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In this letter, instead of choosing the Einstein Rosen bridge between two black holes as in
ER=EPR, we consider a wormhole between a black hole and a closed edge of the wormhole. We
assume that information in a black hole travels through a wormhole, turns to mass (dark matter) in
the closed region. This study is in contradiction with the existence of the white hole in our Universe.
We replace the notion of the white hole with the massive closed region. We prove the metric of the
closed region by the Hopf fibration, this new metric generalizes the AdS5 metric.

I. INTRODUCTION

The observations of the rotation of galaxies and
gravitational lenses indicate the presence of dark matter
(DM) hiding in galaxies, which does not interact with
radiation and matter, which can be detected by its
gravitational effect. The ΛCDM model designates a
cosmological model parametrized by a cosmological
constant Λ associated with cold dark matter. However,
the ΛCDM model presents several problems, as the
cosmological constant, fine-tuning problem and the
problem of cosmic coincidence [1]. The deflection
angle in gravitational lensing is proportional to the
Schwarzschild radius, which will allow us to study
massive regions invisible in the Universe, and connect
these regions with the black hole by a wormhole.
Recently investigators have examined the Hopf fibration
to study the wormholes [2]. In ER = EPR [3, 4] the
entangled particles are connected through a wormhole
or Einstein–Rosen bridge. The information paradox
opposing the laws of quantum mechanics to those of
general relativity. Indeed, the general relativity implies
that the information could fundamentally disappear in
a black hole, following the evaporation of this one. This
loss of information implies a non-reversibility (the same
state can come from several different states), and a
non-unitary evolution of quantum states, in fundamental
contradiction with the postulates of quantum mechanics
[5]. In 2019, Penington and al. [6] discovered a class
of semi-classical space-time geometries that had been
overlooked by Hawking and later researchers. Penington
et al. calculate entropy using the cue trick and show
that for sufficiently old black holes. We must consider
solutions in which the aftershocks are connected by
wormholes. The inclusion of these wormhole geometries
prevents entropy from increasing indefinitely [6, 7].

II. GRAVITATIONAL LENSING OF CLOSED
REGIONS

Light rays emitted from the source S are deflected by
the lens L, then observed by the observer O, in the form
of two images S1 and S2 of the source. If the observed

source is perfectly aligned with the celestial body acting
as a gravitational lens concerning the observer, the mi-
rage can take the form of an Einstein ring by the Einstein
radius is

θE =

√
4GNM

c2
DLS

DLDS
(1)

where DL, DS , DLS are the distance between O and
L, and the distance between O and S and the distance
between L and S, respectively. The angle of curvature we
would like to point out here is that the deflection angle
is given as

α̃ (ξ) =
4GNMξ

c2
1

ξ
(2)

where Mξ is the mass inside a radius ξ. We take two
entangled regions; regions A represent the black hole sur-
face and an invisible closed region B of the radius ξ and a
surface Aξ, which also supports a constant positive Ricci
curvature. Firstly, we associate with each region a quan-
tum state of two particles.

|ΨA⟩ ∼ |+⟩ |−⟩+ |−⟩ |+⟩ (3)

|ΨB⟩ ∼ |+⟩ |−⟩ − |−⟩ |+⟩ (4)

the maximal entanglement between the states |ΨA⟩ and
|ΨB⟩ describes the maximal entanglement between two
particles. The first particle is on the black hole surface
and the second particle is on the closed region surface.
The entanglement between the two particles describes
quantum information passes from the black hole surface
A into the closed region B. General Relativity also has
its non-local features. In particular, there are solutions
to Einstein’s equations in which a pair of arbitrarily dis-
tant black holes are connected by a wormhole or Einstein-
Rosen bridge (ERB) [3]. We assume that the information
from the black hole surface transforms by the wormhole
[4], towards a mas which will gather in an extreme re-
gion of the wormhole, this extremal part is the closed
region, which exists in a compact dimension. We pro-
pose that the closed regions exist in 5-dimensions, with
4-dimensions of space-time and a 5th compact dimen-
sion. These regions are a sub-manifold of space-time
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that is closed on the 5th dimension. We can represent
the wormhole by the Einstein Rosen bridge between the
black hole and the closed region because according to [4];
the Einstein Rosen bridge is associated with each entan-
gled state |ΨA⟩ and |ΨB⟩. On the black hole region A,
we define the Bekenstein-Hawking entropy is equal to

SBH =
kBc

3

4~GN
A (5)

Next, we take kB = c = GN = ~ = 1. We can represent
entropy geometrically by the surface A = 4πr2 of radius
r. In every moment, a small portion of area A is shifting
towards the closed region. The area of the closed region
increases at the expense of the black hole area, for this
we connect the variation of Aξ with the deflection angle,
like [8]. At each instant t we define a black hole surface
A(t) = Aξ(t) + δAξ, with δAξ is a part of surface which
transforms from A to Aξ ∼ 4πξ2 at t. The infinitesimal
surface δAξ depend on the variation of the massMξ in the
region of the radius ξ. We take δAξ as a cross product of
two vector in the closed region with the deflection angle
α̃ (sin α̃ ≈ α̃). To express this variation, we will use the
deflection angle

δAξ ≡ α̃Aξ = 16πMξξ (6)

Eq.(5) can be rewritten as

SBH = πξ2 + 4πMξξ (7)

the entropy is viewed as a measure of quantum entangle-
ment of the maximally entangled particles in each region
A and B. We introduced the condition: Mξ ≽ −ξ/4.
According to this condition, the mass Mξ is always
greater than a minimum value. By comparison with the
Schwarzschild radius, the condition is equivalent to

Mξ ≡ M − ξ/2 (8)

where M is the black hole mass. We can use Eq.(8) to
search by the method of gravitational lensing for region
(ξ,Mξ) which is connected by the black hole mass. Now
let us express SBH as a function of Mξ and M

SBH = 4π
[
M2 −M2

ξ

]
(9)

the black hole entropy is proportional to the closed
region mass. If we assume that the mass of the closed
region is zero, then we get an entropy SBH only for
a black hole. The entropy SBH connects each black
hole of the mass M with a closed region of mass Mξ.
Hence, there is no loss of the information in a black
hole, but there is a transformation of the information
during a wormhole to the closed region, the information
is registered on the closed region as a mass Mξ. We
remark in the entropy (9) that when the black hole mass
transforms entirely to the closed region, the black hole
entropy will be zero. The mass Mξ describes dark matter

in the closed region. The mass in closed regions does not
interact with the electromagnetic waves; because these
regions are closed and compact, nothing can enter or
leave these regions, except by the wormholes which are
open from the side of the black hole. The place to test
for the presence of dark matter in the closed regions is
black holes. However, the dark matter does not exist
inside black holes, but the black holes are gates that can
help us to describe the closed regions.

III. QUATERNIONIC HOPF FIBRATION OF
WORMHOLE

There are many methods to geometrize the set {black
hole and closed region}, for example, a non-orientable
surface like the Klein bottle, stereographic projection, or
the Bloch sphere. Here we propose that the black hole
surfaces and the closed region are topologically equivalent
to a spatio-temporal sphere. The black hole is topologi-
cally equivalent to a spatio-temporal sphere S3. On the
other hand, the surface of the closed region is equivalent
to the spatio-temporal sphere S4, since we can’t see di-
rectly the closed regions. To go from the sphere S3(black
hole) to S4(closed region), there is a mathematical tech-
nique called Hopf fibration. We define the Hopf fibration
π by a map that transports each element of S4 to an el-
ement of S3 ∼= SU(2). By Adams’s theorem [9] there are
only 4 possible paths to make a Hopf fibration. Conse-
quently, there is only one possibility to go from S3 to S4:
the fiber space S3 is embedded in the total space S7, and
the Hopf fibration π starts from S7 to S4

S3 ↪→ S7 π−→ S4 (10)

We suppose that the Hopf fibration is an information
transformation between the black hole and the closed
region. We notice that the geometry S7 is equivalent
to a wormhole that passes through S3 to S4, The
information is saved in S4 as a mass. We know that the
topology of a pair of entangled two-level systems [9] is
given by the Hopf fibration of Eq.(10).

FIG. 1: The geometry of space-time with a wormhole that
transforms information from S3 to S4.

We take a space of the quaternions H, we know that
S4 ∼= PH ( quaternions projective space). The vector of
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Minkowski space-time (t, x, y, z) ∈ R1,3, is interpreted as
a quaternion q = t+ ix+ jy + kz ∈ H.
The Hopf fibration π : S7 −→ S4 [10, 11], its explicit
form can be written as:

π (p, q) =
1∣∣∣ qp ∣∣∣2 + 1

(
2
q

p
,

∣∣∣∣qp
∣∣∣∣2 − 1

)
=
(
2pq, |q|2 − |p|2

)
(11)

where p, q ∈ H, |q| =
√

t2 + x2 + y2 + z2, q̄ = t + ix +
jy + kz. Eq.(11) can be rewritten as

π (p, q) = (X0, X1, X2, X3, X5) (12)

where

X0 = pq̄ + qp̄ (13)

iX1 + jX2 + kX3 = pq̄ − qp̄ (14)

X5 = δµνx
µxν − δαβy

αyβ = |q|2 − |p|2 (15)

the field X5 is the only one among the others that is real.
The Hopf fibration creates a Minkowski space-time geom-
etry and four quantum states. The fields Eq.(13,14) are
equivalent to entangled states Eq.(3,4). The pure state
in two-qubit system is described by rays which represent
state vectors in the complex Hilbert space modulo a U(1)
phase is explicitly given by

|ΨA⟩ ∼ |p⟩+ |q⟩− + |q⟩+ |p⟩− (16)

|ΨB⟩ ∼ |p⟩+ |q⟩− − |q⟩+ |p⟩− (17)

the entanglement between |ΨA⟩ and |ΨB⟩, shows that the
field X0 exists at the same time on the black hole and
the closed region and the fields (X1, X2, X3) exist on the
closed region. We can describe the fields (X1, X2, X3) by
the state |ΨB⟩, this state is entangled with the state |ΨA⟩
which describes the field X0. The Hopf fibration (12)
summarizes the information stored in the closed region.
The closed region appears as a single surface field X5 in
space-time. On the other hand, the four other dimensions
of the closed region are hidden at the quantum scale in
the form of the fields (X0, X1, X2, X3). These four fields
are quaternions. We can represent these quaternions by
the SU(1, 1) matrix(

X0 + iX1 X2 + iX3

−X2 + iX3 X0 − iX1

)
(18)

Subsequently wants to study the transformation of the
mass on the wormhole by the Hopf fibration. we remark
in Eq.(7) that the entropy SBH is proportional to the
spatial parameter ξ2 (surface), and since the field X5

Eq.(15) also represents a surface over space-time. This
shows that there is an equivalence between SBH and X5.

By comparing Eq.(9) and Eq.(11), we can write a second
Hopf fibration concerning the masses

X0 = mξm̄+mm̄ξ (19)

iX1 + jX2 + kX3 = mξm̄−mm̄ξ (20)

SBH/4π ≡ X5 = M2 −M2
ξ (21)

where |m| = M and |mξ| = Mξ. Let’s make H act on
C2 ≈ H by left multiplication, this action is C-linear. It
is also faithful, so defines a morphism of injective alge-
bras H ↪→ EndC(H) ≈ M2(C). The matrix associated
with the quaternion will be equivalent to the matrix (18),
which contains unit matrices, which are the basis of the
Lie algebra of the group SU(2). Indeed, we can represent
the 5 fields by one writing

(m+mξ) (m̄+ m̄ξ) = M2 +M2
ξ +X0 (22)

(m+mξ) (m̄− m̄ξ) = X5 + iX1 + jX3 + kX3 (23)

the problem here is that we can’t describe the 5-fields
by single writing with a quaternion product. We define
another surface in space-time X6 = M2+M2

ξ . This field

will replace the X5 field in Eq.(23) to have an equivalence
between the entangled states on equivalent surfaces. By
connectingX5 and the black hole entropy, we can connect
the last two equations to have a single description:

|m+mξ|2 |m̄+ m̄ξ|2 = |X6 +X0|2 (24)

|m+mξ|2 |m̄− m̄ξ|2 = X2
1 +X2

2 +X2
3 +X2

5 (25)

We use the subadditivity of the quantity above
|X6 +X0|2 ≼ |X6|2+ |X0|2, and we choose the maximum
value of the quantity Eq.(24), one can obtain

F |X6|2 = −F |X0|2 +
1

F

(
X2

1 +X2
2 +X2

3 +X2
5

)
(26)

where F =
∣∣∣ m̄−m̄ξ

m̄+m̄ξ

∣∣∣ ∈ R is a function. If we accept that

the first member of Eq.(26) is a metric, we must first

define the term F |X6|2. We know that the Hopf fibra-
tion (12) generates 5 dimensional by 8 dimensional, all
the fields (X0, X1, X2, X3, X5) therefore represents the
dimensions of the space-time of the closed region. We
also remark that the second member of the equation
(26) looks like the Schwarzschild metric and AdS met-

ric. Then, the term F |X6|2 represents the metric of the
closed region. Since X2

5 ≡ SBH ∼ ξ2, which shows that
1
F X2

5 is the 5th dimension of the closed region since ξ
is a parameter that describes the closed region. There-
fore, the first member of Eq.(26) describes the passage
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of information through the black hole to the closed re-
gion. We can represent the closed region metric by the
coordinates (t, r, θ, ϕ1, ϕ2) as

ds2 = −Fdt2 +
1

F
dr2 + r2dΩ2

4 (27)

where dΩ2
4 = dΩ2

4(θ, ϕ1, ϕ2).
according to this metric, the geometry of the closed-
region is a copy of the black hole geometry. The copy-
paste of information influence the geometry of the closed
region. If we take only 4-dimensions of the closed-region
we notice that the closed-region geometry is a reflection
symmetry of the black hole geometry. We can see this
transformation differently; if the information on the black
hole geometry represents a face, the closed region geom-
etry will be a mirror that copies the information of the
black hole geometry. From the transformation (10), we
can’t talk about the geometry of the closed region, unless
there is a Hopf fibration (information transformation).
With this guesswork, we can compare this transition to
the Ryu-Takayanagi prescription [13], which is given by
the area of a minimal surface with less area than the hori-
zons. The holography claims that the degrees of freedom
in (d + 2)-dimensional quantum gravity is comparable to
those of a quantum system in (d + 1)-dimensions. Since
information travels from 4-dimensions to 5-dimensions.
The function F is expressed by

F (r) =

√
X6 − 2L(r)

X6 + 2L(r)
(28)

where L is a local function, in the case of AdS metric
L ≡ r2. The expression of F , shows that there is no
singularity on the closed region. We notice from Eq.(28)
that X6 ≽ 2L. For X6 ≫ 2L, we obtain

F (r) =
X6 − L(r)

X6 + L(r)
(29)

the function F shows that the metric (27) is a unification
of the AdS5 metric and the Schwarzschild metric. To
see this generalization, we can use approximation:

F−1(r) ∼ 1 +
L(r)

X6
(30)

Eq.(30) an is equivalent with the inverse of the factor
that present in the AdS metric. The approximation of
F Eq.(29) is equivalent to the spatial term of the AdS
metric, which shows that there is a change between space
and time in the closed region. On the other hand, if
L(r)/X6 = 2M/r, the approximation (30) represents the
temporal factor of the Schwarzschild metric.

IV. CONCLUSION

Here, instead of choosing a wormhole between a re-
gion with two edges, the first edge represents a black
hole and the second edge represents a closed-region. We
have shown that the black hole mass or energy trans-
formed into information that passes through the worm-
hole, that it stabilizes as a mass (dark matter) in the
closed-region. The closed region is compact in space-
time, except by a wormhole made by a black hole. Noth-
ing can enter or exit the closed region except through
a black hole, which explains why the dark matter does
not interact with radiations. To determine the geome-
try of a wormhole with a closed edge, we used the Hopf
fibration, which shows that if the black hole geometry
is topologically equivalent to the space-time sphere S3,
then there is only one passage to create a closed edge of
the wormhole. This study has identified that the worm-
hole is equivalent to the sphere S7 (8 dimensions) and
the closed region is equivalent to S4 (5 dimensions). The
quaternionic Hopf fibration shows that the closed region
behaves like a chameleon geometry, which changes con-
cerning the black hole geometry. Since the closed region
lives in (4 + 1)-dimensions and the black hole exists with
4-dimensions, which shows that the information on the
black hole projected on the region closed by the hologra-
phy. This holography is done through a wormhole. We
can calculate the closed-region metric from the Hopf fi-
bration, which generalizes the AdS5 metric.
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