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A strategy to reduce qualitative and quantitative losses in crop-
yields refers to early and accurate detection of insect-damage
caused in plants. Remote sensing systems like hyperspectral
proximal sensors are a promising strategy for managing crops.
In this aspect, machine learning predictions associated with
clustering techniques may be an interesting approach mainly
because of its robustness to evaluate high dimensional data. In
this paper, we model the spectral response of insect-herbivory-
damage in maize plants and propose an approach based on
machine learning and a clustering method to predict whether
the plant is herbivore-attacked or not using leaf reflectance
measurements. We differentiate insect-type damage based on
the spectral response and indicate the most contributive wave-
lengths to perform it. For this, we used a maize experiment in
semi-field conditions. The maize plants were submitted to three
different treatments: control (health plants); plants submitted
to Spodoptera frugiperda herbivory-damage, and; plants sub-
mitted to Dichelops melacanthus herbivory-damage. The leaf
spectral response of all plants (controlled and submitted to her-
bivory) was measured with a FieldSpec 3.0 Spectroradiometer
from 350 to 2500 nm for eight consecutive days. We evalu-
ated the performance of different learners like random forest
(RF), support vector machine (SVM), extreme gradient boost
(XGB), neural networks (MLP), and measured the impact of a
day-by-day analysis into the prediction. We proposed a novel
framework with a ranking strategy, based on the accuracy re-
turned by predictions, and a clusterization method based on a
self-organizing map (SOM) to identify important regions in the
reflectance measurement. Our results indicated that the RF-
based framework algorithm is the overall best learner to deal
with this type of data. After the 5th day of analysis, the accu-
racy of the algorithm improved substantially. It separated the
three treatments into different groups with an F-measure equal
to 0.967, 0.917, and 0.881, respectively. We also verified that
the most contributive spectral regions are situated in the near-
infrared domain. We conclude that the proposed approach with

machine learning methods is adequate to monitor herbivory-
damage of S. frugiperda and stink bugs like Dichelops melacan-
thus in maize, differentiating the types of insect-attack early on.
We also demonstrate that the framework proposed for the anal-
ysis of the most contributive wavelengths is suitable to highlight
spectral regions of interest.

proximal hyperspectral sensing | precision agriculture | random forest.
Correspondence: lucasosco@unoeste.br

Introduction
One of the major factors that impact a country’s economic
development is its agronomic sector since it is responsible
for, among others, raw material providing, employment gen-
eration, and both human and animal food production. Sev-
eral issues can impact a crop yield rate like chemical fertil-
izer overutilization, presence of chemicals in water supply,
uneven distribution of rainfall, soil fertility difference, and
the attack of pests or diseases in plants (1). Plant diseases
are described as some form of modification that hampers the
normal processes in their healthy development (1). As such,
not only the disease but also insect-damage occurrences sig-
nificantly endangers agriculture around the world (2) being
usually associated with huge economic losses. To illustrate
this scenario, for 12 major maize-growing countries, insect-
damage costs a total of 1–4 billion dollars in lost crops per
year (3).
Brazil is the third-largest producer of maize cultivar in the
world. The last crop season (2019/2020) represents a record
production with 105 million tons approximately, resulting in
an increase of 2.6 percent in relation to the previous one (4).
In China, the second-largest producer of maize in the world,
caterpillars that ravage crops are advancing across fields and
threatening this nation’s vast supply of maize (3). Africa,
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where the pest arrived in 2016, and southern Asia have also
reported a recent outbreak of bugs, causing maize yield losses
surpassing 50 percent (3). A strategy to minimize both qual-
itative and quantitative losses in crop yield refers to early
and accurate detection of insect-damage caused in plants (5).
However, the traditional approach for monitoring plants in
the field is labor-intensive, being prone to be subjective, and
generally shows low efficiency (2, 5).

Remote sensing systems are a promising strategy for manag-
ing crops because they can provide directly noncontact and
spatially continuous monitoring of diseases and pests effi-
ciently (2, 6). The principle of remote sensing science is
that all targets (e.g. soil, vegetation, water, etc.) on the
terrestrial surface reflect or emit electromagnetic energy in
specific wavelengths owing to a difference in their chemi-
cal composition, inner physical structure, and surface prop-
erties (roughness) (7). In a hyperspectral context, this means
measuring hundreds of narrow bands within the electromag-
netic spectrum. In this regard, the spectroscopy area refers
to the method of obtaining the hyperspectral characteristics
of a target regarding radiation flux intensity emitted or re-
flected by its constituents at different wavelengths to provide
a precise fingerprint of a target (e.g. a plant) (7). For the last
decades, many studies have proved the potential of remote
sensing systems in the precision agriculture area, mainly for
plant disease detection (2, 5, 6, 8–17).

Methods for modeling insect-damage caused in plants can
be divided into traditional statistical analysis to even inno-
vative machine learning approaches (2). Machine learning
may be an interesting approach mainly because of its robust-
ness to evaluate high dimensional data such as hyperspec-
tral collected from proximal sensing equipment. One study
(10) investigated the potential of near-infrared hyperspectral
(1000 to 1600 nm) images processed by linear discriminant
analysis and quadratic discriminant analysis for the detec-
tion of insect-damaged wheat kernels and pointed out that
methods correctly classified 85–100% healthy and insect-
damaged wheat kernels. Another research (11) adopted hy-
perspectral (400 to 720nm) images processed with the step-
wise discriminant analysis for the detection of external insect
damage in jujube fruits, and the overall classification accu-
racy was about 97.0%. An investigation (14), applying the
partial least squares discriminant analysis in hyperspectral
(1100 to 1700 nm) images of the short-wave infrared region,
was able to demonstrate, with an accuracy upper to 96%, afla-
toxin contamination on corn kernels.

One laboratory research (15) measured the hyperspectral re-
flectance (350 to 2,500 nm) of symptomatic and asymp-
tomatic rice leaves infected by four different diseases. Based
on probabilistic neural network classifiers, it was concluded,
with the mean overall accuracy upper to 91%, that symp-
tomatic and asymptomatic rice leaves can be discriminated
using hyperspectral reflectance measurements only. Another
study (18) applied two machine learning algorithms, radial
basis function (RBF) and K-nearest neighbor (KNN), in hy-
perspectral (400 to 1,000 nm) images for the detection of cit-
rus canker in several disease development stages (i.e., asymp-

tomatic, early, and late symptoms) on Sugar Belle leaves and
immature (green) fruit, and the overall classification accuracy
of both methods was higher than 94%. One recent study (19)
developed decision-tree machine learning algorithms to pre-
dict the level of P. truncatus infestation and associated dam-
age of maize grain in smallholder farmer stores. To P. trun-
catus population size prediction, the model performance was
weak (r = 0.43) because of the complicated sampling and de-
tection of the pest and eight-week long period between sam-
pling events. To grain damage prediction, the model had a
stronger correlation coefficient (r = 0.93) being considered a
good estimator of damages in grain caused by insects. An-
other recent study (20) investigated several machine learning
algorithms to predict the cotton leafworm (Spodoptera lit-
toralis) plant infestation in the greenhouses and found that the
XGBoost algorithm was the most effective algorithm achiev-
ing a prediction accuracy of 84%.

As mentioned, remote sensing systems often provide high-
dimensional datasets. This is due to spectral, temporal, and
spatial features of remote systems, which are merged into a
data vector, and occasionally require the application of tech-
niques for datasets reduction or clustering. To accomplish
this demand, a clustering method like the Self-Organizing
Map (SOM) is a promissory alternative. SOM can dimen-
sionally organize complex data into clusters, according to
their relationships, being a highly appropriate method to
solve difficult high-dimensional and nonlinear problems such
as feature extraction and image classification such as those
acquired by remote sensing systems (21). A main feature
of the SOM is to compose a nonlinear mapping of a high-
dimensional input space to a typically 2-D grid of artificial
neural units (22, 23). For that, SOM is based on an arti-
ficial neural network trained based on unsupervised learn-
ing, consisting of a two-layer, an input layer and an output
layer known as the Kohonen layer (22, 23). The literature
review presents many studies using the SOM architecture to
attend different applications, including remote sensing and
agriculture-related problems (21, 24–29).

Although the SOM method is in widespread use across sev-
eral disciplines (23), there is still a lack of investigation
to date in the hyperspectral remote sensing area, especially
for indicating the most relevant spectral regions to identify
insect-damage in crops, such as maize. Predicting insect-
herbivory-damage in plants with spectral data is an actual
and important practice since it can assist agricultural manage-
ment in a rapid and in-situ manner. However, methods that
appropriately model high dimensional data from hyperspec-
tral proximal sensors need further evaluation, mainly when
the ranking and SOM approach is applied. The ranking ap-
proach has been adopted, for example, to identify the indi-
vidual contribution of each spectral information, collected
by remote sensing system, included in a machine learning
model to solve precision agriculture problems (30–32). The
ranking method calculates the increased or decreased differ-
ence in the performance of the algorithm against the perfor-
mance of a baseline method concerning a given variable, and
this returns a metric score for the individual input variables,
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thus indicating the contribution of each index into the model.
In this regard, we propose an approach based on machine
learning to predict whether the plant is attacked or not by
insects using leaf reflectance measurements. The results ob-
tained here showed that the reflectance measures differentiate
the herbivore-type of damage, i.e, differentiate the herbivory
provoked by larvae of Spodoptera frugiperda, a chewing in-
sect, from the herbivory provoked by the stink bug Diche-
lops melacanthus, a sucking feeding insect. In short, here we
present:

1. The performance of different learners;

2. The impact of a day-by-day analysis into the predic-
tion, and;

3. A framework to identify important spectral regions for
this prediction using the ranking and SOM approach.

Materials and Method

The method (Figure 1) was divided into the following main
phases: 1) proximal sensing data acquisition; collected from
different maize plants during different days in-field condi-
tions; 2) data process and organization; separated into multi-
ple datasets to be evaluated by the models; 3) machine learn-
ing evaluation; used to indicate the more appropriate learner
to predict the insect-damage in this type of data; 4) daily anal-
ysis comparison; implemented to determine the impact on an
individual analysis of the overall best learner, predefined in
the previous step; 5) ranking and clustering with SOM of the
contribution of wavelengths to the models’ performance; pro-
posed to help to define the appropriate spectral regions to sep-
arate insect-damage from healthy plants and to differentiate
the insect-type damage in maize plants.

Insects. Spodoptera frugiperda were maintained in separate
environmental rooms at 27±1 °C, with 65±10% relative hu-
midity and a 14 h photoperiod. S. frugiperda larvae were ob-
tained from a laboratory colony maintained at Embrapa Ge-
netic Resources and Biotechnology in Brasília, DF, Brazil.
The larvae were reared in plastic containers on an artifi-
cial diet based on beans (Phaseolus vulgaris). Second in-
star larvae (33) were used in experiments and starved for
24 h before the experiment. Dichelops melacanthus indi-
viduals were obtained from a laboratory colony started from
adults collected in soybean fields near Embrapa Genetic
Resources and Biotechnology, Brasília, Brazil (15°47′0′′S,
47°55′0′′W). Stink bugs were reared in 8 L plastic containers
on a diet of soybean seeds (cv Conquista), sunflower seeds
(Helianthus annuus), raw peanuts (Arachis hypogaea), fresh
green beans (Phaseolus vulgaris), and water. The food sup-
ply was renewed twice a week. To provide an oviposition
substrate and shelter for the bugs, a 15 cm2 piece of nylon
mesh screen was placed inside the cages. They were kept in
a controlled-environment room at L14: D10 photoperiod, 26
± 0.3 °C and 70 ± 10% r.h.

Plants. Maize seeds were obtained from Germplasm Bank
of Embrapa Maize and Sorghum in Sete Lagoas, MG, Brazil
(19°27′57′′S and 44°14′48′′W) and germinated on damp pa-
per. After 4 days, the seeds were transplanted to pots with
a mixture of soil and organic substrate (in a proportion of
1:1 w/w) and kept in a greenhouse (14 h photoperiod). The
plants used in the experiments were grown for 9-10 days after
emergence and had three fully expanded leaves.

Experimental Area and Data Acquisition. The semi-field
experiments were conducted in an external area of our labo-
ratory in Brasilia with natural light. The plants of maize re-
ceived one of the following treatments: 1) undamaged plants
(UDP) (did not receive the treatment), 2) two (2) 2nd instar
larvae of S. frugiperda herbivory damaged plants (Sf-HDP)
(N = X for each treatment) and 3) two (2) adult females of
Dichelops melcanthus herbivory damaged plants (Dm-HDP).
Reflectance data from plants under these three treatments
were collected from 09 to 15 h. The data was acquired over
8 days, except for day 3 and 7, which were collected outside
the 09 to 15 h interval, thus, not used in this study.
The spectral reflectance from the plants was collected with
a compact, field-portable, and precision instrument with a
spectral range of 3,50-2,500 nm, FieldSpec 3.0 spectrora-
diometer, at the daylight conditions, in a rapid data collec-
tion time of 0.1 seconds per spectrum. The sampling interval
is 1.4 nm for the spectral region 3,50-1,000 nm and 2 nm
for the spectral region 1,000-2,500 nm. It was used a small
size of the pistol grip and 8 grades fore optics around 50 cm
far from the samples and material with approximately 100%
reflectance across the entire spectrum as a white reference
panel or white reference standard. At each time of acquisi-
tion was calibrated the reflectance with the white standard.
The processed data, in reflectance value, was organized into
separated subsets according to the required analysis, both de-
tailed in the following subsections. Before the analysis, we
reordered the spectral wavelengths into columns, to be used
separately by the models. This assured that the wavelengths,
from 350 to 2500 nm, were used as an input parameter for the
algorithms. We then identified low signal-to-noise spectral
regions, mostly related to atmospheric conditions and equip-
ment interference, from 1,350 to 1,410 nm, 1,820 to 1,940
nm, and 2,460 to 2,500 nm. This resulted in 1,934 attributes
to be incorporated into the analysis as input variables.

Insect Herbivory-Damage Classification. To determine
the overall best learner to model the spectral configuration-
sets, we choose 8 algorithms based upon their theoretical
characteristics and state-of-the-art usage. The algorithms
were: ExtraTree (ExT); k-Nearest Neighbour (kNN); Logis-
tic Regression (LoR); Multi-Layer Perceptron (MLP); Naive
Bayes (NB); Random Forest (RF); Support Vector Machine
(SVM) and; Extreme Gradient Boost (XGB). How they were
applied is described in the following subsection. However,
in an experimental initial phase, we evaluated the individual
performance of the algorithms to determine whether a fine-
tuning of its parameters was necessary. Upon multiple com-
parisons of fine-tuning meta methods like Random Search,
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Fig. 1. The summarized steps of the framework developed in this study.

Grid Search, and others against the results of the baseline of
each algorithm, we verified that no gain in accuracy was ob-
tained in relation to the processing time needed to perform
the classifications. Because of that, the default values of the
implemented libraries were adopted in our experiment.

The ExT and RF learners are algorithms based on decision
trees, where the ExT (34) is an ensemble method that builds
randomized trees with independent structures, while RF (35)
combines tree predictors in a manner that each tree depends
on values of a random independent vector. In our environ-
ment, the number of attributes decided at each node of the
ExT was defined as random, and the RF used 100% of the
training set as bagging size. The LoR and the NB learner
are both based on a probabilistic concept, where LoR (36)
is based on a sigmoid function, and NB (37) uses a naïve
approach based on the Bayes Theorem, disregarding the cor-
relation between input variables. Here we adopted a Ridge
value equal to 0.00000001 in the log-likelihood for the LoR

learner, and did not use any Kernel estimator nor supervised
discretization for the NB method.

The MLP (38) uses hidden layers to perform a classification
task, and executes it in a feed-forward manner, being depen-
dent on its activation functions and solver adapted for opti-
mizing its weights. The MLP used here adopted a learning
rate of 0.05, a momentum of 0.1, Adam solver, and sigmoid
functions. The SVM (39) separates an attribute space using
a hyperplane and calculates a linear function while maximiz-
ing the margins between instances. We implemented a C-
SVC type, with an eps and gamma equal to 0.001 and exp(-
gamma*|u-v|²), respectively, using a radial basis function as
Kernel. The kNN (40) verifies the proximities of the data
by adopting a set of weights and distance metrics. Here we
set the number of neighbors to be equal to 5 and used a eu-
clidean distance approach to measure it. Lastly, the XGB,
which is one of the most recognized algorithms by the ma-
chine learning community (41), implements a forward stage-
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wise ensemble method and computes second-order gradients
of a loss function. In our experiment, the default parameters
of its library were adopted.

Protocol. The machine learning models were implemented
through the open-source software Weka 3.9.4, using inte-
grated libraries from both Weka, R, and Scikit-Learn pack-
ages. A workstation equipped with an Intel(R) i7-8550U
1.80 GHz CPU and 12 Gb 2,333 MHz RAM was used for.
The computational analysis was conducted in two differ-
ent phases: In the first phase we determine the overall best
learner to model the spectral data, and investigated the im-
pact of different daily measurements on this learner; in the
second phase, we modeled the damage according to its ori-
gin type (S. frugiperda or D. melacanthus). The datasets and
analyses performed are summarized in Table 1.
The comparison with multiple machine learning algorithms
was performed using all of the reflectance measurements
acquired during 8 days of analysis. For this, the 8 algo-
rithms were compared after 100 validation results. This was
achieved with a 10-fold cross-validation randomized strategy,
executed with 10 repetitions. With this approach, the algo-
rithm is validated with “unknown” data to the learner, not
used at its training phase. Since this procedure was run 10
times, the models were built from scratch for each repetition.
Later, each model was also evaluated with 10% of its data in a
separated testing phase. The same data subsets were consid-
ered for every classification. The classification metrics eval-
uated in this study were Precision, Recall, and F-measure.
We also used the True-Positive and False-Positive Rates and
the Receiver Operating Characteristic (ROC) curve for each
class.
After defining the overall best learner, a daily comparison
with data collected from the beginning to the end of the ex-
periment (days 1 through 8) was used as separated inputs for
the classification task. The strategy, described in the previ-
ous step, for processing and evaluating the performance of
the algorithm, was also adopted. This helped define the im-
pact of the continuous attack of the insets into the analysis
of the spectral behavior of the maize plants. With that, it
was possible to indicate the most discrepant days of analysis
since the beginning of the infestation. We then performed a
Shapiro-Wilk normality test at a 95% confidence interval. As
it returned p-values both above and under 0.05, the ANOVA
analysis followed by a Tukey’s pairwise test was used to com-
pare the mean values of each prediction when data was con-
sidered normal (parametric), and the Mann-Whitney pairwise
test was adopted when data was non-parametric.
Once the overall best learner and possible best day of anal-
ysis were both defined, we evaluated the algorithms’ per-
formance according to the three different classes available:
control (health plants); caterpillar, and; bug attacked. This
analysis was conducted in two steps: firstly considering the
full dataset with all classes confronting each-other in a “one-
against-all” fashion, with the intent to produce some diffi-
culties to the model and measure its robustness, and later in
a pairwise comparison to indicate differences aside of each
test. Lastly, to help ascertain our predictions, we also calcu-

lated the average and standard deviation of spectral curves
and used it to discuss its implications and possible chal-
lenges.

Ranking and Clustering of Spectral Data. To calculate
the potential of every wavelength used as input for the overall
best classifier, we adopted a ranking approach. This ranking
approach consists of a direct comparison between the used
classifiers’ accuracy, obtained with a specific input variable
(i.e. the individual wavelength), against the performance ob-
tained at the same conditions with a baseline algorithm. The
baseline algorithm used for this comparison was the ZeroR
learner, which calculates the average value of the measured
variables and uses it as a prediction. This algorithm is con-
sidered the baseline for the Weka library of machine learning
classifiers. A Metric score, related to this difference in perfor-
mance between algorithms is obtained from this approach. In
this regard, this score can be positive or negative, and even re-
turn a number above 1 (since the increase may exceed 100%).
We used the Metric score to indicate the most contributive
spectral wavelengths for the prediction. The intention be-
hind it is to provide information related to the importance
of these variables in separating healthy plants from the dif-
ferent insect-type damaged plants, evaluated in our dataset.
To help ascertain the most contributive spectral regions in-
stead of only the individual contribution of our data, we im-
plemented a clustering algorithm, based on an unsupervised
artificial neural network, known as the Self-Organizing Map
(SOM). The SOM applies a competitive learning approach
using a neighborhood function. This helps to preserve the
topological properties of the input variables, and it is useful
for evaluating it as it creates a low-dimensional visualization
of high-dimensional data. The SOM was executed with 1000
and 2000 epochs in, respectively, the ordering and conver-
gence phases. A height of lattice equal to 2, a learning rate
of 1.0, and the normalization of the attributes were also used
in this task. With that, we plotted feature maps of the Metric
score and identified the highest contributive spectral regions
used by the machine learning algorithm to model it.

Results and Discussion

The results of the conducted approach were generated into a
sequential form of analysis, where data or information gath-
ered at the previous analysis was incorporated into the subse-
quent evaluations. In this aspect, this section is divided into
two segments: the first being related to an overview of the al-
gorithms performance and day-by-day analysis, and; the sec-
ond presenting the outcomes of the ranking and clustering
approach to indicate the most contributive wavelength inter-
vals to separate each class of insect-damage.

Modeling Insect-Damaged with Machine Learning and
Hyperspectral Data. The initial dataset was composed of
all the measure variables within the eight days of analysis
and separated into two classes: Undamaged plants (UDP) and
herbivory-damaged plants (with S. frugiperda larvae and D.
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Table 1. Configuration-sets used in this study to predict insect-damage and separate insect-damage type.

Dataset UDP (n) Herbivory damaged (n) Total (n) Sf-HDP (n) Dm-HDP (n) Experiment
Total Analysis 464 855 1319 505 350 Multiple Algorithm Comparison

Day 1 104 180 284 100 80 Single Algorithm Analysis
Day 2 150 265 415 185 80 Single Algorithm Analysis
Day 4 50 120 170 70 50 Single Algorithm Analysis
Day 5 60 90 150 50 40 Single Algorithm Analysis
Day 6 50 100 150 50 50 Single Algorithm Analysis
Day 8 50 100 150 50 50 Single Algorithm Analysis

UDP vs Sf-HDP 60 50 110 50 0 Ranking and Self-Organizing Map
UDP vs Dm-HDP 60 40 100 0 40 Ranking and Self-Organizing Map

Sf-HDP vs Dm-HDP 0 90 90 50 40 Ranking and Self-Organizing Map
The “Herbivory Damaged” group amount corresponds with the sum from data of larvae and stink-bugs groups. The Total Analysis group is the sum from Day 1 to 8 groups.

melacanthus). The averaged and the standard deviation val-
ues of every wavelength indicated that both groups differen-
tiate each other, in amplitude terms, in most of the spectrum
space, with a possible exception in the red-edge region (Fig-
ure 2). Another observation is that, in the visible spectrum,
the damaged group had a higher deviation from the averaged
values than the control group. This indicates that this region
may not be interesting to separate both groups, even if the av-
eraged curve was slightly higher for the damaged group than
the control.
The prediction using the described dataset was executed with
8 machine learning algorithms, and the results indicated a
significant overall better performance with the Random For-
est (RF) learner (Figure 3 and Table 2). Here, we compared
both the Precision, Recall, and F-Measures among the algo-
rithms, and adopted Tukey’s pairwise test to indicate the dif-
ferences between mean values of each prediction. Since F-
Measure is a harmonic mean between Precision and Recall
(42), we considered it the most important parameter to com-
pare the models. The kNN and XGB algorithms also returned
good accuracies, and the Recall mean value obtained with the
kNN was higher than RFs’. However, since the Precision val-
ues of RF were higher, the harmonic measure (F) was higher
for this classifier.
The ROC curve for the RF was the highest of all learners, in-
dicating that the algorithm returned high true-positives and
low false-positives values with more consistency than the
others. SVM and NB returned the worst results, and although
SVM presented a Precision equal to 1 in all of the validations’
set (Figure 3), which is due to an overestimate of one of the
classes (damage group) above the other (control group), this
scenario resulted in the lowest Recall possible. In the testing
phase (Table 2) the SVM method presented a more leveled
classification. Regardless, it returned one of the worst possi-
ble outcomes. Some classifiers, including SVM, are sensitive
to imbalanced training data sets, in which some classes are
represented by a much smaller number of samples than other
classes (43).
The RF algorithm is considered one of the most powerful
learners in use, and its capability of learning from multi-
ple input variables is something that is benefited from a
highly-dimensional dataset such as this one (35)(Belgiu and
Drăgu, 2016; Breiman, 2001). In other studies related to
spectral readings and agronomic-related predictions with ma-
chine learning methods, RF was able to infer both macro
and micronutrients in hyperspectral readings with satisfac-

Table 2. Algorithms’ test comparison considering health and insect-damaged maize
plants at all days of analysis. Letters positioned after the metric value indicate the
differences between each algorithm at training.

Algorithm Precision Recall F-Measure ROC Area
ExT 0.698 e 0.698 c 0.698 d 0.686 e
kNN 0.748 c 0.746 a 0.747 b 0.741 c
LogR 0.637 f 0.647 d 0.628 e 0.715 d
MLP 0.617 g 0.619 f 0.618 f 0.670 f
NB 0.568 h 0.473 g 0.434 h 0.533 g
RF 0.785 a 0.787 a 0.783 a 0.854 a

SVM 0.771 b 0.630 e 0.515 g 0.539 g
XGB 0.724 d 0.728 b 0.722 c 0.792 b

tory performances (31). The algorithm was also used in
the hyperspectral imagery-domain to predict weed presence
in maize-crops (44) and vegetable crop biomass with Un-
manned Aerial Vehicle (UAV) type of data (45). Regarding
insect-damage detection in crops, the accuracy achieved here
was approximate from the values obtained by the other meth-
ods (10, 11, 14, 15, 18–20), as it will be demonstrated in the
subsequent results.
We used the RF algorithm, with the same preset configu-
rations from the previous analysis, to evaluate its predic-
tion capability in a day-to-day approach. In this regard, the
RF learner was capable of achieving higher accuracies (F-
Measure) than when considering all of the datasets, which
indicated a possible noise hindrance on the data. This may
be because, from the initial time of the experiment (day 1),
not much of a difference in the spectral behavior of the maize
plants may be noticeable. This could be explained by the
short amount of time that the plants were under attack by the
insects, thus not evidencing it as much as in the subsequent
days. Still, the classification was better than a random guess,
which is an indication of how robust hyperspectral data and
machine learning analysis are. To ensure this comparison and
highlight some of these aspects, we evaluated both the mul-
tiple validations sets returned by our consecutive runs during
the training phase, as well as the F-measure returned at the
testing phase of the algorithm (Figure 4).
Although from day 4 and beyond the RF model returned F-
measure values close to 1.0 in some of the different training
runs, the analysis on day 5 achieved the overall best predic-
tion, with some outliers below 0.80. The testing results were
also slightly higher than the averaged values of the training
runs, and for the 1st day, it was outside the first interquartile
interval. Regardless, it stayed inside the 95% range, which
validates it. The Mann-Whitney pairwise test indicated that
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Fig. 2. Spectral wavelengths for health plants (control) and insect-damaged maize plant classes after 8 days of the attack. The averaged is represented by lines and the
standard deviation values by the colored areas. UDP= undamaged plants, HDP= herbivory damaged plants.

Fig. 3. Machine learning models’ performance comparison considering health and insect-damaged maize plants with 8 consecutive days of insect-damage.
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Fig. 4. Random Forest (RF) performance metric comparison between days of analysis considering health and insect-damaged maize plants. Letters positioned above the
metric value indicate the differences between each day’s prediction. The value highlighted inside the box-plot regions corresponds with the F-measure returned at the testing
phase.

days 2, 4, and 8 returned non-statistically significant differ-
ences, which is a good indicator that, from the 2nd day of the
insect-attack, it is possible to achieve high prediction values
with RF to separate health from insect-damaged maize plants.
This information is interesting since it is an indication of how
the reflectance measurements from proximal sensing, along-
side the robustness of the RF algorithm, are sensitive to the
effects of the insect-attack in maize plants.

Differentiating Insect-Damage Types. Since RF returned
the overall best predictions on the 5th day of analysis, we
chose this configuration set to evaluate the capability of the
combination between spectral behavior and machine learn-
ing approach to separate different types of insect-damage.
We should point out that, when evaluating the spectral av-
erage and its standard deviation of the individually measured
wavelengths (Figure 5), similar characteristics by consider-
ing the two-classes problem with every day of analysis (Fig-
ure 2) are present. In this aspect, interesting enough, the treat-
ment that presented the highest deviation from the mean was
the measures obtained from maize plants with S. frugiperda
herbivory. The most visible aspect in this set (Figure 5),
however, is that the averaged spectral behavior of both treat-
ments with herbivory damaged, stink bug, and larvae of S.
frugiperda is almost equal in the green region, around the 550
nm band. This indicates that it may be difficult for a sensor
in this region to differentiate one attack from the other.
In a “one-against-all” type of approach, the RF algorithm

was able to separate with high accuracies the three treatments
(undamaged plants, Sf-HDP and Dm-HDP). The undamaged
plants returned better metrics overall, followed by the
Sf-GDP and, later, Dm-HDP (Table 3). This was important
to indicate that, even considering similarities between the
spectral curves, the model was able to overcome most of it
and indicate the correct group. For real plantation conditions,
where the producer may or may not know the type of plague
in a specific maize plant, this approach may be adequate to
assist in defining it.

Table 3. Evaluation metrics returned by the Random Forest algorithm for separating
all the classes on day 5.

Group Precision Recall F-Measure ROC Area
UDP 0.967 0.967 0.967 0.989

Sf-HDP 0.957 0.880 0.917 0.970
Dm-HDP 0.841 0.925 0.881 0.970

To determine the individual performance of the RF learner
when confronting the different classes in a pairwise manner,
we used different subsets with a two-class approach, as indi-
cated in Table 1. This approach demonstrated that it is easier
for the algorithm to separate undamaged maize plants from
Dm-HDP (Figure 6). It was also capable of differentiating
between maize plants from caterpillar to bug attack, much
like when grouping the three classes (Table 3).
The testing metrics also indicated interesting information for
the different scenarios considered (Tables 4, 5, and 6). Al-
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Fig. 5. Spectral wavelengths for the three classes (undamaged plants - UDP, Sf-HDP, and Dm-HDP) measured on day 5 of the analysis.

Fig. 6. Evaluation metric returned at training the Random Forest algorithm for separating classes at day 5 in a pairwise comparison.
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though these results were higher (F-Measure wise) in com-
parison with the averaged consecutive runs, they corrobo-
rated the pattern observed at the training phase (Figure 6).
They were also within the 95% interquartile range calculated.
The pattern returned by these analyses indicates that it is eas-
ier for the algorithm to separate bug attacks than caterpillar
attacks from healthy maize plants. And although it is pos-
sible to achieve high accuracies in separating the insect-type
of attack by comparing the bug group against the caterpillar
group, it is, as expected, more difficult than when in compar-
ison with healthier plants. This is probably related to how
both spectral curves (Figure 5) behave for the different types
of classes. The bug and control averaged curves are far apart
from each other, while the averaged curve from caterpillar at-
tacked maize plants is in between them, with a high standard
deviation.
Also, in some regions (Figure 5), the averaged spectral
curves of bug and caterpillar groups are almost near each
other. In general, lepidopteran larvae can induce higher
levels of injury in plant tissues when compared to stink bugs,
which are sucking insects. Studies have shown that maize
plants can have their direct defense response suppressed by
S. frugiperda larvae (46). S. frugiperda can manipulate the
plant defense in its favor (47) minimizing the production
of toxic compounds. On the other hand, herbivory injury
of D. melacanthus herbivory in maize plants induces direct
plant defense during the first 24 hours of herbivory. Similar
results were observed by (47) when S. frugiperda larvae at
the fourth instar feed on maize plants. The higher changes
in the chemical profile of direct defense in maize plants
injury by herbivory of the stink bug compared to larvae of
S. frugiperda support the better separation obtained by the
algorithm.

Table 4. Testing metrics of the classification for separating undamaged maize plants
from Sf-HDP.

Treatments TP Rate FP Rate Precision Recall F-Measure
UDP 0.983 0.060 0.952 0.983 0.967

Sf-HDP 0.940 0.017 0.979 0.940 0.959
Averaged 0.964 0.040 0.964 0.964 0.964

Table 5. Testing metrics of the classification for separating undamaged plants from
Dm-HDP.

Treatments TP Rate FP Rate Precision Recall F-Measure
UDP 0.967 0.05 0.967 0.967 0.967

Sf-HDP 0.950 0.033 0.950 0.950 0.950
Averaged 0.960 0.043 0.960 0.960 0.960

Table 6. Testing metrics of the classification for separating Sf-HDP from Dm-HDP.

Treatments TP Rate FP Rate Precision Recall F-Measure
UDP 0.820 0.125 0.891 0.820 0.854

Sf-HDP 0.875 0.180 0.795 0.875 0.833
Averaged 0.844 0.149 0.849 0.844 0.845

The ranking approach combined with the Self-Organizing
Map (SOM) clustering method is, in the presented sense, a
newly developed approach that can help with the analysis to

indicate the most contributive wavelengths and spectral re-
gions used for the classification performed by the machine
learning algorithm. This highlights the importance of the
input data (wavelengths) and how well they respond to the
algorithms’ modeling. Since the RF learner performs mul-
tiple combinations of the wavelengths used, it is difficult to
evaluate its predictions pattern. In this sense, the ranking ap-
proach applied in the described manner may help to ascertain
its relationship with the input variables. Here, this framework
was implemented with the subsets separated into the pairwise
comparison manner (Figure 7).

The ranking approach in the machine learning context is nor-
mally used as a pre-processing step to reduce the number
of input variables to the models by selecting only the most
important data. In agricultural related problems, we imple-
mented this type of approach with the RF and other learners
(30–32, 48), and it returned important data to monitor maize-
yield, canopy nitrogen content in citrus and leaf nitrogen con-
centration and plant height in maize plants too. Also in this
aspect, when implementing this type of approach for prox-
imal sensing, a different concept with the Relief-F method
(31) was considered for mapping both macro and micronutri-
ents in citrus-trees. Yet, by adopting the Metric score calcula-
tion after the algorithms’ classification, it is possible to mea-
sure how well each wavelength relates to the performance of
the algorithm.

The addition of the SOM method helped to indicate which
regions should be isolated by considering the cluster con-
structed with the highest Metric values (cluster 3). These
regions can be defined by their higher contribution with
the RF models prediction, and also with lesser interference
from the wavelengths grouped into inferior clusters (clusters
2, 1, and 0). To summarize the metric values related to
the defined regions with the help of the SOM method, we
calculate a descriptive analysis of the spectral regions (Table
7). Here, the highest average metric values were obtained,
interestingly enough, for the comparison between control
and caterpillar groups instead of control and bug groups
comparison.

The identification of isolated spectral regions is an important
feature to be incorporated into studies that aim to evaluate
different types of behavior in plants. The main idea behind
it is to propose more direct and clear spectral bands to be as-
sociated with the respective problem. Our model focused on
insect-damage in maize plants, however, the proposed frame-
work should be possible to be implemented in related re-
search. It could also be considered into novel studies that
aim to develop simpler and direct methods to estimate these
variables, such as spectral vegetation indices, or even sensors
and equipment that focus on these particular spectral regions.
And although it may be related to the model predictor (be-
ing this case, the RF learner), we intend to perform further
investigations to compare more traditional methods with the
machine learning algorithm to better ascertain the impact re-
lated to this reduction in data-dimensionality.
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Fig. 7. Ranking metric and SOM clustering method indicating the importance of wavelengths for the three maize plant experiments. The highlighted areas in yellowish-circles
indicate the most contributive regions, with less interference from other clusters.
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Table 7. Returned metric values for the spectral regions defined with the help of Ranking + SOM methods using the spectral measures from the three treatments - Undamaged
plants (UDP), Plants with an injury of two S. frugiperda larvae (SF-HDP), and from plants with an injury of two D. melacanthus.

Comparison Spectral Regions Min. Metric Average Metric Max. Metric
UDP vs Sf-HDP 420-480, 500-580, and 780-1350 nm 0.191 0.215 +- 0.020 0.294

UDP vs Dm-HDP 600-660 and 1100-1350 nm 0.148 0.177 +- 0.015 0.2
Sf-HDP vs Dm-HDP 640-700 and 900-1250 nm 0.098 0.098 +- 0.017 0.069

Conclusions

The main contribution of this study was to present an ap-
proach with machine learning models to detect and sepa-
rate insect-damaged plants from healthy maize plants using
only the reflectance measurements obtained with a proximal
hyperspectral sensing approach. We also indicated which
learner was more efficient to evaluate this and the impact of
a day-by-day analysis into the prediction. Lastly, we pro-
posed a novel framework to identify important spectral re-
gions from visible to short-wave infrared bands (from 350 to
2500 nm) using a combination of ranking and self-organizing
map (SOM) approaches. Our results indicated that the RF al-
gorithm is the overall best learner to deal with this type of
data. After the 5th day of analysis, the accuracy of the RF
algorithm improved substantially. It separated the control,
caterpillar, and bug groups with an F-measure equal to 0.967,
0.917, and 0.881, respectively. We also verified that the most
contributive spectral regions are situated in the near-infrared
domain and, on a small scale, at red, green, and blue, in this
respective order.

We conclude that the approach with machine learning meth-
ods is adequate to monitor insect-damage in maize plants,
differentiating the types of insect-attack early on. We demon-
strate that the framework proposed for this analysis, indicat-
ing the most contributive wavelengths, is suitable to high-
light spectral regions of interest. We hope that novel research
adopts the proposal presented herein other types of cultivars
and cultures. We suggest that the information presented here,
obtained with proximal measurements at wavelength scale,
can be implemented in other projects that aim to evaluate
the impact of the spectral regions on detecting insect-damage
in imagery sensors embedded in UAV platforms. In future
research, with larger datasets, we also intend to adopt deep
learning-based methods to establish an overview of its per-
formance over insect-damage classification with non-image
type of data.
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