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Abstract: One of the most important subjects of hydraulic engineering is the reliable estimation of
the transverse distribution in rectangular channel of bed and wall shear stresses. This study makes
use of the Tsallis entropy, Genetic Programming (GP) and (ANFIS) methods to assess the shear
stress distribution (SSD) in rectangular channel. To evaluate the results of the Tsallis entropy, GP
and ANFIS models, laboratory observations were used in which shear stress was measured using
an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rec-
tangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 differ-
ent data for were used. The results of the sensitivity analysis show that the most influential param-
eter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the trans-
verse co-ordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and
(z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on
the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in esti-
mating shear stress in smooth rectangular channels than the Tsallis entropy-based equations.

Keywords: Smooth rectangular channel, Tsallis entropy, Genetic Programming (GP)

1. Introduction

Knowledge of boundary shear stress is necessary when studying sediment transport,
flow pattern around structures, estimation of scour depth and channel migration. The de-
termination of boundary shear stress, i.e. at the wall and bed depends on the channel ge-
ometry and its associated roughness. Various direct and indirect methods have been ex-
tensively discussed in experimentally measure the wall and bed shear stresses in channels
with different cross sections [1-5]. Bed shear stress can be estimated based on four tech-

niques (1) bed slope product 7, = gHS , (2) law of the wall velocity profiles
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u. ko \z where Tb = Pt (3) Reynolds stress measurement =P ( uww ) , (4)
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Turbulent Kinetic Energy (TKE), 2 , Where T = CITKE, where

U 'V and W are the fluctuating horizontal, transversal and vertical velocity compo-
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nents, respectively and [6]. The symbols g, H and S denote gravity, water
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level and channel slope, respectively, whereas u is the velocity at height Z, U s the

shear velocity, k is von Karman constant, and 0 is the roughness length.

These methods are useful in presenting a point-based representation of shear stress
in a channel, whereas the shear stress distribution (SSD) provides more accurate hydro-
dynamic profile within a channel. Knight and Sterling [7] measured the SSD in a circular
channel with and without sediment. They examined a wide range of flow depths for each
level benching and therefore it had been possible to determine the extent to which the
hydraulics changes Park et al. [8] utilized laboratory-scale water flume and measured the
bed shear stress under high-velocity flow conditions directly.

Lashkar-Ara and Fatahi [9] measured transverse SSD in channel bed and wall by us-
ing an optimal diameter Preston tube to evaluate the SSD on a rectangular open channel.
The outcome of this research is two-dimensional relationships to evaluate local shear
stress in both bed and wall. The bed and wall relative coordinates b/B & z/H in the cross
section and aspect ratio B/H are a function of these relationships. The study showed that
the dimensionless SSD is greatly affected by the aspect ratio.

Utilizing the advantages offered in soft computing method and Artificial Intelligence
(Al) techniques, other researchers have been extended numerically and analytically to
overcome difficulties with experimental measurements [10-13]. Martinez-Vazquez and
Sharifi [14] utilized recurrence plot (RP) analysis and Eigenface for Recognition to esti-
mate the SSD in trapezoidal and circular channels. A new approach has been developed
by Sterling and Knight [15] to estimate the SSD in a circular open channel. In terms of
accuracy, the analysis showed that there is a lack of ability in the outcome and it is not
satisfactory. The uncertainty of the estimation of the model parameters and the high sen-
sitivity of the outcomes to the expected experiment parameters can be due to this.

Sheikh Khozani and Bonakdari [16] extended the analytical method based Renyi en-
tropy to estimate SSD in circular channels. Sheikh Khozani and Bonakdari [17] researched
on the comparison of five different models in straight compound channel prediction of
SSD. In other research, Sheikh Khozani and Wan Mohtar [11] analyzed the formulation of
the SSD on the basis of the Tsallis entropy in circular and trapezoidal channels. Sheikh
Khozani et al. [18] have attempted in another study to use an improved SVM method to
estimate shear stress in rough rectangular channel.

Ardiglioglu et al.[19], conducted an experimental study for the SSD throughout the
entire length of the cross-section in fully developed boundary layer area, in an open rec-
tangular channel, in both smooth and rough surface. By measuring the speed in both
smooth and rough surfaces, they conducted tests. Using logarithmic distribution of veloc-
ity, the average shear stresses in the cross section for aspect ratios of 4.2 to 21.6 and the
Froude numbers of 0.12 to 1.23 were measured. The definition of Tsallis entropy was used
by Bonakdari et al. [20] to predict the SSD in trapezoidal and circular channels and achieve
acceptable accuracy.

Although the direct measurement of shear stress in laboratory provides correct de-
scription of the spatial pattern, the measurement of shear stress using shear place or cell
is laborious, complex, requires careful calibration and may not applicable to all type of
channels [21].

The use of soft computing techniques in the simulation of engineering problems was
intensively studied and a variety of soft computing methods were suggested. To approx-
imate the daily suspended sediment load, Kisi et al. [22] used a GP model. They also con-
trasted this approach with several soft computing approaches and concluded that the GP
model works better than the others. In estimating SSD in circular channels with and
without flat-bed Sheikh Khozani et al. [23,24] applied Randomize Neural Network (RNN)
and Gene expression Programming (GEP).

In this study, Tsallis entropy was used to determine SSD in a smooth bed and wall in
a rectangular open channel. This is then used to measure the SSD in various aspect ratios
in the rectangular channel. In the second part of the study, two soft computing methods
were applied to predict the transverse of SSD in the smooth rectangular channel. The
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methods of genetic programming (GP) and (ANFIS) were examined to determine the pre-
cision of these models in estimating bed and wall shear stress. These three methods are
compared with each other and with the experimental results of Lashkar-Ara and Fatahi
[9]. This study aimed at using Tsallis entropy method to predict the SSD in smooth rec-
tangular channel. The results of the Tsallis entropy, GP and ANFIS methods compared
with experimental results of Lashkar-Ara and Fatahi [9]. Although this analysis was per-
formed in parallel with Sheikh Khozani and Bonakdari [17] research, it can be said in a
practical contrast that the data used in this study is based on the measurement of shear
stress using the optimal diameter of the Preston tube, which was designed by Lashkar-
Ara and Fatahi [9], so the comparison of findings is more precise and less uncertain.

2. Materials and Methods

2.1. Data collection

Information on the SSD has been collected in the Lashkar-Ara and Fatahi [9] exper-
iments of a smooth rectangular channel, performed in a flume 10-meter long, 60 cm wide
and 70 cm high. All measurements were performed in the range of 11.06 to 102.38 liter per
second flow rate. Flow rate variations led to observable changes in water depth ranging
from 4.3 cm to 21 cm and the aspect ratio of 2.86 to 13.95. The values of static and total
pressure difference in various aspect ratios of B/H were measured and reported using
pressure transducer apparatus with a capacity of 200 mill bar and 50 Hz measuring fre-
quency. In order to create uniform flow condition and to match the hydraulic gradient
with the flume bed slope a weir at the end of the flume was installed. The notation used
for a smooth rectangular channel conduit is illustrated in Figure 1. Figure 2 shows the
experimental setup.
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Figure 1. Schematics of local SSD coordinates in the rectangular channel wall and bed.
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Figure 2. Experiment schematic
Based on previous studies in laboratory and field investigation, the effective criteria
for evaluating the SSD along the wet periphery of a channel can be expressed as follows:

fi(fw’pﬂoﬂgﬂV’H’SW,S()ﬂB’KS):O (1)
fl(z_',,,p,z),g,V,H,SW 7SoaB:Ks):0 (2)

where Tw is the average wall shear stress, Tu is the average bed shear stress, ?7? is
the density, v is the kinematic viscosity, g is the gravity acceleration, V is the flow veloc-
ity, H is the flow depth, B is the Flume floor width, Sw is the Water surface slope,k; is the
roughness height, (Re) is the Reynolds number and (Fr) is the Froude number. The theo-
rem of Buckingham-t is used to obtain the following five independent dimensional pa-

rameters:
v K ¢H B T
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For GP simulation, 160 data of bed shear stress (7») and 100 data of wall shear stress
(tw) were collected in a smooth rectangular channel with different flow depths. Approxi-
mately 70 percent of the total data were chosen for training and the remaining 30 percent
for testing.

Table 1. Experimental summary

parameters | Variable definition minimum maximum Mean
H (m) Flow depth 0.043 0.21 0.0928
B/H aspect ration 2.86 13.95 7.98
Q (L/s) Discharge 11.06 102.38 34.795
V (m/s) Velocity 0.429 0.813 0.568
Fr Froude number 0.66 0.566 0.618
Rex10* Reynolds number 6.4 39.87 16.418
Re* Shear Reynolds 0.322 0.609 0.426
yHS Total shear stress 0.442 2.162 0.955

2.2. Tsallis entropy
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If a random variable (7) in a cross section of a channel is assumed to be a consistent
shear stress, then, according to Tsallis entropy of [25] the SSD or shear stress probability
density function f(t), can be identified as [20]:

HE =7 @0 @ e ©

where 7 is the shear stress, q is a true number, and Tsallis 's entropy function is H(t).
The t value varies from 0 to Tm, and with these restrictions, the integral value of H(t) will
be 1.

Using the maximum entropy theorem, the f(t) can be calculated to maximize the en-
tropy function subject to specified constraints like Egs. (7 ) and ( 8) respectively [26].

J,"f @dz=1 @)

_[0 ‘rf (t)dr=1,, (8)
where the minimum and maximum shear stress values are Tmean and Tmax, respec-
tively.

At this stage, using maximization of Lagrange coefficients by equations 6 to 8, the
Lagrange function L can be written down as Eq. (9):

L[ (r)(1 @ e ([ @)

where Ao and A1 are the Lagrange multipliers. By 0L/9(t) = 0 to maximize entropy, the
f(t) yields as:

Vg1
f (@)= [—(ﬂ +4 T)} (10)

which A'=1 gq-1 + A0. f(t) as Eq. (10) represents the shear stress probability distribu-
tion function (PDF). The SSD's Cumulative Distribution Function (CDF) is introduced as
Eq. (11):

f@=]" de=1 a1

where y is the direction of the channel wall, which varies from 0 at the free surface to
L, and L is the entire wetted perimeter. f(t) is the derivative of F(t), so the following equa-
tion is done by a partial derivation of F(t) with respect to y:

df () (r) 1dy
= - 12
. QN du  Ldrt (12
The shear stress function is represented as Eq. (13) by substituting Eq. (10) into Eq.

(11) and Eq. (12) and solving the integral and simplifying it.

Yk ,
/11[( ) /11);} —% (13)

where k= q/ q—1 and q is a real parameter in the Tsallis relationship and has an actual
value of 3/4 [11,27]. A1 and A" are Lagrange multipliers that can be derived by trial and
error from two implicit equations that follow. Indeed, by inserting and integrating Eq (10)
into two constraints (Egs. (7) and (8)), two Egs. (14) and (15) are returned as:

(24 2] =[] =2k" 1)
ok A DA [A + A7 ] [+ AT ] = (k + 5

Egs. (14) and (15) solve to obtain two undefined Lagrange multipliers (A1 and A’). To
estimate the SSD, a pair of mean and maximum shear stresses is required. It is also possi-
ble to use Knight et al. [2] analytical relationships to approximate the values of Tmax and
Tmean [20,28,29]. In a laboratory plexiglass flume, [9] conducted her experiments. The flume
was 10 meters in length, 0.6 meters in width, 0.7 meters in depth and its slope was set at
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9.58x10™ . The shear stress carried by the walls and bed was measured for different as-
pect ratio (B/H = 2.86, 4.51, 5.31, 6.19, 7.14, 7.89, 8.96, 10.71, 12.24 and 13.95). Shear stress
was measured by a Preston tube for each depth. Their suggested analytical methodology
for measuring these values of shear stress on the bed and wall is as follows (Egs. 16 to 19):

T

%}’JS) =79.18(B / H)™**" +1.055 (16)
[ pg

T

—ew® _70.42(B | H) "™ —68.62 17)
. P8RS

T

—ma;(;s) =54.58(B / H) " -54.47 (18)
. P8

T

% =298.4(B / H) "™ -297.3 (19)
. P

where Tmean @) and Tmean 1) the mean and Tmax @ and Tmar ) are the maximal shear stress
on the wall and bed of the channel, each of the respective. The transverse SSD can there-
fore be calculated for any given channel, dependent upon the depth of the water and the
slope of the bed.

2.3. Genetic Programming (GP)

In the second part of this analysis, the GP model is applied as one of the evolutionary
algorithms (EA) to improve the accuracy of the given relations. The GP is an automated
programming method to solve problems by designing computer programs GP is widely
used for modeling structure recognition technology applications concerns. For this aim
the GP technique is used to understand the basic structure of a natural or experimental
process. In the GP method a population is slowly improved by selectively omitting the
population who is not so fit and selecting from better species. EAs perform defining a
target in the form of a quality criterion and then using that objective to evaluate candidates
for a solution in a step-by-step improvement of data set frameworks and returning within
a few iterations an optimum solution. The GP can optimize both the structure of the model
and its parameters. One of the advantages of the GP algorithm is that it can extract an
equation based the input and output parameters and it is more effective than other ANN
models [30].

Table 2. Parameters of the GP model.

Parame- Definition Value (Model 1) Value (Model 2)  Value (Model 3)

ter
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1 Function set +, =, % N N +,—, % v , M2, +, -, %, N L2,
"2,c0s,sin,exp €0s,sin exp cos, sin exp,
2-1 The terminal set for b/B, B/H, Fr, Re b/B, B/H, Fr b/B, B/H
7, /T
2-2 The terminal set for z/H, B/H, Fr, Re z/H, B/H, Fr z/H, B/H
7, [T
3 Number of inputs 4 3 2
4 The fitness function RMSE RMSE RMSE
5 Error type error function error function error function
6 Crossover rate 0.55% 0.55% 0.55%
7 Mutation rate 0.1% 0.1% 0.1%
8 Gene reproduction 0.05% 0.05% 0.05%
rate
9 Population size 250 250 250
10 Number of genera- 112 112 112
tions
11 Tournament type Regular Regular regular
12 Tournament size 6 6 6
13 Max tree depth 4 4 4
14 Max node per tree Inf Inf Inf
15 Constants range [-10, +10] [-10,+10] [-10, +10]

The outcomes of the GP model were analyzed by using the statistical indexes and
compared with the experimental results.

2.4. ANFIS

ANFIS is designed to provide the requisite inputs and outputs for adaptive networks

to build fuzzy rules with acceptable membership functions. FIS is a common and cardinal
programming method that uses fuzzy theory to write fuzzy if-then rules and fuzzy logic
bases that map from a given input information to the desired output. An adaptive net-
work is a multi-layer feed-forward Artificial Neural Network (ANN) with; partially or
entirely adaptive nodes in which the outputs are predicted on adaptive node parameters
and the parameter adjustment is specified by the learning rules due to the error term. In
adaptive ANFIS, hybrid learning is generally a learning form [31].

2.5. Criteria for Statistical Assessment

Maximum Error (ME), Key Absolute Error (MAE), Root Mean Square Error (RMSE)
and Efficiency Coefficient (E) are the five statistical evaluation parameters used to deter-
mine the Tsallis entropy, GP model and ANFIS model performance, which are measured
as follows:

(20)

(210

(22)

where O: is the observed parameter value, Pi Predicted parameter value, Ois the
mean value observed parameter value and n number of samples.
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3. Results
3.1. Modeling of GP

In this section, Sensitivity of the GP model for any input parameter is evaluated by
adding all four inputs to the models first. Each parameter is then omitted and a total of
three separate versions are checked. The GP models used for data on the bed and wall are
described as:

For the bed
b B
GP Model (1) :—,—,Fr,Re
B H
GP Model (2): 2 E,Fr,
B H
GP Model (3): i 2,
B H
For the wall:
z B
GP Model (1):—,—,Fr,Re
H H
GP Model 2): 2,2 .,
H H
z B
GPModel(3) —_—,—,
H

For each Channel section, three different models were evaluated to investigate the
effect of each input parameter in the GP modeling. The findings of the modeling of bed
shear stress show that GP Model (1) had the lowest error consisting of input parameters
(b/B, B/H, Fr, Re). The results of the modeling of bed shear stress reveal that the lowest
error (average RMSE=0.0874) was observed in the GP model (1) consisting of input pa-
rameters (b/B, B/H, Fr, Re) and modeled wall shear stress, the GP model (1) has the lowest
inputerror (z/H, B/H, Fr, Re) (average RMSE=0.0690), so that the B/H has a major influence
on the GP model and validates the effects of model (1). By sensitivity analysis performed,
since the flow situation is fully developed, can be ignored the Reynolds number, the pa-
rameter has been eliminated in model 2. As shown in Table 4, by omitting Reynolds num-
ber (Re) in the input parameters, there is no significant difference. On the other hand,
because all the experiments have examined the subcritical flow conditions, can be ignored
the effect Froude number, the parameter has been eliminated in model 3. By eliminating
the Reynolds number and Froude number parameters, the GP model performance does
not change much, and the GP model can be deduced to be insensitive to the B/H parame-
ter. The B/H ratio is obviously important in the estimation of shear stress, as this parameter
plays a significant role in the equations stated. Therefore, the model 3 for the bed and wall
is chosen as the most suitable model. The results of the most accurate GP model and ex-
perimental bed and wall data are shown in the form of the scatter plots in Figures 3 and
4. As seen in statistical analysis, the GP model outcomes are very similar to the bed and
wall shear stress line fitted. Dimensionless bed shear stress modeling with GP was supe-
rior to dimensionless wall shear stress modeling with average R? of 0.945 and 0.8266, re-
spectively, and both models were superior to the other GP models in this study. In order
to decide the best answer, the best feedback should be treated as a pattern. Different im-
portant parameters in modeling, such as population members, number of generations,
tree structures size etc. should be carefully determined in the first step with regard to the
consumer of the data examined. The scale of each configuration of the tree will play a
major role in the final model's accuracy. Determining the greater numbers than optimal
value reduces the precision of the test results prevented from displaying the models are
not presented largely because the models generated by genetic programming were very
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long-scale in order to measure the shear stress. The method of fitting models resulting
from genetic programming against experimental results of parameters 2.86, 4.51, 7.14 and
13.95 are shown in Figure 4. The analysis of tables 3, 4 and 5 shows that the GP model
performed higher than the Tsallis entropy and ANFIS methods in terms of comparison.
The statistical analysis results of GP model predictions tabulated in Table 3.

Table 3. Statistical parameter outputs for modeling of GP.

B/H Input variable Bed Input variable Wall
ME MAE  RMSE E ME MAE  RMSE E
2.86 b/B,B/H 0.2259  0.0713  0.1051  0.9382 z/H,B/H 0.0217  0.0728  0.0870  0.7277

2.86 b/B,B/H, Fr 02445 0.1038  0.1206  0.9456 z/H,B/H, Fr 0.0257  0.0693  0.0821 0.7759
2.86 b/B,B/H, Fr,Re 02338 0.0837 0.1062 0947 z/H,B/H, Fr,Re 0.0617 0.0363  0.0516 0.8021
451 b/B,B/H 0.1450  0.0962  0.0995  0.9889 z/H,B/H 0.0530  0.0874  0.0972 0.8987
451 b/B,B/H, Fr 0.1019  0.0642  0.0638  0.9903 z/H,B/H, Fr 0.0302  0.0818  0.0890 0.8972
451 b/B,B/H, Fr,Re  0.0927 0.0473 0.0526 0.9911 =z/H,B/H, Fr,Re 0.0202 0.0546  0.0701 0.8548
7.14 b/B,B/H 0.0826  0.0348  0.0468  0.9955 z/H,B/H 0.1153  0.0589  0.0648 0.9049
7.14 b/B,B/H, Fr 0.0851  0.0408 0.0493  0.9962 z/H,B/H, Fr 0.0321  0.0330  0.0617 0.8566
7.14 b/B,B/H, Fr,Re  0.0889  0.0466 0.0533 0.9958 =z/H,B/H, Fr,Re 0.0424 0.0422  0.0507 0.8982
13.95 b/B,B/H 0.1619  0.0908 0.1059  0.8534 z/H,B/H 0.0926 0.0716  0.1126 0.7758
13.95 b/B,B/H, Fr 02678  0.1398  0.1566  0.8511 z/H,B/H, Fr 0.0264 0.0559  0.1117 0.8097
13.95  b/B,B/H, Fr,Re  0.2005 0.1269 0.1376  0.8667 z/H,B/H,Fr,Re 0.0720 0.0612  0.1045 0.7916
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Figure 4. Comparison to the estimate of 2 / T between the observed and predicted GP for (a) B/H=2.86, (b) B/H=4.51,
(c) B/H=7.14, and (d) B/H=13.95.
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3.2. ANFIS modeling

For this purpose, 70% of the experimental data is used for network training and the re-
maining 30% is used for testing results. As input parameters to the model, the parame-
ters b/B & B/H for bed and z/H & B/H for wall were presented. Figure 5 shows the perfor-
mance of the ANFIS model to estimate the bed SSD (1) and Figure 6 shows the perfor-
mance of the ANFIS model to estimate the wall SSD (7w), 30% of the data which were not
used in the training stage would be used to evaluate the performance of the model. The
results of statistical indexes for modeling shear stress with ANFIS are summarized in
Table 4. As well, the estimating bands of the four above parameters using to determine
the shear stress are shown in Figure 5. Skewness results obtained from statistical predic-
tion dimensionless parameters.

Table 4. Statistical parameter results for ANFIS model against experimental observations.

B/H Bed Wall
ME MAE RMSE E ME MAE RMSE E
2.86 0.2559 0.0991 0.1268 0.9279 0.0383 0.0314 0.0492 0.8026
451 0.1728 0.1240 0.1266 0.9744 0.0870 0.0959 0.1004 0.9033
7.14 0.2157 0.1699 0.1724 0.9871 0.0868 0.0634 0.0745 0.907
13.95 0.2278 0.1048 0.1271 0.8482 0.1792 0.0909 0.1145 0.7752
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Figure 5. Comparison to the estimate of T / T between the observed and predicted ANFIS for (a) B/H=2.86, (b)
B/H=4.51, (c) B/H=7.14, and (d) B/H=13.95.
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Figure 6. Comparison to the estimate of T / T petween the observed and predicted ANFIS for (a) B/H=2.86, (b)
B/H=4.51, (c) B/H=7.14, and (d) B/H=13.95.

3.3. Comparison of the GP model, Tsallis entropy and ANFIS

The best GP models and Tsallis entropy are compared to the equations proposed by
Lashkar-Ara and Fatahi [9] in this section. Table 5 shows the statistical parameter results
of the estimation of shear stress by the Tsallis entropy model. Figures 7 and 8 shows the
SSD in a smooth rectangular channel for B/H is 2.85, 4.51, 7.14,13.95. As shown in these
statistics, all of the test evidence used to model the SSD using the GP model is realized.
For training stage for modeling SSD in rectangular channel using GP model, 70 percent
of all data were used, and 30 percent data were used for testing process. As shown in
Figure 5, for B/H=2.86, 4.51, 7.14, 13.95, the GP model predicts the bed shear stress better
than the Tsallis entropy model. In Figures 6c and 6d, for B/H =4.51, 7.14, the GP model
predicts wall shear stress better than the Tsallis entropy model, but in Figures 6a and 6d,
the Tsallis entropy is more accurately models to predict wall shear stress than the GP
model. Additionally, the GP model estimates bed and wall shear stress better than the
Tsallis entropy-based model at rising flow depth. It is understandable that the channel
architecture is challenging when a model expects higher shear stress values. It is there-
fore not cost-effective to use the Tsallis entropy method. When the GP model's observa-
tions are more accurate, it can be used to design stable channels more consistently. The
GP model estimates the bed shear better than the ANFIS model for B/H=2.86, 4.51, 7.14,
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13.95. For B/H =2.86, the ANFIS model estimates the shear stress better than the GP
model, but the GP model estimates the wall shear stress better than the ANFIS model in
B/H =4.51,7.14,13.95. The GP model demonstrates superior efficiency to the Tsallis en-
tropy-based model, while both models neglect the influence of secondary flows. It can
be inferred that the GP model of bed and wall shear stress estimation is more sensitive
than the Tsallis entropy method overestimated the values of bed shear stress and the GP
model's outcomes are greater. The bed shear stress values decrease at the middle of the

channel (Figure 5), which varies from other situations. From Figures 7 and 8, it can be
shown that the GP model's fit line is similar to the 45-degree line than the other ones,

and with a higher R? value, its predictions are more reliable. In predicting the position of

maximal shear stress, both the GP and Tsallis-entropy based models display the same
pattern as the centerline of the channel, which is consistent with the experimental out-

puts.

Table 5. Statistical parameter results for Tsallis entropy model against experimental observations.

B/H Bed Wall
ME MAE RMSE E ME MAE RMSE E
2.86 1.252 0.0531 0.0706 0.9276 1.3145 0.0622 0.0797 0.7721
4.51 1.476 0.0522 0.0625 0.9425 1.3741 0.0749 0.0894 0.7632
7.14 1.538 0.0672 0.0685 0.9310 1.6254 0.0631 0.0738 0.8275
13.95 1.511 0.0643 0.0840 0.8426 1.2562 0.0893 0.1094 0.8398
1.5 1.5
() EEE (b) EEE
1.2 - g it - sfilis
. ' % 1.2 e i 1
g i 14
= 097 : 0.9 - =
= o1 IS gl
s ° * 3 - | 2
061 ¢ = 1 0.6 7 LIS
1 ® Observed o 2 ® Observed
03 1 i = Tsallis entropy model | : = Tsallis entropy model
: A ANFIS model 0.3 A ANFIS model
¢ GP model + GP model
0 T T T T 0 T T T T
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
b/B b/B
1.5 L.5
. () .;;;::: (d)
2 ° 3 A A A 1.2 oo ®
° g A )
..AAA -.:;""“;ﬁ
0.9 - et 09 1 vt
1 ° A 5 H 4
— - A — 4
S ., S L) 4
0.6 s, 0.6 [ )
H 4 Obsc?rved ® Observed
0.3 4 = Tsallis entropy model 0.3 ®  Tsallis entropy model
A ANFIS model ' A ANFIS model
¢ GP model ¢  GP model
0 T J 0 T T T T
0 01 02 03 04 05 0 01 02 03 04 05
b/B b/B

Figure 7. The dimensionless bed shear stress distribution for (a) B/H=2.86, (b) B/H=4.51, (c) B/H=7.14, and (d) B/H=13.95.
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Figure 8. The dimensionless wall shear stress distribution for (a) B/H=2.86, (b) B/H=4.51, (c) B/H=7.14, and (d)

B/H=13.95.
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3. Conclusion
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on open channels. This study makes use of the Tsallis entropy, model ANFIS and GP
method to predict the SSD in rectangular channel. Sensitivity analysis was introduced to
define the efficient parameters in SSD modeling with Tsallis, and 3 separate GP models
were used. The findings show that in SSD estimation, B/H is a sensitive parameter. With
increasing the flow depth, both the GP model and the Tsallis entropy-based equation per-
formed better than other cases. The GP model, with an average RMSE of 0.0893 and R? of
0.9450 in bed and RMSE of 0.0904, R? of 0.8266 in wall for aspect ratios (B/H) 2.86, 4.51,
7.14 and 13.95, approximately performance over the Tsallis entropy-based equation, with
RMSE of 0.0714, R2 of 0.9109 in bed and RMSE of 0.0880, R2 of 0.8006 in wall and ANFIS
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for all flow depths. The GP model predicts wall shear stress better than the ANFIS and
Tsallis entropy-based models to compare the efficiency of the models as the flow depth
increases. As a practical achievement of the results of this study, it can be said that if the
model overestimates the shear stress, this unrealistic estimate will cost a lot to design the
channel. Based on the analysis, it can be deducted that the use of the Tsallis entropy meth-
odology in the shear stress evaluation is not economical.
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