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Abstract: This paper describes and demonstrates an autonomous robotic team that can rapidly1

learn the characteristics of environments that it has never seen before. The flexible paradigm2

is easily scalable to multi-robot, multi-sensor autonomous teams, and is relevant to satellite3

calibration/validation and the creation of new remote sensing data products. A case study is4

described for the rapid characterisation of the aquatic environment, over a period of just a few5

minutes we acquired thousands of training data points. This training data allowed our machine6

learning algorithms to rapidly learn by example and provide wide area maps of the composition7

of the environment. Along side these larger autonomous robots two smaller robots that can be8

deployed by a single individual were also deployed (a walking robot and a robotic hover-board),9

observing significant small scale spatial variability.10

Keywords: Machine Learning; Hyper-spectral Imaging; Robot Team; Autonomous; UAV; Robotic11

Boat12

1. Introduction13

This paper describes a robotic team that can rapidly learn new environments.14

The system described here demonstrates a flexible paradigm that is easily scalable to15

multi-robot, multi-sensor autonomous teams. A case study is described for the rapid16

characterisation of the aquatic environment. Other authors have described in detail17

various configurations of autonomous robots, for example [1–6].18

The aquatic environment was chosen, as it includes extra challenges with regards19

to ease of access, further demonstrating the value of the approach. When considering20

the usefulness of being able to conduct such rapid surveys, it is worth noting that, for21

just the oil spill response use case alone, the National Academy of Sciences estimates22

that the annual oil spill quantities range from 1.7 million tons to 8.8 million tons. Over23

70% of this release is due to human activities. The result of these spills include dead24

wildlife, contaminated water and oil-covered marshlands [7–10]. So being able to rapidly25

survey such areas to guide clean-up operations is of considerable use. It is also of use in26

Figure 1. Photographs of the robot team during a Fall 2020 deployment in North Texas.
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a wide variety of contexts, from general environmental surveys, to studying harmful27

algal blooms, to the clean-up operations after natural disasters, such as hurricanes, etc.28

In the example described in this paper, the fully autonomous team includes a robotic29

boat that carries a suite of sensors to measure water composition in real time as well as a30

sonar, and an autonomous UAV equipped with a down-welling irradiance spectrometer,31

hyper-spectral and thermal imagers, together with an onboard Machine Learning (ML)32

capability. Figure 1 shows photographs of the robot team during a December 202033

deployment in North Texas.34

Besides this capability being useful by itself, there is a wider significance for earth35

observing satellite missions. A key component to each and every space agency earth ob-36

servation mission is the delivery of a suite of data products and the calibration/validation37

of these products. The paradigm demonstrated can reduce the time and cost of produc-38

ing new remote sensing data products, while increasing functionality and data quality39

and providing new real-time automated calibration/validation capabilities.40

The approach also provides enhanced capabilities for real-time onboard data prod-41

uct creation, reducing product delivery latency. The end-to-end demonstration uses all42

off-the-shelf components, representing a reduction in costs and risk when prototyping43

new mission concepts. A key element is the use of embedded machine learning, so we44

will refer to the approach as Rapid Embedded Prototyping for Advanced Applications45

(REPAA).46

1.1. Hyper-Spectral Imaging47

The human eye perceives the color of visible light in three bands using the cones,48

the photoreceptor cells in the retina (Figure 2). These three broad bands are red (centered49

on 564 nm), green (centered on 534 nm), and blue (centered on 420 nm). By contrast,50

instead of using just three broad bands, hyper-spectral cameras divide the spectrum51

into a very large number of narrow bands, in our case 463 bands from 391-1,011 nm.52

A hyper-cube is a three-dimensional dataset consisting of a stack of two-dimensional53

image layers each for a different wavelength. So for each pixel in the image we have a54

multi-wavelength spectra (spectral signature). This is shown schematically in the lower55

left of Figure 2. On the right we see a conventional RGB color image with only three56

bands, images for red, green and blue wavelengths.57

Chemicals absorb light in a characteristic way. Their absorption spectra is a func-58

tion of their chemical structure. Figure 3a shows the structure of chlorophyll and the59

associated absorption spectra. So that we can accurately calculate the reflectivity at each60

wavelength our autonomous UAV measures both the incident downwelling irradiance61

of incident solar radiation and a hyper-spectral imager pointed directly down at the62

earth’s surface below the UAV. For every pixel we measure an entire spectrum with a63

hyper-spectral camera so we can identify chemicals within the scene.64

An example reflectivity hyper-spectral data cube collected during a robot team65

deployment in North Texas during November 2020 is shown in Figure 3b. This data cube66

includes the area where an inert dye was released to test the system. The dye used was67

Rhodamine WT, a fluorescent, xanthene dye, that has long been used as a hydrologic68

tracer in surface water systems. The spectral signature of the dye is clearly visible in69

the hyper-spectral data cube. The top layer of the hyper-spectral data cube shows the70

regular RGB image, the 463 stacked layers below show the reflectivity (on a log-scale)71

for each wavelength band between 391 and 1,011 nm.72

2. Materials and Methods73

All the data for the machine learning data product creation was collected in a74

coordinated automated manner using the autonomous robotic team. An overview of the75

robotic team members and their sensor payloads is as follows.76
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2.1. Robotic Vehicles77

A Maritime Robotics Otter (https://www.maritimerobotics.com/otter) autonomous78

boat was used. With a footprint of only 200 x 108 x 81.5 cm, a weight of 55 kg, and dual79

electrical fixed thrusters, it is an easily deployable asset that can be transported in a van80

or even within normal airliners to a survey site. With a cruise speed of 2 knots it has a81

duration of 20 hours from one charge of the batteries. It can use WiFi, cellular and an82

optional AIS receiver for communication to the control station.83

A Freefly Alta-X (https://freeflysystems.com/alta-x) autonomous professional84

quad-copter was used. It was specifically designed to carry cameras, with a pay-85

load capacity of up to 35 lb, a long range data link, and autonomy provided by the86

Open PX4 flight stack. The open source QGroundControl software was used to control87

the autonomous operations (https://freeflysystems.com/support/alta-pro-support).88

QGroundControl is available for Mac, Windows, iOS and Android.89

All of the robotic team members carry a high-accuracy GPS and INS so that every90

data point can be geo-located and time stamped. Each of the robots can also join the same91

network which connects the robots and their ground-control stations. Our robots use92

long-range Ubiquiti 5 GHz LiteBeam airMAX WiFi (https://www.ui.com). The airMAX93

Time Division Multiple Access (TDMA) protocol allows each client to send and receive94

data using pre-designated time slots managed by an intelligent AP controller. This95

Figure 2. Panel (a) Trichromatic cone cells in the eye respond to one of three wavelength ranges
(RGB). Panel (b) shows a comparison between a hyper-spectral data-cube and RGB images.
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time slot method eliminates hidden node collisions and maximizes airtime efficiency.96

This WiFi network is connected to the internet using a Cradlepoint cellular modem97

(https://cradlepoint.com).98

This network also includes a local Synology network-attached storage (NAS)99

(https://www.synology.com) device in the robot team control trailer, which in real-time100

syncs the data collected to the NAS in our home laboratory in the university.101

2.2. Boat Sensors102

The robotic boat payload included a BioSonics MX Aquatic Habitat Echosounder103

sonar for rapid assessment and mapping of aquatic vegetation, substrate and bathymetry104

(https://www.biosonicsinc.com/products/mx-aquatic-habitat-echosounder/). Three105

Eureka Manta-40 multi-probes (https://www.waterprobes.com/multiprobes-and-sondes-106

for-monitori), a Sequoia Scientific LISST-ABS acoustic backscatter sediment sensor (107

https://www.sequoiasci.com/product/lisst-abs/), and an Airmar Technology Corpora-108

tion 220WX ultra-sonic weather monitoring sensor (https://www.airmar.com/weather-109

description.html?id=153).110

The first Manta-40 multi-probe included sensors for temperature and turbidity111

and Turner Designs Cyclops-7 submersible Titanium body fluorometers (https://www.112

turnerdesigns.com/cyclops-7f-submersible-fluorometer) for Chlorophyll A, Chlorophyll113

A with Red Excitation, Blue-Green Algae for fresh water (Phycocyanin), Blue-Green114

Algae for salt water (Phycoerythrin), and CDOM/FDOM. The second Manta-40 multi-115

(a)

(b)

Figure 3. Panel (a) Chemicals absorb light in a characteristic way. Their absorption spectra is
a function of their chemical structure. For every pixel we measure an entire spectrum with a
hyper-spectral camera so we can identify chemicals within the scene. Panel (b) shows an example
hyper-spectral data cube collected in North Texas on November 23, 2020. This particular data cube
includes a simulant release, Rhodamine WT. The top layer of the hyper-spectral data cube shows
the regular RGB image, the 463 stacked layers below show the reflectivity (on a log-scale) for each
wavelength band between 391 and 1,011 nm.
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probe included sensors for temperature, conductivity (with specific conductance, salinity,116

and total dissolved solids, TDS), pH (with separate reference electrode), optical dissolved-117

oxygen, turbidity and Ion Selective Electrodes by Analytical Sensors and Instruments (118

http://www.asi-sensors.com/) for ammonium (NH+
4 ), bromide (Br−), calcium (Ca++),119

chloride (Cl−), nitrate (NO−
3 ), and sodium (Na+). The third Manta-40 multi-probe120

included sensors for temperature, turbidity, a total dissolved gas sensor, and Turner121

Designs Cyclops-7 submersible Titanium body fluorometers for optical brighteners,122

crude oil, refined fuels, and tryptophan.123

In addition, a portable Membrane Inlet Mass Spectrometer (MIMS) designed and124

built by Prof. Verbeck of the University of North Texas is available (but not used in these125

deployments) to switch every 3 seconds between sampling the water composition and126

the air composition.127

2.3. Aerial Sensors128

The aerial vehicle used a Gremsy H16 gimbal (https://gremsy.com/gremsy-h16)129

made with aircraft grade aluminum and carbon fiber to carry a Resonon Visible+Near-130

Infrared (VNIR) Pika XC2 (https://resonon.com/Pika-XC2) hyper-spectral camera (391–131

1,011 nm) with a Schneider Xenoplan 1.4/17 mm lens, and a FLIR Duo Pro R, (640x512, 25132

mm, 30 Hz) combining a high resolution, radiometric thermal imager, 4K color camera,133

and a full suite of onboard sensors (https://www.flir.com/products/duo-pro-r/). On134

the top of the quad copter there is a sky facing Ocean Optics UV-Vis-NIR spectrometers135

measuring the incident down-welling irradiance allowing us to calculate reflectance.136

2.4. Geo-rectification137

The hyper-spectral data cubes collected are very large and are written in real time138

to the solid-state disk (SSD) attached to the Resonon Pika XC2. To facilitate the real-time139

processing of these files the Camera SSD is exported as a Network File System (NFS)140

mount so that a second onboard computer can geo-rectify the hyper-spectral data cubes141

as they are created. These hyper-spectral data cubes provide a visible and near infrared142

spectrum (391–1,011 nm) for each pixel. Once these data cubes are geo-rectified in real-143

time they are available for onboard machine learning using edge computing onboard144

the aerial vehicle.145

2.5. Machine Learning146

The accurate geo-tagging and time stamping of all data from all members of the147

robot team allows automation of the machine learning data product creation. For every148

location at which the robotic boat sampled the in-situ water composition we associate a149

VNIR remotely sensed spectrum (391–1,011 nm) provided by the hyper-spectral data150

cubes collected by the aerial-vehicle. This data is then be used for multi-variate non-linear151

non-parametric machine learning, where the inputs are the spectrum, in this case 462152

values from the 391–1,011 nm spectra, and the outputs are each of the values measured153

in-situ by the robotic boat. A variety of machine learning approaches were used. These154

approaches included, shallow neural networks with hyper-parameter optimization,155

ensembles of hyper-parameter optimized decision trees, gaussian process regression156

with hyper-parameter optimization, and a super-learner including all of the previously157

mentioned approaches. Each empirical non-linear non-parametric fit is evaluated by158

constructing both a scatter diagram and a quantile-quantile plot of the values estimated159

by the machine learning model plotted against the actual values in the independent160

validation dataset.161

The use of machine learning in this study builds on our heritage of using machine162

learning for sensing applications over the last two decades [11–28].163
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Figure 4. Machine learning performance quantified by both scatter diagrams and quantile-quantile
plots utilizing data collected autonomously by the robot team during three exercises during
November and December 2020 in North Texas. The three examples shown here are for CDOM,
Na+ and Cl−. The scatter diagrams show the actual observations (mg/l) on the x-axis and the
machine learning estimate on the y-axis. The green curves are for the training data, the red
for the independent validation. The legend shows the number of points in the training and
validation datasets and their associated correlation coefficients. The quantile-quantile plots show
the observation quantiles on the x-axis and the machine learning estimate quantiles on the y-axis.

3. Learning Modes164

We designed each component of our system to be flexible for different scenarios and165

deployment configurations. The entire system is called a Cyber Physical Observatory.166

To appreciate the benefits of this, a few basic definitions/descriptions are helpful. The167
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Sentinel = Software Defined Sensor + Platform 

Disease 
Incidence

Software Defined  
Sensors

Platform

Sentinel

App Store

Example Software Defined Sensor

Live Machine Learning  System

Application Workflow

Hyper-spectral Camera

In-situ Reference Sensor

Remote sensing cameras calibrated against high end 
In-situ reference sensors can provide wide area maps

On-board App Store

Cyber Physical Observatory: A network of 
co-operating Autonomous Sentinels
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Software Defined  
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Platform
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(CPO) Cyber Physical Observatory

Cyber Physical Observatory App Store

Figure 5. The Cyber Physical Observatory is a collection of sentinels that provide real-time data.
A Sentinel is a Software Defined Sensor mounted on a Platform. A Platform supplies the Software
Defined Sensor with power, timestamps for all observations, communication, and mobility where
applicable. A Software Defined Sensor is a smart sensor package which combines a physical
sensing system with machine learning providing a variety of calibrated data products which can
be updated via an app store.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 February 2021                   doi:10.20944/preprints202102.0454.v1

https://doi.org/10.20944/preprints202102.0454.v1


Version February 17, 2021 submitted to Sensors 8 of 15

Cyber Physical Observatory is a collection of sentinels and/or robot teams that provide168

real-time data and actionable insights and whose capabilities can be updated via an app169

store. The Robot Team is a collection of co-operative autonomous sentinels. A Sentinel is170

a Software Defined Sensor mounted on a Platform. A Platform supplies the Software De-171

fined Sensor with power, timestamps for all observations, communication, and mobility172

where applicable. In some of our other applications these even include wearable sensors.173

A Software Defined Sensor is a smart sensor package which combines a physical sensing174

system with software/machine learning providing a variety of calibrated data products175

which can be updated via an app store.176

Two distinct machine learning modalities are useful when trying to rapidly learn177

new environments (Figure 6). Mode 1: Coordinated robots using onboard Machine178

Learning for specific data products. Mode 2: Unsupervised classification.179
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Figure 6. The autonomous robotic team operates in two modes. Mode 1: Coordinated robots
using onboard Machine Learning for specific data products. Mode 2: Unsupervised classification.
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Figure 7. Example crude oil and colored dissolved organic mater (CDOM) data collected au-
tonomously by the robot team on November 23, 2020 in North Texas. The maps show the CDOM
and crude oil estimated from the hyper-spectral imager using machine learning as the background
colors and the actual in-situ boat observations as the overlaid color filled squares. Note that the
isolated part of the pond which has now fresh water in-flux has higher levels of CDOM and crude
oil with a sharp gradient across the inlet in both the estimates using the hyper-spectral image and
the boat observations.

In Mode 1 the robot team members rapidly collect the machine learning training180

data in a carefully coordinated. For our example deployment in North Texas during the181

Fall of 2020, over a period of about fifteen minutes thousands of precisely collocated182

measurements were made by the robotic team. The robotic boat autonomously mea-183

suring in-situ ground truth of a large array of parameters using the sensors described184

above, while the robotic aerial vehicle gathered remotely sensed observations of exactly185

the same locations using hyper-spectral and thermal imaging. These remotely sensed ob-186

servations could be readily extended to cover a wider wavelength range and to include187

Synthetic Aperture Radar (SAR). Once the training data is acquired the machine learning188

algorithms can rapidly learn the mapping from the remotely sensed observations to the189

in-situ ground truth. Figure 4 shows three different examples of the validation of these190

autonomously acquired machine learning data products being independently verified191

using scatter diagrams and quantile-quantile plots.192

Once the machine learning algorithm(s) have been trained they can then be used193

to rapidly provide wide-area maps with just the remotely sensed observations. Two194

examples of this are shown in Figure 7. These can be processed onboard the aerial vehicle195

and the results streamed in real-time to the ground control station. The robotic boat can196

then be autonomously tasked to verify the wide area maps by collecting independent197

validation data.198

In Mode 2 we would like to perform a fine-grained multi-class surface classification199

of the entire domain. This is done by providing the remotely sensed data (in this200

case the hyper-spectral and thermal imagery) to an unsupervised classification. The201

unsupervised machine learning characterizes the distinct regions and zones in the area of202

interest. This can be particularly useful when trying to identify the location of particular203

contaminants, suggesting the optimum sampling patterns required beyond the usual204

clover leaf, star or box patterns used for contaminant searches.205
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4. Results206

Over a period of just a few minutes we acquire thousands of training data points.207

This training data allows our machine learning algorithms to rapidly learn by example.208

The machine learning fit used here is an optimized ensemble of regression trees [29–31]209

with hyper-parameter optimization [32] implemented in Matlab version 2021a (https:210

//www.mathworks.com) using the function fitrensemble with all hyper-paramter211

optimization selcted and parallel processing enabled. A loop is executed over all the212

variables measured by the robotic that we would like to estimate using the hyper-spectral213

imagery.214

For each of these variables a balanced training dataset is constructed. This is215

done by considering each input and output variable in the training dataset in turn and216

calculating n percentiles, from each of these n percentile ranges covering the entire PDF,217

from each percentile range we select m random values (where m < n) for the training218

and a different set of random values for independent validation.219

Figure 4 shows an example of the colored dissolved organic mater (CDOM) data220

collected autonomously by the robot team on November 23, 2020 in North Texas, along221

with some of the aqueous ion data. The panel shows a scatter diagram of the actual222

observations on the x-axis and the machine learning estimate on the y-axis. The green223

curves are for the training data, the red for the independent validation. On each axis we224

also show the associated PDFs. The ideal result is shown in blue (a slope of 1 and an225

intercept of zero for the scatter diagram).226

Figure 7 shows maps of the CDOM and crude oil concentration estimated using the227

machine learning as the background colors and the actual in-situ boat observations as228

the overlaid color filled squares. Note that the isolated part of the pond which has now229

fresh water in-flux has higher levels of CDOM and crude oil with a sharp gradient across230

the inlet in both the estimates using the hyper-spectral image and the boat observations.231

We note that there is good agreement between the machine learning estimate and the232

actual in-situ boat observations.233

5. Discussion234

5.1. Limitations235

The fidelity of the data products provided by the autonomous robotic team are236

limited by the training data it is able to acquire. For example, our remote sensing hyper-237

spectral camera in the demonstration use case presented here observes the spectral238

region 391-1,011 nm. It would be useful to extend this spectral region so we can see239

more chromophores, and to extend the type of remote sensing imaging, e.g. to include240

Synthetic Aperture RADAR (SAR).241

It would also be useful for the boat to have larger pontoons so that it can carry our242

mass-spectrometer that can sample both the air and water, switching between the two243

inlets every three seconds.244

We would also like to extend the machine learning approaches to include Physics245

Based machine learning such that the machine learning is constrained by known physical246

principles.247

5.2. Automating Data Product Creation248

A key factor in providing remotely sensed water composition products is providing249

a comprehensive database of water composition (e.g. SeaBASS, the publicly shared250

archive of in-situ oceanographic and atmospheric data maintained by the NASA Ocean251

Biology Processing Group https://seabass.gsfc.nasa.gov). The cost of making the mea-252

surements of ocean composition can be substantial because it involves a significant ship253

time as well as a large support team. Secondly, since the satellites are in a fixed orbit254

with a fixed viewing geometry, the number of coincidences between the shipboard water255

observations and the orbiting satellite observations are, by definition, limited. Typically256

several thousand coincident observations are used in the tuning and creation of a NASA257
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ocean data product. In the REPAA approach, the entire system can be automated and258

objectively optimized. Thus, with a data rate of one observation every second, in a259

matter of hours we can gather tens of thousands of observations in a totally automated,260

fully coordinated manner, as was demonstrated in North Texas during November and261

December 2020 (Figure 1). There is explicit coordination between the water observations262

taken from the robotic boat and the continuous aerial observations made by the robotic263

aerial vehicle carrying a hyper-spectral imager. The system can be deployed to very264

diverse environments across a matter of just weeks to months, so over a matter of just265

weeks to months, millions of coordinated, precisely coincident records can be made.266

Furthermore, we have previously demonstrated, the data can be randomly partitioned267

into training and independent validation sets, and using the onboard machine learning,268

transformed into optimal water composition data products, using many orders of mag-269

nitude more observations than before at a fraction of the cost and in a fraction of the270

time.271

Aurin et al. [33] provides one of the most comprehensive training datasets to272

date for Chromophoric Dissolved Organic Matter (CDOM). Their Global Ocean Carbon273

Algorithm Database (GOCAD) for Chromophoric Dissolved Organic Matter (CDOM)274

encompasses 20,000–100,000+ records (depending on the variable considered) and it is275

based on oceanographic campaigns conducted across the world over the past 30 years276

at great expense. In contrast, the autonomous robotic team can collect around 20,000+277

precisely coordinated training records per hour. By design, the robotic team makes278

precisely coordinated overpasses of exactly the same locations, this leads to providing a279

training dataset with a high data rate. By deploying the team on multiple occasions at a280

diversity of locations one can rapidly build a comprehensive training dataset.281

The traditional approach for creating remote sensing data products, as shown on282

the left of Figure 8, is compared with the approach used in this study, shown on the right.283

Using the REPAA approach, data collection and the creation of derivative data products284

can be carried out on the same day, for example in the December 2020 exercises in North285

Texas (Figure 1).286

5.3. Improving Product Quality & Automating Cal/Val287

Critical in improving product quality is the comprehensive training data set, which288

spans as much parameter space and variability that is actually found in the real world.289

This necessitates making observations in a large number of diverse contexts. Being able290

to make these observations with such a highly automated platform is a tremendous291

step forward and costs less. In summary, our robotic platform can address the issue292

of small scale variability encountered across a satellite pixel. These capabilities assist293

continuing validation/quality control and can help optimize the waveband selection for294

future satellite instruments and missions.295

Figure 8. Schematics illustrating the traditional approach to creating remote sensing data products
(left) and that used in this study (right).
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Figure 9. Photographs of the smaller walking robot (from Ghost Robotics) and a robotic hover-
board (conceived and built by Aaron Barbosa). For illustrative purposes both of these small robots
carried exactly the same payload of sensors measuring the size spectrum of airborne particulates in
the size range 0.3–43 microns and the abundance of a selection of gases. The laser scanner onboad
the walking robot acquired a map of the vicinity while also measuring in-situ the atmospheric
composition, finding very localized changes in the abundance of the airborne particulates of
various sizes.

5.4. Reducing Latency for Product Delivery as well as Mission Risk, Cost, Weight and Size296

Utilizing new embedded onboard processing (1 TeraFlop weighing just 88 g with a297

size of only 87 mm x 50 mm) for real-time onboard processing leads to reducing the298

latency in product delivery from hours/days to just the downlink time. The product299

delivery latency can be critical for decision support applications, such as oil spills, or300

other disaster response applications, and for routine forecasting and data assimilation301

applications. A risk reduction is also realized, by the ability to first deploy an end to end302

demonstrator, using entirely commercial off the shelf components and low cost aerial303

vehicles, with all software made Open Source.304

5.5. Onboard App Store305

There is currently a rapid enhancement in both observing capabilities and the em-306

bedded computing power from miniaturized low power devices. As these enhanced307

observing capabilities become routinely available on small cubesats (like hyperspectral308

imaging), the number of possible uses and applications for societal benefit grows. How-309

ever, so does the bandwidth required for the downlink of the hyperspectral datacubes.310

So the possibility of onboard processing, for example using embedded machine learning,311

means that product creation can occur directly onboard the cubesats and then streamed312

live via the downlink. This reduces the latency of product creation and the bandwidth313

needed for the downlink. The next logical step, then, of a rapid prototyping and agile314

workflow, is an onboard app store, where new data products can be deployed to the315

remote sensing platform for seamless use onboard. A formalized development, testing,316

and deployment workflow with an app store facilitates an Earth-observing system that317

responds to the rapidly changing societal needs while maintaining a rigorous approach318
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to validation. This onboard app store can leverage the smart automated code generation319

that already exists off the shelf and is now routinely used for automobiles and aircraft320

across the world. The time has come for this to be the standard paradigm for earth321

observation as well.322

5.6. Smaller Robots323

There is also value in smaller robots that are easy to transport by a single individual.324

Figure 9 shows photographs of the smaller walking robot (from Ghost Robotics) and a325

robotic hover-board (conceived and built by Aaron Barbosa) that we deployed along size326

the larger autonomous robotic team for illustrative purposes. Both the walking robot327

and the robotic hover-board carried exactly the same payload of sensors that could be328

rapidly switched between the robots. The sensing payload measured every few seconds329

the full size spectrum of airborne particulates in the size range 0.3–43 microns and the330

abundance of a selection of gases. The laser scanner onboad the walking robot acquired331

a map of the vicinity while also measuring in-situ the atmospheric composition, finding332

very localized changes in the abundance of the airborne particulates of various sizes.333

6. Conclusions334

This paper described and demonstrated an autonomous robotic team that can335

rapidly learn the characteristics of environments that it has never seen before. The336

flexible paradigm is easily scalable to multi-robot, multi-sensor autonomous teams, and337

is relevant to satellite calibration/validation and the creation of new remote sensing338

data products. A case study was described for the rapid characterisation of the aquatic339

environment, over a period of just a few minutes we acquired thousands of training340

data points. This training data allowed our machine learning algorithms to rapidly341

learn by example and provide wide area maps of the composition of the environment.342

Along side these larger autonomous robots two smaller robots that can be deployed by a343

single individual were also deployed, a walking robot and a robotic hover-board, each344

measuring the full size spectrum of airborne particulates in the size range 0.3–43 microns345

and the abundance of a selection of gases, significant small scale spatial variability with346

evident in these hyper-localized observations.347
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The following abbreviations are used in this manuscript:376
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CDOM Chromophoric Dissolved Organic Matter
GOCAD Global Ocean Carbon Algorithm Database
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INS Inertial Navigation System
MIMS Membrane Inlet Mass Spectrometer
ML Machine Learning
NASA The National Aeronautics and Space Administration
NFS Network File System
REPAA Rapid Embedded Prototyping for Advanced Applications
SeaBASS SeaWiFS Bio-optical Archive and Storage System
SSD Solid State Disk
UAV Unmanned Aerial Vehicle
VNIR Visible and Near-Infrared
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