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Abstract: One of the most important subjects of hydraulic engineering is the reliable estimation of 
the transverse distribution in rectangular channel of bed and wall shear stresses. This study makes 
use of the Tsallis entropy, Genetic Programming (GP) and (ANFIS) methods to assess the shear 
stress distribution (SSD) in rectangular channel. To evaluate the results of the Tsallis entropy, GP 
and ANFIS models, laboratory observations were used in which shear stress was measured using 
an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rec-
tangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 differ-
ent data for were used. The results of the sensitivity analysis show that the most influential param-
eter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the trans-
verse co-ordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and 
(z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on 
the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in esti-
mating shear stress in smooth rectangular channels than the Tsallis entropy-based equations. 
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1. Introduction 
Knowledge of boundary shear stress is necessary when studying sediment transport, 

flow pattern around structures, estimation of scour depth and channel migration. The de-
termination of boundary shear stress, i.e. at the wall and bed depends on the channel ge-
ometry and its associated roughness. Various direct and indirect methods have been ex-
tensively discussed in experimentally measure the wall and bed shear stresses in channels 
with different cross sections [1–5]. Bed shear stress can be estimated based on four tech-

niques (1) bed slope product gHSb  , (2) law of the wall velocity profiles 











 0

ln
1

z

z

ku

u

 where 
2
 ub  , (3) Reynolds stress measurement  ''wub   , (4) 

Turbulent Kinetic Energy (TKE), 
 2'2'2'

2

1
wvuTKE  

, where TKECb 1 , where 
'u , 

'v  and 
'w  are the fluctuating horizontal, transversal and vertical velocity compo-

nents, respectively and 20.01 C  [6]. The symbols g, H and S denote gravity, water 
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level and channel slope, respectively, whereas 𝑢 is the velocity at height z , u  is the 

shear velocity, k is von Karman constant, and 0z  is the roughness length. 
These methods are useful in presenting a point-based representation of shear stress 

in a channel, whereas the shear stress distribution (SSD) provides more accurate hydro-
dynamic profile within a channel. Knight and Sterling [7] measured the SSD in a circular 
channel with and without sediment. They examined a wide range of flow depths for each 
level benching and therefore it had been possible to determine the extent to which the 
hydraulics changes Park et al. [8] utilized laboratory-scale water flume and measured the 
bed shear stress under high-velocity flow conditions directly.  

Lashkar-Ara and Fatahi [9] measured transverse SSD in channel bed and wall by us-
ing an optimal diameter Preston tube to evaluate the SSD on a rectangular open channel. 
The outcome of this research is two-dimensional relationships to evaluate local shear 
stress in both bed and wall. The bed and wall relative coordinates b/B & z/H in the cross 
section and aspect ratio B/H are a function of these relationships. The study showed that 
the dimensionless SSD is greatly affected by the aspect ratio.  

Utilizing the advantages offered in soft computing method and Artificial Intelligence 
(AI) techniques, other researchers have been extended numerically and analytically to 
overcome difficulties with experimental measurements [10–13]. Martinez-Vazquez and 
Sharifi [14] utilized recurrence plot (RP) analysis and Eigenface for Recognition to esti-
mate the SSD in trapezoidal and circular channels. A new approach has been developed 
by Sterling and Knight [15] to estimate the SSD in a circular open channel. In terms of 
accuracy, the analysis showed that there is a lack of ability in the outcome and it is not 
satisfactory. The uncertainty of the estimation of the model parameters and the high sen-
sitivity of the outcomes to the expected experiment parameters can be due to this. 

Sheikh Khozani and Bonakdari [16] extended the analytical method based Renyi en-
tropy to estimate SSD in circular channels. Sheikh Khozani and Bonakdari [17] researched 
on the comparison of five different models in straight compound channel prediction of 
SSD. In other research, Sheikh Khozani and Wan Mohtar [11] analyzed the formulation of 
the SSD on the basis of the Tsallis entropy in circular and trapezoidal channels. Sheikh 
Khozani et al. [18] have attempted in another study to use an improved SVM method to 
estimate shear stress in rough rectangular channel. 

Ardiҫlioğlu et al.[19], conducted an experimental study for the SSD throughout the 
entire length of the cross-section in fully developed boundary layer area, in an open rec-
tangular channel, in both smooth and rough surface. By measuring the speed in both 
smooth and rough surfaces, they conducted tests. Using logarithmic distribution of veloc-
ity, the average shear stresses in the cross section for aspect ratios of 4.2 to 21.6 and the 
Froude numbers of 0.12 to 1.23 were measured. The definition of Tsallis entropy was used 
by Bonakdari et al. [20] to predict the SSD in trapezoidal and circular channels and achieve 
acceptable accuracy. 

Although the direct measurement of shear stress in laboratory provides correct de-
scription of the spatial pattern, the measurement of shear stress using shear place or cell 
is laborious, complex, requires careful calibration and may not applicable to all type of 
channels [21].  

The use of soft computing techniques in the simulation of engineering problems was 
intensively studied and a variety of soft computing methods were suggested. To approx-
imate the daily suspended sediment load, Kisi et al. [22] used a GP model. They also con-
trasted this approach with several soft computing approaches and concluded that the GP 
model works better than the others.  In estimating SSD in circular channels with and 
without flat-bed Sheikh Khozani et al. [23,24] applied Randomize Neural Network (RNN) 
and Gene expression Programming (GEP). 

In this study, Tsallis entropy was used to determine SSD in a smooth bed and wall in 
a rectangular open channel. This is then used to measure the SSD in various aspect ratios 
in the rectangular channel. In the second part of the study, two soft computing methods 
were applied to predict the transverse of SSD in the smooth rectangular channel. The 
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methods of genetic programming (GP) and (ANFIS) were examined to determine the pre-
cision of these models in estimating bed and wall shear stress. These three methods are 
compared with each other and with the experimental results of Lashkar-Ara and Fatahi 
[9]. This study aimed at using Tsallis entropy method to predict the SSD in smooth rec-
tangular channel. The results of the Tsallis entropy, GP and ANFIS methods compared 
with experimental results of Lashkar-Ara and Fatahi [9]. Although this analysis was per-
formed in parallel with Sheikh Khozani and Bonakdari [17] research, it can be said in a 
practical contrast that the data used in this study is based on the measurement of shear 
stress using the optimal diameter of the Preston tube, which was designed by Lashkar-
Ara and Fatahi [9], so the comparison of findings is more precise and less uncertain. 

2. Materials and Methods 

2.1. Data collection 
 Information on the SSD has been collected in the Lashkar-Ara and Fatahi [9] exper-

iments of a smooth rectangular channel, performed in a flume 10-meter long, 60 cm wide 
and 70 cm high. All measurements were performed in the range of 11.06 to 102.38 liter per 
second flow rate. Flow rate variations led to observable changes in water depth ranging 
from 4.3 cm to 21 cm and the aspect ratio of 2.86 to 13.95. The values of static and total 
pressure difference in various aspect ratios of B/H were measured and reported using 
pressure transducer apparatus with a capacity of 200 mill bar and 50 Hz measuring fre-
quency. In order to create uniform flow condition and to match the hydraulic gradient 
with the flume bed slope a weir at the end of the flume was installed. The notation used 
for a smooth rectangular channel conduit is illustrated in Figure 1. Figure 2 shows the 
experimental setup. 

 

Figure 1. Schematics of local SSD coordinates in the rectangular channel wall and bed. 
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Figure 2. Experiment schematic 

Based on previous studies in laboratory and field investigation, the effective criteria 
for evaluating the SSD along the wet periphery of a channel can be expressed as follows: 

 0),,,,,,,,,(1  soww KBSSHVgf  (1)

 1( , , , , , , , , , ) 0b w o sf g V H S S B K     (2)
 
where  is the average wall shear stress,  is the average bed shear stress, ? ? is 

the density,  is the kinematic viscosity, g is the gravity acceleration, V is the flow veloc-
ity, H is the flow depth, B is the Flume floor width, Sw is the Water surface slope,𝑘௦ is the 
roughness height, (Re) is the Reynolds number and (Fr) is the Froude number. The theo-
rem of Buckingham-π is used to obtain the following five independent dimensional pa-
rameters: 
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For GP simulation, 160 data of bed shear stress (τb) and 100 data of wall shear stress 
(τw) were collected in a smooth rectangular channel with different flow depths. Approxi-
mately 70 percent of the total data were chosen for training and the remaining 30 percent 
for testing. 

 
Table 1. Experimental summary 

parameters Variable definition minimum maximum Mean 
H (m) Flow depth 0.043 0.21 0.0928 
B/H aspect ration 2.86 13.95 7.98 

Q (L/s) Discharge 11.06 102.38 34.795 
V (m/s) Velocity 0.429 0.813 0.568 

Fr Froude number 0.66 0.566 0.618 

Re
410  Reynolds number 6.4 39.87 16.418 

Re* Shear Reynolds 0.322 0.609 0.426 
HS Total shear stress 0.442 2.162 0.955 

 
2.2. Tsallis entropy 
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If a random variable (τ) in a cross section of a channel is assumed to be a consistent 
shear stress, then, according to Tsallis entropy of  [25] the SSD or shear stress probability 
density function f(τ), can be identified as [20]: 

 

max 1

0

1
( ) ( )(1 ( ) )

1
qH f f d

q


    
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where τ is the shear stress, q is a true number, and Tsallis 's entropy function is H(τ). 
The τ value varies from 0 to τmax, and with these restrictions, the integral value of H(τ) will 
be 1.  

Using the maximum entropy theorem, the f(τ) can be calculated to maximize the en-
tropy function subject to specified constraints like Eqs. (7 ) and ( 8) respectively [26]. 
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where the minimum and maximum shear stress values are τmean and τmax, respec-
tively. 

At this stage, using maximization of Lagrange coefficients by equations 6 to 8, the 
Lagrange function L can be written down as Eq. (9): 
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where λ0 and λ1 are the Lagrange multipliers. By ∂L/∂(τ)  = 0 to maximize entropy, the 
f(τ) yields as:  
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which λ′ = 1 q−1 + λ0. f(τ) as Eq. (10) represents the shear stress probability distribu-
tion function (PDF). The SSD's Cumulative Distribution Function (CDF) is introduced as 
Eq. (11): 
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where y is the direction of the channel wall, which varies from 0 at the free surface to 
L, and L is the entire wetted perimeter. f(τ) is the derivative of F(τ), so the following equa-
tion is done by a partial derivation of F(τ) with respect to y: 
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The shear stress function is represented as Eq. (13) by substituting Eq. (10) into Eq. 
(11) and Eq. (12) and solving the integral and simplifying it. 
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where k = q/ q−1 and q is a real parameter in the Tsallis relationship and has an actual 
value of 3/4 [11,27]. λ1 and λ′ are Lagrange multipliers that can be derived by trial and 
error from two implicit equations that follow. Indeed, by inserting and integrating Eq (10) 
into two constraints (Eqs. (7) and (8)), two Eqs. (14) and (15) are returned as: 

    1 max 1
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Eqs. (14) and (15) solve to obtain two undefined Lagrange multipliers (λ1 and λ′). To 
estimate the SSD, a pair of mean and maximum shear stresses is required. It is also possi-
ble to use Knight et al. [2] analytical relationships to approximate the values of τmax and 
τmean [20,28,29]. In a laboratory plexiglass flume, [9] conducted her experiments. The flume 
was 10 meters in length, 0.6 meters in width, 0.7 meters in depth and its slope was set at 
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49.58 10 . The shear stress carried by the walls and bed was measured for different as-
pect ratio (B/H = 2.86, 4.51, 5.31, 6.19, 7.14, 7.89, 8.96, 10.71, 12.24 and 13.95). Shear stress 
was measured by a Preston tube for each depth. Their suggested analytical methodology 
for measuring these values of shear stress on the bed and wall is as follows (Eqs. 16 to 19): 
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( ) 6.64779.18( / ) 1.055mean b B H
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
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(19)

where τmean (w) and τmean (b) the mean and τmax (w) and τmax (b) are the maximal shear stress 
on the wall and bed of the channel, each of the respective. The transverse SSD can there-
fore be calculated for any given channel, dependent upon the depth of the water and the 
slope of the bed. 

2.3. Genetic Programming (GP) 
In the second part of this analysis, the GP model is applied as one of the evolutionary 

algorithms (EA) to improve the accuracy of the given relations. The GP is an automated 
programming method to solve problems by designing computer programs GP is widely 
used for modeling structure recognition technology applications concerns. For this aim 
the GP technique is used to understand the basic structure of a natural or experimental 
process. In the GP method a population is slowly improved by selectively omitting the 
population who is not so fit and selecting from better species. EAs perform defining a 
target in the form of a quality criterion and then using that objective to evaluate candidates 
for a solution in a step-by-step improvement of data set frameworks and returning within 
a few iterations an optimum solution. The GP can optimize both the structure of the model 
and its parameters. One of the advantages of the GP algorithm is that it can extract an 
equation based the input and output parameters and it is more effective than other ANN 
models [30]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Parameters of the GP model. 
 

Value (Model 3) Value (Model 2) Value (Model 1) Definition  Parame-

ter  
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+, − , *,  , ^2, 

cos, sin exp, 

+, − , *,  , ^2, 

cos,sin exp 

+, − , *,  , 

^2,cos,sin,exp 

Function set 1 

b/B, B/H b/B, B/H, Fr b/B, B/H, Fr, Re The terminal set for 

b   

2-1 

z/H, B/H z/H, B/H, Fr z/H, B/H, Fr, Re The terminal set for 

w   

2-2 

2 3 4 Number of inputs  3 

RMSE RMSE RMSE The fitness function  4 

error function error function error function Error type 5 

0.55% 0.55% 0.55% Crossover rate 6 

0.1% 0.1% 0.1% Mutation rate 7 

0.05% 0.05% 0.05% Gene reproduction 

rate 

8 

250 250 250 Population size 9 

112 112 112 Number of genera-

tions 

10 

regular Regular Regular Tournament type 11 

6 6 6 Tournament size 12 

4 4 4 Max tree depth 13 

Inf Inf Inf Max node per tree 14 

[-10, +10] [-10, +10] [-10, +10] Constants range 15 

The outcomes of the GP model were analyzed by using the statistical indexes and 
compared with the experimental results. 
2.4. ANFIS 

ANFIS is designed to provide the requisite inputs and outputs for adaptive networks 
to build fuzzy rules with acceptable membership functions. FIS is a common and cardinal 
programming method that uses fuzzy theory to write fuzzy if-then rules and fuzzy logic 
bases that map from a given input information to the desired output. An adaptive net-
work is a multi-layer feed-forward Artificial Neural Network (ANN) with; partially or 
entirely adaptive nodes in which the outputs are predicted on adaptive node parameters 
and the parameter adjustment is specified by the learning rules due to the error term. In 
adaptive ANFIS, hybrid learning is generally a learning form [31]. 
2.5. Criteria for Statistical Assessment 

Maximum Error (ME), Key Absolute Error (MAE), Root Mean Square Error (RMSE) 
and Efficiency Coefficient (E) are the five statistical evaluation parameters used to deter-
mine the Tsallis entropy, GP model and ANFIS model performance, which are measured 
as follows: 
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where Oi is the observed parameter value, Pi Predicted parameter value, is the 
mean value observed parameter value and n number of samples. 
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3. Results 
3.1. Modeling of GP 

In this section, Sensitivity of the GP model for any input parameter is evaluated by 
adding all four inputs to the models first. Each parameter is then omitted and a total of 
three separate versions are checked. The GP models used for data on the bed and wall are 
described as: 

For the bed 

(1) : , , , Re
b B

GP Model Fr
B H  

(2) : , , ,
b B

GP Model Fr
B H  

(3) : , ,
b B

GP Model
B H  

For the wall: 

(1) : , , ,Re
z B

GP Model Fr
H H  

(2) : , , ,
z B

GP Model Fr
H H  

(3) : , ,
z B

GP Model
H H  

For each channel section, three different models were evaluated to investigate the 
effect of each input parameter in the GP modeling. The findings of the modeling of bed 
shear stress show that GP Model (1) had the lowest error consisting of input parameters 
(b/B, B/H, Fr, Re). The results of the modeling of bed shear stress reveal that the lowest 
error (average RMSE=0.0874) was observed in the GP model (1) consisting of input pa-
rameters (b/B, B/H, Fr, Re) and modeled wall shear stress, the GP model (1) has the lowest 
input error (z/H, B/H, Fr, Re) (average RMSE=0.0690), so that the B/H has a major influence 
on the GP model and validates the effects of model (1). By sensitivity analysis performed, 
since the flow situation is fully developed, can be ignored the Reynolds number, the pa-
rameter has been eliminated in model 2. As shown in Table 4, by omitting Reynolds num-
ber (Re) in the input parameters, there is no significant difference. On the other hand, 
because all the experiments have examined the subcritical flow conditions, can be ignored 
the effect Froude number, the parameter has been eliminated in model 3. By eliminating 
the Reynolds number and Froude number parameters, the GP model performance does 
not change much, and the GP model can be deduced to be insensitive to the B/H parame-
ter. The B/H ratio is obviously important in the estimation of shear stress, as this parameter 
plays a significant role in the equations stated. Therefore, the model 3 for the bed and wall 
is chosen as the most suitable model. The results of the most accurate GP model and ex-
perimental bed and wall data are shown in the form of the scatter plots in Figures 3 and 
4. As seen in statistical analysis, the GP model outcomes are very similar to the bed and 
wall shear stress line fitted. Dimensionless bed shear stress modeling with GP was supe-
rior to dimensionless wall shear stress modeling with average R2 of 0.945 and 0.8266, re-
spectively, and both models were superior to the other GP models in this study. In order 
to decide the best answer, the best feedback should be treated as a pattern. Different im-
portant parameters in modeling, such as population members, number of generations, 
tree structures size etc. should be carefully determined in the first step with regard to the 
consumer of the data examined. The scale of each configuration of the tree will play a 
major role in the final model's accuracy. Determining the greater numbers than optimal 
value reduces the precision of the test results prevented from displaying the models are 
not presented largely because the models generated by genetic programming were very 
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long-scale in order to measure the shear stress. The method of fitting models resulting 
from genetic programming against experimental results of parameters 2.86, 4.51, 7.14 and 
13.95 are shown in Figure 4. The analysis of tables 3, 4 and 5 shows that the GP model 
performed higher than the Tsallis entropy and ANFIS methods in terms of comparison. 
The statistical analysis results of GP model predictions tabulated in Table 3. 

 
Table 3. Statistical parameter outputs for modeling of GP. 

Wall Input variable Bed Input variable B/H 

E RMSE MAE ME  E RMSE MAE ME 

0.7277 0.0870 0.0728 0.0217 z/H,B/H 0.9382 0.1051 0.0713 0.2259 b/B,B/H 2.86 

0.7759 0.0821 0.0693 0.0257 z/H,B/H, Fr 0.9456 0.1206 0.1038 0.2445 b/B,B/H, Fr 2.86 

0.8021 0.0516 0.0363 0.0617 z/H,B/H, Fr, Re 0.947 0.1062 0.0837 0.2338 b/B,B/H, Fr, Re 2.86 

0.8987 0.0972 0.0874 0.0530 z/H,B/H 0.9889 0.0995 0.0962 0.1450 b/B,B/H 4.51 

0.8972 0.0890 0.0818 0.0302 z/H,B/H, Fr 0.9903 0.0638 0.0642 0.1019 b/B,B/H, Fr 4.51 

0.8548 0.0701 0.0546 0.0202 z/H,B/H, Fr, Re 0.9911 0.0526 0.0473 0.0927 b/B,B/H, Fr, Re 4.51 

0.9049 0.0648 0.0589 0.1153 z/H,B/H 0.9955 0.0468 0.0348 0.0826 b/B,B/H 7.14 

0.8566 0.0617 0.0330 0.0321 z/H,B/H, Fr 0.9962 0.0493 0.0408 0.0851 b/B,B/H, Fr 7.14 

0.8982 0.0507 0.0422 0.0424 z/H,B/H, Fr, Re 0.9958 0.0533 0.0466 0.0889 b/B,B/H, Fr, Re 7.14 

0.7758 0.1126 0.0716 0.0926 z/H,B/H 0.8534 0.1059 0.0908 0.1619 b/B,B/H 13.95 

0.8097 0.1117 0.0559 0.0264 z/H,B/H, Fr 0.8511 0.1566 0.1398 0.2678 b/B,B/H, Fr 13.95 

0.7916 0.1045 0.0612 0.0720 z/H,B/H, Fr, Re 0.8667 0.1376 0.1269 0.2005 b/B,B/H, Fr, Re 13.95 
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Figure 3. Comparison to the estimate of b   between the observed and predicted GP for (a) B/H=2.86, (b) B/H=4.51, 
(c) B/H=7.14, and (d) B/H=13.95. 

 

  
  

  
  

Figure 4. Comparison to the estimate of w   between the observed and predicted GP for (a) B/H=2.86, (b) B/H=4.51, 
(c) B/H=7.14, and (d) B/H=13.95. 

 

y = 0.8732x

R2 = 0.8534

0

0.3

0.6

0.9

1.2

1.5

0 0.3 0.6 0.9 1.2 1.5

Observed

P
re

di
ct

ed

Observed vs Predicted
Perfect Agreement
10% Deviation Line
Fit of Linear Regression

b b 

b
b




)d(
y = 0.9598x

R2 = 0.9955

0

0.3

0.6

0.9

1.2

1.5

0 0.3 0.6 0.9 1.2 1.5

Observed

P
re

di
ct

ed

Observed vs Predicted
Perfect Agreement
10% Deviation Line
Fit of Linear Regression

b b 

b
b




)c(

y = 1.1065x

R2 = 0.8987

0

0.3

0.6

0.9

1.2

1.5

0 0.3 0.6 0.9 1.2 1.5

Observed

P
re

di
ct

ed

Observed vs Predicted
Perfect Agreement
10% Deviation Line
Fit of Linear Regression

w
w




w w 

)b(y = 1.0646x

R2 = 0.7277

0

0.3

0.6

0.9

1.2

1.5

0 0.3 0.6 0.9 1.2 1.5

Observed

P
re

di
ct

ed

Observed vs Predicted
Perfect Agreement
10% Deviation Line
Fit of Linear Regression

w
w




w w 

)a(

y = 0.992x

R2 = 0.6435

0

0.3

0.6

0.9

1.2

1.5

0 0.3 0.6 0.9 1.2 1.5

Observed

P
re

di
ct

ed

Observed vs Predicted
Perfect Agreement
10% Deviation Line
Fit of Linear Regression

w
w




w w 

)d(y = 1.0035x

R2 = 0.9049

0

0.3

0.6

0.9

1.2

1.5

0 0.3 0.6 0.9 1.2 1.5

Observed

P
re

di
ct

ed

Observed vs Predicted
Perfect Agreement
10% Deviation Line
Fit of Linear Regression

w
w




w w 

)c(

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 February 2021                   doi:10.20944/preprints202102.0470.v1

https://doi.org/10.20944/preprints202102.0470.v1


 

3.2. ANFIS modeling 
For this purpose, 70% of the experimental data is used for network training and the re-
maining 30% is used for testing results. As input parameters to the model, the parame-
ters b/B & B/H for bed and z/H & B/H for wall were presented. Figure 5 shows the perfor-
mance of the ANFIS model to estimate the bed SSD (τb) and Figure 6 shows the perfor-
mance of the ANFIS model to estimate the wall SSD (τw), 30% of the data which were not 
used in the training stage would be used to evaluate the performance of the model. The 
results of statistical indexes for modeling shear stress with ANFIS are summarized in 
Table 4. As well, the estimating bands of the four above parameters using to determine 
the shear stress are shown in Figure 5. Skewness results obtained from statistical predic-
tion dimensionless parameters.  

Table 4. Statistical parameter results for ANFIS model against experimental observations. 

Wall Bed B/H 

E RMSE MAE ME E RMSE MAE ME 

0.8026 0.0492 0.0314 0.0383 0.9279 0.1268 0.0991 0.2559 2.86 

0.9033 0.1004 0.0959 0.0870 0.9744 0.1266 0.1240 0.1728 4.51 

0.907 0.0745 0.0634 0.0868 0.9871 0.1724 0.1699 0.2157 7.14 

0.7752 0.1145 0.0909 0.1792 0.8482 0.1271 0.1048 0.2278 13.95 
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Figure 5. Comparison to the estimate of b   between the observed and predicted ANFIS for (a) B/H=2.86, (b) 
B/H=4.51, (c) B/H=7.14, and (d) B/H=13.95. 

 

  
  

  
  

Figure 6. Comparison to the estimate of w   between the observed and predicted ANFIS for (a) B/H=2.86, (b) 
B/H=4.51, (c) B/H=7.14, and (d) B/H=13.95. 

3.3. Comparison of the GP model, Tsallis entropy and ANFIS 
The best GP models and Tsallis entropy are compared to the equations proposed by 
Lashkar-Ara and Fatahi [9] in this section. Table 5 shows the statistical parameter results 
of the estimation of shear stress by the Tsallis entropy model. Figures 7 and 8 shows the 
SSD in a smooth rectangular channel for B/H is 2.85, 4.51, 7.14,13.95. As shown in these 
statistics, all of the test evidence used to model the SSD using the GP model is realized. 
For training stage for modeling SSD in rectangular channel using GP model, 70 percent 
of all data were used, and 30 percent data were used for testing process. As shown in 
Figure 5, for B/H= 2.86, 4.51, 7.14, 13.95, the GP model predicts the bed shear stress better 
than the Tsallis entropy model. In Figures 6c and 6d, for B/H = 4.51, 7.14, the GP model 
predicts wall shear stress better than the Tsallis entropy model, but in Figures 6a and 6d, 
the Tsallis entropy is more accurately models to predict wall shear stress than the GP 
model. Additionally, the GP model estimates bed and wall shear stress better than the 
Tsallis entropy-based model at rising flow depth. It is understandable that the channel 
architecture is challenging when a model expects higher shear stress values. It is there-
fore not cost-effective to use the Tsallis entropy method. When the GP model's observa-
tions are more accurate, it can be used to design stable channels more consistently. The 
GP model estimates the bed shear better than the ANFIS model for B/H= 2.86, 4.51, 7.14, 
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13.95. For B/H = 2.86, the ANFIS model estimates the shear stress better than the GP 
model, but the GP model estimates the wall shear stress better than the ANFIS model in 
B/H = 4.51,7.14,13.95. The GP model demonstrates superior efficiency to the Tsallis en-
tropy-based model, while both models neglect the influence of secondary flows. It can 
be inferred that the GP model of bed and wall shear stress estimation is more sensitive 
than the Tsallis entropy method overestimated the values of bed shear stress and the GP 
model's outcomes are greater. The bed shear stress values decrease at the middle of the 
channel (Figure 5), which varies from other situations. From Figures 7 and 8, it can be 
shown that the GP model's fit line is similar to the 45-degree line than the other ones, 
and with a higher R2 value, its predictions are more reliable. In predicting the position of 
maximal shear stress, both the GP and Tsallis-entropy based models display the same 
pattern as the centerline of the channel, which is consistent with the experimental out-
puts.  

Table 5. Statistical parameter results for Tsallis entropy model against experimental observations. 

Wall Bed B/H 

E RMSE MAE ME E RMSE MAE ME 

0.7721 0.0797 0.0622 1.3145 0.9276 0.0706 0.0531 1.252 2.86 
0.7632 0.0894 0.0749 1.3741 0.9425 0.0625 0.0522 1.476 4.51 
0.8275 0.0738 0.0631 1.6254 0.9310 0.0685 0.0672 1.538 7.14 
0.8398 0.1094 0.0893 1.2562 0.8426 0.0840 0.0643 1.511 13.95 

 

  
  

  
  

Figure 7. The dimensionless bed shear stress distribution for (a) B/H=2.86, (b) B/H=4.51, (c) B/H=7.14, and (d) B/H=13.95. 
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Figure 8. The dimensionless wall shear stress distribution for (a) B/H=2.86, (b) B/H=4.51, (c) B/H=7.14, and (d) 
B/H=13.95. 

3. Conclusion 
An important problem that engineers have been trying to solve is evaluating the SSD 

on open channels. This study makes use of the Tsallis entropy, model ANFIS and GP 
method to predict the SSD in rectangular channel. Sensitivity analysis was introduced to 
define the efficient parameters in SSD modeling with Tsallis, and 3 separate GP models 
were used.  The findings show that in SSD estimation, B/H is a sensitive parameter. With 
increasing the flow depth, both the GP model and the Tsallis entropy-based equation per-
formed better than other cases. The GP model, with an average RMSE of 0.0893 and R2 of 
0.9450 in bed and RMSE of 0.0904, R2 of 0.8266 in wall for aspect ratios (B/H) 2.86, 4.51, 
7.14 and 13.95, approximately performance over the Tsallis entropy-based equation, with 
RMSE of 0.0714, R2 of 0.9109 in bed and RMSE of 0.0880, R2 of 0.8006 in wall and ANFIS 
model, with RMSE of 0.1380, R2 of 0.9344 in bed and RMSE of 0.0846, R2 of 0.8470 in wall 
for all flow depths. The GP model predicts wall shear stress better than the ANFIS and 
Tsallis entropy-based models to compare the efficiency of the models as the flow depth 
increases. As a practical achievement of the results of this study, it can be said that if the 
model overestimates the shear stress, this unrealistic estimate will cost a lot to design the 
channel. Based on the analysis, it can be deducted that the use of the Tsallis entropy meth-
odology in the shear stress evaluation is not economical. 
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