently used by the scoring 
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algorithm104–108 to calculate the associated binding energy.109 In the search algorithm, flexibility of ligand 

and target can be implemented in different ways. The most common approach is the combination of a 

rigid target and a flexible ligand,104,110,111, which is often used because of its speed. In this scenario, ligand 

flexibility can be incorporated by using libraries of rotamers to create different conformations or by MD 

simulations. Another approach is one that accounts for the flexibility of both the molecular target and the 

ligand,112–114 using the aforementioned strategies to simulate flexibility for both components. However, 

using this approach significantly increases the degrees of freedom, resulting in lengthy calculations and 

corresponding demands of computational power. Alternatively, target flexibility can be incorporated by 

using several snapshots of the protein from an MD simulation or several different structures available on 

databases, as discussed in Section 2. For some targets, snapshots from MD simulations are readily 

available, and the structures can be retrieved from the database of choice. The structures act as different 

molecular targets, and the binding energies per ligand can be averaged. Since enzymes' active sites are 

sometimes buried,115,116 the need to describe tunnels and how ligands travelled from the surface of the 

protein to the active site. Since classical docking tries to find the best binding energy of a ligand to a target 

within the active site, the trajectory travelled by the ligand is disregarded. This has been addressed 

recently by the advent of trajectory docking, meaning that a ligand is docked in several positions along 

the tunnel from the surface into the active site, or vice versa.117–119 It is similar to molecular docking 

technically, but it searches for a pathway of a ligand through the tunnel of a molecular target into the 

active pocket while calculating the binding energies. Most web tools that perform virtual screening 

calculations use the flexible ligand-rigid receptor method, while the number of web tools doing trajectory 

docking is very limited.117,120,121  

After running the search and scoring algorithms, the user is provided with calculated binding 

energies for each combination of ligand and target. Whereas virtual screening calculations using classical 

docking are likely to produce more than one binding energy per ligand, studies using trajectory docking 

provide one binding energy value for each step along the calculated pathway (Case study 5.1). It is 

important to note that a virtual screening study should not be regarded as a one-hit result study, and data 

should be carefully analysed and interpreted. The strength of virtual screening is most apparent as an 

exploratory approach, in which the top hits can be subjected to further analysis. In addition, the screening 

can be applied to several different targets to highlight the effect of changes in protein structure on ligand 

binding. Analysis of the effect of point mutations on the binding of all FDA-approved drugs to a well-known 

oncology target will be illustrated in the next section (Case study 5.2). 

 

 

 

Table 3 Web tools for molecular docking and virtual screening that are free to use for academic purposes. 

Some of these tools have other bioinformatics tools integrated to provide a more comprehensive analysis. 

WebTool Link Method 

iStar iDock122 istar.cse.cuhk.edu.hk/idock Classical docking 

DockNmine123 ufip.univ-nantes.fr/tools/docknmine/ 
Database for docking publicly 
available data 

Prodigy-Lig124 bianca.science.uu.nl/prodigy/ Classical docking 

Caver Web120 loschmidt.chemi.muni.cz/caverweb/ Trajectory docking 
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SystemsDock125 systemsdock.unit.oist.jp/ Classical docking 

CHARMMing126 charmming.org/ Fragment based docking 

DINC127 dinc.kavrakilab.org/ Meta docking 

MoMA-LigPath117 hal.inria.fr/LAAS-IDEA/hal-00843321v1 Unbinding trajectory 

Covalent128 docking.sce.ntu.edu.sg/ Classical docking  

Pose and Rank31 modbase.compbio.ucsf.edu/poseandrank/ 
Calculates the pose or the 
rank 

GalaxyPepDock26 seoklab.github.io/GalaxyPepDock/ 
Docking based on interaction 
similarity 

CABS-dock27 biocomp.chem.uw.edu.pl/CABSdock 
Flexible docking with no 
active site knowledge 

BSP-SLIM129 zhanglab.ccmb.med.umich.edu/BSP-SLIM/ 
Docking using low resolution 
molecular targets 

SwissDock130 swissdock.ch/ Classical docking 

FlexPepDock131 flexpepdock.furmanlab.cs.huji.ac.il/ 
Models protein-ligand 
complexes 

DockBlaster132 covalent.docking.org/ 
Searches ZINC database to 
find a ligand for the target 

 

 

5. Practical applications of virtual screening 

5.1 Virtual screening of potential inhibitors of Bruton's tyrosine kinase using Caver Web 

In this case study, we used Caver Web120 to perform virtual screening on molecular target Bruton's 

tyrosine kinase (BTK). BTK is a non-receptor tyrosine kinase involved in B-cell activation and 

development133 that is typically overexpressed in various haematological malignancies.134 BTK is 

commonly overexpressed in … and is a common target of inhibition by drugs, which has lead to increased 

drug resistance.135 The web tool Caver Web120 (https://loschmidt.chemi.muni.cz/caverweb/) analyses 

tunnels in proteins in the first step, followed by the analysis of ligand transportation via these tunnels in 

the second step. The input for the calculation is a structure of the molecular target and the library of 

ligands representing a potential inhibitor. Inhibitors can be uploaded but can also be searched in the 

specialised databases, written in SMILES code or drawn in 2D directly within the web interface. The 

outputs of the calculations are visualisations of tunnels and channels, trajectories of ligand passage and 

energy profiles allowing prioritisation of potential drugs. Calculations are fast and take 2-20 min per job, 

making them appropriate for the virtual screening purposes.   

Briefly, the workflow starts with the user selecting a target structure, either by uploading one 

directly or by providing a PDB ID code, which is then automatically prepared for the following steps. These 

steps entail the selection of a starting point for tunnel calculation, which can be done manually by the 

user or automatically by the tool, followed by identification and analysis of the tunnels in the target 

protein structure. Finally, the identified tunnels provide the basis for docking the selected ligands and for 

studying their possible trajectories. The output of Caver Web consists of a comprehensive report that 

contains the binding energy of the bound state EBound, the maximum binding energy EMax, the binding 

energy at the surface ESurface, the binding energy of activation Ea (EMax - ESurface), and the binding energy of 
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the bound state subtracted from the binding energy at the surface ΔEBS. Here, EBound means the binding 

energy of the ligand in the active site, and EMax represents the highest binding energy anywhere along the 

tunnel. 

In order to reduce complexity and calculation time (14 min) of the case study, BTK was chosen as 

a single molecular target, and a mix of known BTK ligands and microbial products was selected as 

corresponding ligand library. The comprehensive output report can be found on Caver Web's website 

following the link: https://loschmidt.chemi.muni.cz/caverweb/?action=results&job=3rquhs. Table 4 

shows a sample of nine calculated binding energies, illustrating the high variability between different 

drugs. Energetically favourable binding to the active site cavity was observed with Mafenide, Triadimefon, 

Gantanol and Tyrosol. Most drugs bind better in the first part of the tunnel, represented by lower binding 

energies, highlighting the benefits of trajectory docking versus classical docking when screening for 

inhibitors. Whereas classical docking only considers binding in the targets active site cavity, the trajectory 

docking approach enables identification of inhibitors that bind strongly to the tunnel, thereby blocking 

the way to the active site. It should be noted that, since this virtual screening was performed using a single 

snapshot of the protein crystal structure, the calculated tunnel might be unreasonably narrow, and 

relaxation of the structure by the MD simulations could be appropriate.  

 

Table 4: BTK binding energies calculated for nine drugs of microbial origin using Caver Web. The top three 

compounds originate from archaea, the middle three originate from bacteria, and the bottom three 

originate from viruses.  

Liganda EBound (kcal/mol) ESurface (kcal/mol) 

Mafenide 0.8 -3.6 

Cox 13.9 -5.3 

Daranide 2.2 -3.5 

Piritrexim 3.2 -5.4 

Triadimefon 0.6 -4.1 

Norfloxacin 11.5 -5.0 

Gantanol -1.8 -4.5 

Tyrosol -3.5 -3.5 

Homidium 21.1 -5.6 

 
a Full table and report obtained from Caver Web are stored on the website with the link: 

https://loschmidt.chemi.muni.cz/caverweb/?action=results&job=3rquhs. 

 

 

5.2 Analysis of mutations and virtual screening of isocitrate dehydrogenase 1 using 

PredictSNPOnco 

The second case study demonstrates the use of web tool PredicSNPOnco (currently under development) for 

prediction of the effect of mutations on protein stability, function and, binding to FDA-approved drugs. 

Given the high heterogeneity of cancer, treatment focus is gradually shifting from a "one size fits all" 

approach towards personalised medicine. The PredictSNPonco 
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(http://loschmidt.chemi.muni.cz/predictsnp-onco/) is the tool developed specifically for precision 

oncology. The only inputs for the calculation are the target protein and mutations found previously by 

sequencing the patient's samples. The outputs of the calculation are estimates of the effects of studied 

mutation on the stability and function of the target protein. Virtual screening of both wild type enzyme 

and the mutant against the whole FDA-approved drugs navigates the users towards possible "non-

conventional" treatment, reflecting the potential impact of the mutation on the binding. The workflow 

(Figure 2) was designed in a way to provide all the results within two weeks; the calculation for one target 

currently takes about 8-10 days.  

The results are visualised directly in the web interface, in the form of a summary table (Table 5) 

and a report where the interpretation of relevant values is highlighted. This template facilitates its 

interpretation by Medical Doctors and readily provides them with the essential information, while those 

that are interested can access all raw data that have been calculated. 

In this case study, mutations in isocitrate dehydrogenase 1 (IDH1) that were identified in cancer 

patients by transcriptome sequencing were analysed using PredictSNPOnco. IDH1 is an enzyme encoded by 

the idh1 gene located on chromosome 2 and, along with IDH2 and IDH3,136,137 is a key enzyme involved in 

cellular metabolism.138,139 Its structure has been studied extensively 42,47,140 and structures of the wild type 

enzyme, as well as two single-point mutants (R132H and R132C), are available in the RCSB PDB database. 

Several mutations have previously been studied, including G70D, G123R, R132H, R132C, and A134D. 

Especially position 132 is of interest, as five deleterious mutations are known to date. The most commonly 

observed mutation in this position, R132H,38–41 accounts for 90% of the mutations in IDH1 in lower-grade 

glioma.142,143 The residue is located in the enzyme's active site144, and mutation results in loss of enzymatic 

function, which in turn leads to a concomitant gain of neomorphic activity and production of the 

oncometabolite 2-HG. In 2018, the drug Tibsovo (generic name Ivosidenib) was approved145 by the FDA 

to treat mutations in IDH1 that led to acute myeloid leukaemia and was granted orphan drug designation.  

Using PredictSNPOnco, we analysed the effects of mutation R132H on the enzyme's stability, 

biological activity, and interaction with all FDA-approved drugs. Firstly, the tool correctly identified the 

mutation in question as being deleterious with 87% of confidence, as reported in the literature.146–149 As 

it would be expected with a mutation in the active site, the function of the protein was predicted to be 

altered in the variant. This was based on relatively large changes in pocket size and pKa of the catalytic 

residues and was further supported by the reports outputted by the protein interactions calculator150 (PIC) 

and HOPE, a protein structure analysis of mutations causing inheritable diseases. These two tools analyse 

intraprotein interactions and predict the effect that a given mutation has on the protein and its function. 

Finally, we performed virtual screening with the dataset of all FDA approved drugs that are present in the 

ZINC68 database. Since the mutation occurs in a catalytic residue, we expected the virtual screening to 

show at least small differences in the binding energies. This was not the case, however, suggesting that 

the interactions of the drugs with the active site are mostly conserved in the variant. Yet, the trajectory 

docking energies obtained for the wild type and the variant differed up to 0.9 kcal/mol (~10%). Given that 

the treatment for this mutation is known, we highlight its binding energy yielded by both AutoDock Vina25 

and CaverDock28,118 in the table.  

With the outputted report from this tool, it is our goal to give more information about a patient's 

case to Medical Doctors and, with their previous knowledge of the case, help in the decision-making 

process.  
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Figure 2 Workflow used by PredictSNPOnco to study any mutation leading to cancer in any molecular target. 

The workflow starts with the input of the system of choice in one of four ways: UniProtID, FASTA 

sequence, PDB ID or PDB file created by the user. The first two options will be used when there is no 

structure available, homology modelling will ensure that a structure will be predicted. When PDB ID or 

PDB file are provided, a tool will identify the biologically relevant monomer. A second user input will be 

needed to identify the mutation suspect for the development of cancer in a patient. From left to right, 

FoldX and Rosetta will be used to identify if the mutation is stabilising or destabilising. The modeller tool 

is used to creating a model of the mutant protein, PIC and HOPE output reports on general function and 

interactions comparing the wild-type and the mutant protein. PredictSNP predicts if the mutation is 

neutral or deleterious. A series of tools are then used to assess the difference in function inserted by the 

mutation, such as tunnels (Caver), pockets (P2Rank), essential residues and their pKa's (PropKa, H++). 

Finally, a virtual screening based on AutoDock Vina is run with the whole FDA-approved dataset and 

CaverDock with the top 100 binding ligands. 
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Table 5 Table with summarised results for R132H of IDH1 from tool PredictSNPOnco to facilitate decision making by Medical Doctors. The table is 

colour coded with stability in blue at the top of the table, function in bright green in the middle of the table and inhibition in bordeaux.  The results 

are also colour coded with deleterious modifications and variations being represented with bright red colour, and beneficial modifications and 

variations bring represented in bright green. Ivosidenib is known drug targeting IDH1 and is highlighted. RMSD – root means square deviation. NA 

– not applicable. 

  
Wild Type  Mutant R132H Variations   

PredictSNP   87% deleterious 
 

 

 G (kcal/mol) G (kcal/mol) G (kcal/mol) 
STABILITY - Rosetta NA 1.1 1.1 

STABILITY - FoldX NA 0.8 0.8 
  

  
Bottleneck Å Throughput Bottleneck Å Throughput Bottleneck Å Throughput 

FUNCTION 
Tunnels 

2.1 0.84 2.1 0.89 0.0 0.05 
1.8 0.70 1.9 0.8 0.1 0.10 
1.6 0.60 1.8 0.79 0.2 0.19 
1.7 0.57 1.7 0.57 0.0 0.00 

                      

 
 

Relevance % Volume Å
3

 Relevance % Volume Å
3

 Relevance  % Volume Å
3

 

FUNCTION 

Cavities 

100 3623 100 4283 0 660 
51 2131 49 2152 -2 21 
32 1375 31 1321 -1 -54 

                      

  Residue name and number Residue name and number Residue name and number 

FUNCTION 

Catalytic Residues 

Arginine 132 Histidine 132 R132H 
Tyrosine 139 

Lysine 212 
Aspartate 275 

                      

 
 Residue Number pKa Residue Number pka pKa 

FUNCTION 

Catalytic Residues pKa 
Arginine 132 - 14.23 Histidine 132 - 6.47 -7.76 
Tyrosine 139 - 12.58 Tyrosine 139 - 12.58 0.00 
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Lysine 212 - 11.56 Lysine 212 - 10.73 -0.83 
Aspartate 275 - 4.60 Aspartate 275 - 3.32 -1.28 

                      

INHIBITORS 
Autodock Vina 

 Binding Energy (kcal/mol) Binding Energy (kcal/mol)  Binding Energy (kcal/mol) 
Alfentanil -10.3 -10.3 0.0 

Prostaglandin E2 -10.2 -10.2 0.0 
Propoxyphene -10.0 -10.0 0.0 
Sulfamethazine -9.3 -9.3 0.0 

Rivastigmine -9.3 -9.3 0.0 
Droperidol -9.2 -9.2 0.0 

isoMisoprostol -9.2 -9.2 0.0 
Fluvastatin -9.2 -9.2 0.0 

Dehydrocholic -9.0 -9.0 0.0 
Ivosidenib -8.1 -8.1 0.0 

 

 
 

Min Energy  

(kcal/mol) 
Max Energy 

(kcal/mol) 
RMSD Å 

Min Energy 

kcal/mol 
Max Energy 

kcal/mol 
RMSD Å 

Min 

(kcal/mol) 
Max 

(kcal/mol) 
RMSD  

(Å) 

INHIBITORS 
CaverDock 

Alfentanil -8.6 -4.2 0.2 -8.9 -4.4 0.1 -0.3 -0.2 -0.1 
Prostaglandin E2 -10.9 -7.9 0.9 -10.7 -7.4 0.4 0.2 0.5 -0.5 

Propoxyphene -10.0 -5.8 1.5 -10.6 -5.4 1.4 -0.6 0.4 -0.1 
Sulfamethazine -10.1 -8.8 0.4 -10.9 -9.1 0.7 -0.8 -0.3 0.3 

Rivastigmine -10.1 -7 0.6 -9.4 -7.4 0.9 0.7 -0.4 0.3 
Droperidol -9.3 -6.8 1.1 -9.1 -6.4 0.7 0.2 0.4 -0.4 

isoMisoprostol -9.4 -5.2 1.4 -9.8 -5.8 1.1 -0.4 -0.6 -0.3 
Fluvastatin -9.6 -5.3 0.7 -10.4 -5.4 1.4 -0.8 -0.1 0.7 

Dehydrocholic -8.8 -6 0.2 -9.7 -6.3 0.7 -0.9 -0.3 0.5 
Ivosidenib -7.4 5.7 0.5 -6.5 2.1 0.9 -0.9 3.6 0.4 
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6. Conclusions 

This review highlights the potential of virtual screening, which can be a useful aid in the 

prioritisation of promising drug compounds for experimental testing. As illustrated by the case studies 

presented herein, this technique can also be employed in drug repurposing efforts, enabling the efficient 

discovery of microbial products that can be used for cancer treatment. Therefore, our goal is to increase 

awareness of available virtual screening tools within the medical and scientific community, in particular 

among those working in the area of experimental and clinical oncology. Virtual screening against known 

targets involved in a specific cancer pathology may help to identify small molecules, including products of 

microbial origin, that are likely to bind to it.  

The aim of this review was to provide an introduction and overview of virtual screening, in 

particular for those with little to no experience. It includes tables that list databases of molecular target 

structures, libraries of ligand molecules, and various software tools for docking calculations, which may 

assist users in their future virtual screening studies. Although using stand-alone tools for virtual screening 

has advantages, such as calculation speed and the ability to control every step of the workflow, using 

available web tools can be preferred for various reasons. First and foremost, they are often more user 

friendly and do not require any previous experience, as tutorials are available that provide inexperienced 

users with the necessary knowledge to perform the virtual screening. The fact that they typically do not 

require installations or access to a cluster or advanced computer further contributes to the user-

friendliness of web tools. In the case studies, we introduced in house software tools Caver Web and 

PredictSNPonco, which perform highly automated virtual screening and may serve as a starting point for 

exploring this technique. However, it is important to keep in mind that using automated web tools brings 

challenges of its own, and, as for most computational methods, the results will only be as good as the 

input data. 
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