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Abstract: This paper describes and demonstrates an autonomous robotic team that can rapidly
learn the characteristics of environments that it has never seen before. The flexible paradigm
is easily scalable to multi-robot, multi-sensor autonomous teams, and is relevant to satellite
calibration/validation and the creation of new remote sensing data products. A case study is
described for the rapid characterisation of the aquatic environment, over a period of just a few
minutes we acquired thousands of training data points. This training data allowed our machine
learning algorithms to rapidly learn by example and provide wide area maps of the composition
of the environment. Along side these larger autonomous robots two smaller robots that can be
deployed by a single individual were also deployed (a walking robot and a robotic hover-board),
observing significant small scale spatial variability.

Keywords: Machine Learning; Hyper-spectral Imaging; Robot Team; Autonomous; UAV; Robotic
Boat

1. Introduction

This paper describes a robotic team that can rapidly learn new environments.
The system described here demonstrates a flexible paradigm that is easily scalable to
multi-robot, multi-sensor autonomous teams. A case study is described for the rapid
characterisation of the aquatic environment. Other authors have described in detail
various configurations of autonomous robots, for example [1-6].

The aquatic environment was chosen, as it includes extra challenges with regards
to ease of access, further demonstrating the value of the approach. When considering
the usefulness of being able to conduct such rapid surveys, it is worth noting that, for
just the oil spill response use case alone, the National Academy of Sciences estimates
that the annual oil spill quantities range from 1.7 million tons to 8.8 million tons. Over
70% of this release is due to human activities. The result of these spills include dead
wildlife, contaminated water and oil-covered marshlands [7-10]. So being able to rapidly
survey such areas to guide clean-up operations is of considerable use. It is also of use in
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2z a wide variety of contexts, from general environmental surveys, to studying harmful
2e algal blooms, to the clean-up operations after natural disasters, such as hurricanes, etc.
20 In the example described in this paper, the fully autonomous team includes a robotic
o boat that carries a suite of sensors to measure water composition in real time as well as a
a1 sonar, and an autonomous UAV equipped with a down-welling irradiance spectrometer,
52 hyper-spectral and thermal imagers, together with an onboard Machine Learning (ML)
33 capability. Figure 1 shows photographs of the robot team during a December 2020
sa  deployment in North Texas.

35 Besides this capability being useful by itself, there is a wider significance for earth
s Observing satellite missions. A key component to each and every space agency earth ob-
sz servation mission is the delivery of a suite of data products and the calibration/validation
ss  of these products. The paradigm demonstrated can reduce the time and cost of produc-
3» ing new remote sensing data products, while increasing functionality and data quality
s and providing new real-time automated calibration/validation capabilities.

a The approach also provides enhanced capabilities for real-time onboard data prod-
a2 uct creation, reducing product delivery latency. The end-to-end demonstration uses all
a3 off-the-shelf components, representing a reduction in costs and risk when prototyping
s« New mission concepts. A key element is the use of embedded machine learning, so we
«s  will refer to the approach as Rapid Embedded Prototyping for Advanced Applications
s (REPAA).

a7 1.1. Hyper-Spectral Imaging

48 The human eye perceives the color of visible light in three bands using the cones,
2o the photoreceptor cells in the retina (Figure 2). These three broad bands are red (centered
so on 564 nm), green (centered on 534 nm), and blue (centered on 420 nm). By contrast,
s1  instead of using just three broad bands, hyper-spectral cameras divide the spectrum
s2 into a very large number of narrow bands, in our case 463 bands from 391-1,011 nm.
ss A hyper-cube is a three-dimensional dataset consisting of a stack of two-dimensional
s« image layers each for a different wavelength. So for each pixel in the image we have a
ss multi-wavelength spectra (spectral signature). This is shown schematically in the lower
ss left of Figure 2. On the right we see a conventional RGB color image with only three
sz bands, images for red, green and blue wavelengths.

58 Chemicals absorb light in a characteristic way. Their absorption spectra is a func-
so tion of their chemical structure. Figure 3a shows the structure of chlorophyll and the
e associated absorption spectra. So that we can accurately calculate the reflectivity at each
o1 wavelength our autonomous UAV measures both the incident downwelling irradiance
e2 of incident solar radiation and a hyper-spectral imager pointed directly down at the
es earth’s surface below the UAV. For every pixel we measure an entire spectrum with a
es hyper-spectral camera so we can identify chemicals within the scene.

o5 An example reflectivity hyper-spectral data cube collected during a robot team
es deployment in North Texas during November 2020 is shown in Figure 3b. This data cube
ez includes the area where an inert dye was released to test the system. The dye used was
es  Rhodamine WT, a fluorescent, xanthene dye, that has long been used as a hydrologic
eo tracer in surface water systems. The spectral signature of the dye is clearly visible in
70 the hyper-spectral data cube. The top layer of the hyper-spectral data cube shows the
= regular RGB image, the 463 stacked layers below show the reflectivity (on a log-scale)
72 for each wavelength band between 391 and 1,011 nm.

73 2. Materials and Methods

74 All the data for the machine learning data product creation was collected in a
75 coordinated automated manner using the autonomous robotic team. An overview of the
76 robotic team members and their sensor payloads is as follows.
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7z 2.1. Robotic Vehicles

78 A Maritime Robotics Otter (https://www.maritimerobotics.com/otter) autonomous
7 boat was used. With a footprint of only 200 x 108 x 81.5 cm, a weight of 55 kg, and dual
s electrical fixed thrusters, it is an easily deployable asset that can be transported in a van
e Or even within normal airliners to a survey site. With a cruise speed of 2 knots it has a
e2 duration of 20 hours from one charge of the batteries. It can use WiFi, cellular and an
e optional AIS receiver for communication to the control station.

8a A Freefly Alta-X (https:/ /freeflysystems.com/alta-x) autonomous professional
es quad-copter was used. It was specifically designed to carry cameras, with a pay-
e load capacity of up to 35 Ib, a long range data link, and autonomy provided by the
ez Open PX4 flight stack. The open source QGroundControl software was used to control
es the autonomous operations (https://freeflysystems.com/support/alta-pro-support).
s  QGroundControl is available for Mac, Windows, iOS and Android.

% All of the robotic team members carry a high-accuracy GPS and INS so that every
o1 data point can be geo-located and time stamped. Each of the robots can also join the same
o2 network which connects the robots and their ground-control stations. Our robots use
93 long-range Ubiquiti 5 GHz LiteBeam airMAX WiFi (https:/ /www.ui.com). The airMAX
sa Time Division Multiple Access (TDMA) protocol allows each client to send and receive
os data using pre-designated time slots managed by an intelligent AP controller. This
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Figure 2. Panel (a) Trichromatic cone cells in the eye respond to one of three wavelength ranges
(RGB). Panel (b) shows a comparison between a hyper-spectral data-cube and RGB images.
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96 time slot method eliminates hidden node collisions and maximizes airtime efficiency.
oz This WiFi network is connected to the internet using a Cradlepoint cellular modem
os  (https://cradlepoint.com).

99 This network also includes a local Synology network-attached storage (NAS)
wo (https:/ /www.synology.com) device in the robot team control trailer, which in real-time
101 syncs the data collected to the NAS in our home laboratory in the university.

102 2.2. Boat Sensors

103 The robotic boat payload included a BioSonics MX Aquatic Habitat Echosounder
104 sonar for rapid assessment and mapping of aquatic vegetation, substrate and bathymetry
w5 (https://www.biosonicsinc.com /products/mx-aquatic-habitat-echosounder/). Three
106 Eureka Manta-40 multi-probes (https:/ /www.waterprobes.com/multiprobes-and-sondes-
w7 for-monitori), a Sequoia Scientific LISST-ABS acoustic backscatter sediment sensor (
s https://www.sequoiasci.com/product/lisst-abs/), and an Airmar Technology Corpora-
10s tion 220WX ultra-sonic weather monitoring sensor (https:/ /www.airmar.com/weather-
1o description.html]?id=153).

11 The first Manta-40 multi-probe included sensors for temperature and turbidity
1z and Turner Designs Cyclops-7 submersible Titanium body fluorometers (https://www.
us turnerdesigns.com/cyclops-7f-submersible-fluorometer) for Chlorophyll A, Chlorophyll
us A with Red Excitation, Blue-Green Algae for fresh water (Phycocyanin), Blue-Green
us  Algae for salt water (Phycoerythrin), and CDOM/FDOM. The second Manta-40 multi-
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Figure 3. Panel (a) Chemicals absorb light in a characteristic way. Their absorption spectra is
a function of their chemical structure. For every pixel we measure an entire spectrum with a
hyper-spectral camera so we can identify chemicals within the scene. Panel (b) shows an example
hyper-spectral data cube collected in North Texas on November 23, 2020. This particular data cube
includes a simulant release, Rhodamine WT. The top layer of the hyper-spectral data cube shows
the regular RGB image, the 463 stacked layers below show the reflectivity (on a log-scale) for each
wavelength band between 391 and 1,011 nm.
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ue probe included sensors for temperature, conductivity (with specific conductance, salinity,
1z and total dissolved solids, TDS), pH (with separate reference electrode), optical dissolved-
us oxygen, turbidity and Ion Selective Electrodes by Analytical Sensors and Instruments (
e http://www.asi-sensors.com/) for ammonium (NH;), bromide (Br~), calcium (Ca™™),
120 chloride (C17), nitrate (NOj'), and sodium (Na™). The third Manta-40 multi-probe
11 included sensors for temperature, turbidity, a total dissolved gas sensor, and Turner
122 Designs Cyclops-7 submersible Titanium body fluorometers for optical brighteners,
123 crude oil, refined fuels, and tryptophan.

124 In addition, a portable Membrane Inlet Mass Spectrometer (MIMS) designed and
15 built by Prof. Verbeck of the University of North Texas is available (but not used in these
12¢ deployments) to switch every 3 seconds between sampling the water composition and
127 the air composition.

128 2.3. Aerial Sensors

120 The aerial vehicle used a Gremsy H16 gimbal (https://gremsy.com/gremsy-h16)
10 made with aircraft grade aluminum and carbon fiber to carry a Resonon Visible+Near-
11 Infrared (VNIR) Pika XC2 (https:/ /resonon.com/Pika-XC2) hyper-spectral camera (391-
132 1,011 nm) with a Schneider Xenoplan 1.4/17 mm lens, and a FLIR Duo Pro R, (640x512, 25
132 mm, 30 Hz) combining a high resolution, radiometric thermal imager, 4K color camera,
13« and a full suite of onboard sensors (https://www.flir.com/products/duo-pro-r/). On
s the top of the quad copter there is a sky facing Ocean Optics UV-Vis-NIR spectrometers
136 measuring the incident down-welling irradiance allowing us to calculate reflectance.

w7 2.4. Geo-rectification

138 The hyper-spectral data cubes collected are very large and are written in real time
130 to the solid-state disk (SSD) attached to the Resonon Pika XC2. To facilitate the real-time
120 processing of these files the Camera SSD is exported as a Network File System (NFS)
121 mount so that a second onboard computer can geo-rectify the hyper-spectral data cubes
12 as they are created. These hyper-spectral data cubes provide a visible and near infrared
13 spectrum (391-1,011 nm) for each pixel. Once these data cubes are geo-rectified in real-
124 time they are available for onboard machine learning using edge computing onboard
s the aerial vehicle.

s 2.5. Machine Learning

147 The accurate geo-tagging and time stamping of all data from all members of the
s robot team allows automation of the machine learning data product creation. For every
120 location at which the robotic boat sampled the in-situ water composition we associate a
10 VNIR remotely sensed spectrum (391-1,011 nm) provided by the hyper-spectral data
11 cubes collected by the aerial-vehicle. This data is then be used for multi-variate non-linear
12 non-parametric machine learning, where the inputs are the spectrum, in this case 462
13 values from the 391-1,011 nm spectra, and the outputs are each of the values measured
1s¢ in-situ by the robotic boat. A variety of machine learning approaches were used. These
155 approaches included, shallow neural networks with hyper-parameter optimization,
16 ensembles of hyper-parameter optimized decision trees, gaussian process regression
17 with hyper-parameter optimization, and a super-learner including all of the previously
1= mentioned approaches. Each empirical non-linear non-parametric fit is evaluated by
10 constructing both a scatter diagram and a quantile-quantile plot of the values estimated
10 by the machine learning model plotted against the actual values in the independent
161 validation dataset.

162 The use of machine learning in this study builds on our heritage of using machine
13 learning for sensing applications over the last two decades [11-28].
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Figure 4. Machine learning performance quantified by both scatter diagrams and quantile-quantile
plots utilizing data collected autonomously by the robot team during three exercises during
November and December 2020 in North Texas. The three examples shown here are for CDOM,
Na™ and CI™. The scatter diagrams show the actual observations (mg/1) on the x-axis and the
machine learning estimate on the y-axis. The green curves are for the training data, the red
for the independent validation. The legend shows the number of points in the training and
validation datasets and their associated correlation coefficients. The quantile-quantile plots show
the observation quantiles on the x-axis and the machine learning estimate quantiles on the y-axis.

16 3. Learning Modes

165 We designed each component of our system to be flexible for different scenarios and
16 deployment configurations. The entire system is called a Cyber Physical Observatory.
1z To appreciate the benefits of this, a few basic definitions/descriptions are helpful. The
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Sentinel = Software Defined Sensor + Platform
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Figure 5. The Cyber Physical Observatory is a collection of sentinels that provide real-time data.
A Sentinel is a Software Defined Sensor mounted on a Platform. A Platform supplies the Software
Defined Sensor with power, timestamps for all observations, communication, and mobility where
applicable. A Software Defined Sensor is a smart sensor package which combines a physical
sensing system with machine learning providing a variety of calibrated data products which can
be updated via an app store.
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Cyber Physical Observatory is a collection of sentinels and /or robot teams that provide
real-time data and actionable insights and whose capabilities can be updated via an app
store. The Robot Team is a collection of co-operative autonomous sentinels. A Sentinel is
a Software Defined Sensor mounted on a Platform. A Platform supplies the Software De-
fined Sensor with power, timestamps for all observations, communication, and mobility
where applicable. In some of our other applications these even include wearable sensors.
A Software Defined Sensor is a smart sensor package which combines a physical sensing
system with software/machine learning providing a variety of calibrated data products
which can be updated via an app store.

Two distinct machine learning modalities are useful when trying to rapidly learn
new environments (Figure 6). Mode 1: Coordinated robots using onboard Machine
Learning for specific data products. Mode 2: Unsupervised classification.

Mode 1: Coordinated robots using onboard
Machine Learning for specific data products
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Figure 6. The autonomous robotic team operates in two modes. Mode 1: Coordinated robots
using onboard Machine Learning for specific data products. Mode 2: Unsupervised classification.
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Colored Dissolved Organic Matter (CDOM) Crude Oil
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Figure 7. Example crude oil and colored dissolved organic mater (CDOM) data collected au-
tonomously by the robot team on November 23, 2020 in North Texas. The maps show the CDOM
and crude oil estimated from the hyper-spectral imager using machine learning as the background
colors and the actual in-situ boat observations as the overlaid color filled squares. Note that the
isolated part of the pond which has now fresh water in-flux has higher levels of CDOM and crude
oil with a sharp gradient across the inlet in both the estimates using the hyper-spectral image and
the boat observations.

180 In Mode 1 the robot team members rapidly collect the machine learning training
1.1 data in a carefully coordinated. For our example deployment in North Texas during the
12 Fall of 2020, over a period of about fifteen minutes thousands of precisely collocated
13 measurements were made by the robotic team. The robotic boat autonomously mea-
1 suring in-situ ground truth of a large array of parameters using the sensors described
s above, while the robotic aerial vehicle gathered remotely sensed observations of exactly
s the same locations using hyper-spectral and thermal imaging. These remotely sensed ob-
1wz servations could be readily extended to cover a wider wavelength range and to include
1.e  Synthetic Aperture Radar (SAR). Once the training data is acquired the machine learning
10 algorithms can rapidly learn the mapping from the remotely sensed observations to the
1o  in-situ ground truth. Figure 4 shows three different examples of the validation of these
11 autonomously acquired machine learning data products being independently verified
102 using scatter diagrams and quantile-quantile plots.

103 Once the machine learning algorithm(s) have been trained they can then be used
1a to rapidly provide wide-area maps with just the remotely sensed observations. Two
15 examples of this are shown in Figure 7. These can be processed onboard the aerial vehicle
10e and the results streamed in real-time to the ground control station. The robotic boat can
107 then be autonomously tasked to verify the wide area maps by collecting independent
s validation data.

100 In Mode 2 we would like to perform a fine-grained multi-class surface classification
200 Of the entire domain. This is done by providing the remotely sensed data (in this
201 case the hyper-spectral and thermal imagery) to an unsupervised classification. The
202 unsupervised machine learning characterizes the distinct regions and zones in the area of
203 interest. This can be particularly useful when trying to identify the location of particular
20s contaminants, suggesting the optimum sampling patterns required beyond the usual
20s clover leaf, star or box patterns used for contaminant searches.
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206 4. Results

207 Over a period of just a few minutes we acquire thousands of training data points.
20s  This training data allows our machine learning algorithms to rapidly learn by example.
200 The machine learning fit used here is an optimized ensemble of regression trees [29-31]
210 with hyper-parameter optimization [32] implemented in Matlab version 2021a (https:
2 //www.mathworks.com) using the function fitrensemble with all hyper-paramter
212 optimization selcted and parallel processing enabled. A loop is executed over all the
213 variables measured by the robotic that we would like to estimate using the hyper-spectral
214 imagery.

215 For each of these variables a balanced training dataset is constructed. This is
216 done by considering each input and output variable in the training dataset in turn and
217 calculating # percentiles, from each of these 1 percentile ranges covering the entire PDF,
z1e from each percentile range we select m random values (where m < n) for the training
210 and a different set of random values for independent validation.

220 Figure 4 shows an example of the colored dissolved organic mater (CDOM) data
2z collected autonomously by the robot team on November 23, 2020 in North Texas, along
222 with some of the aqueous ion data. The panel shows a scatter diagram of the actual
223 Observations on the x-axis and the machine learning estimate on the y-axis. The green
224 curves are for the training data, the red for the independent validation. On each axis we
22 also show the associated PDFs. The ideal result is shown in blue (a slope of 1 and an
226 intercept of zero for the scatter diagram).

227 Figure 7 shows maps of the CDOM and crude oil concentration estimated using the
22s machine learning as the background colors and the actual in-situ boat observations as
220 the overlaid color filled squares. Note that the isolated part of the pond which has now
230 fresh water in-flux has higher levels of CDOM and crude oil with a sharp gradient across
231 the inlet in both the estimates using the hyper-spectral image and the boat observations.
22 We note that there is good agreement between the machine learning estimate and the
233 actual in-situ boat observations.

23¢ 5. Discussion
235 b.1. Limitations

236 The fidelity of the data products provided by the autonomous robotic team are
237 limited by the training data it is able to acquire. For example, our remote sensing hyper-
238 spectral camera in the demonstration use case presented here observes the spectral
230 region 391-1,011 nm. It would be useful to extend this spectral region so we can see
240 more chromophores, and to extend the type of remote sensing imaging, e.g. to include
21 Synthetic Aperture RADAR (SAR).

242 It would also be useful for the boat to have larger pontoons so that it can carry our
2a3  Mass-spectrometer that can sample both the air and water, switching between the two
a4 inlets every three seconds.

245 We would also like to extend the machine learning approaches to include Physics
246 Based machine learning such that the machine learning is constrained by known physical
2e7  principles.

2a 5.2, Automating Data Product Creation

249 A key factor in providing remotely sensed water composition products is providing
250 a comprehensive database of water composition (e.g. SeaBASS, the publicly shared
261 archive of in-situ oceanographic and atmospheric data maintained by the NASA Ocean
22 Biology Processing Group https://seabass.gsfc.nasa.gov). The cost of making the mea-
253 surements of ocean composition can be substantial because it involves a significant ship
254 time as well as a large support team. Secondly, since the satellites are in a fixed orbit
2 with a fixed viewing geometry, the number of coincidences between the shipboard water
256 Observations and the orbiting satellite observations are, by definition, limited. Typically
257 several thousand coincident observations are used in the tuning and creation of a NASA
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2se  ocean data product. In the REPAA approach, the entire system can be automated and
250 Objectively optimized. Thus, with a data rate of one observation every second, in a
200 matter of hours we can gather tens of thousands of observations in a totally automated,
201 fully coordinated manner, as was demonstrated in North Texas during November and
22 December 2020 (Figure 1). There is explicit coordination between the water observations
263 taken from the robotic boat and the continuous aerial observations made by the robotic
264 aerial vehicle carrying a hyper-spectral imager. The system can be deployed to very
2es diverse environments across a matter of just weeks to months, so over a matter of just
266 weeks to months, millions of coordinated, precisely coincident records can be made.
26z Furthermore, we have previously demonstrated, the data can be randomly partitioned
2es  into training and independent validation sets, and using the onboard machine learning,
260 transformed into optimal water composition data products, using many orders of mag-
270 nitude more observations than before at a fraction of the cost and in a fraction of the
211 time.

272 Aurin et al. [33] provides one of the most comprehensive training datasets to
2rs  date for Chromophoric Dissolved Organic Matter (CDOM). Their Global Ocean Carbon
274 Algorithm Database (GOCAD) for Chromophoric Dissolved Organic Matter (CDOM)
275 encompasses 20,000-100,000+ records (depending on the variable considered) and it is
276 based on oceanographic campaigns conducted across the world over the past 30 years
=77 at great expense. In contrast, the autonomous robotic team can collect around 20,000+
27e  precisely coordinated training records per hour. By design, the robotic team makes
270 precisely coordinated overpasses of exactly the same locations, this leads to providing a
200 training dataset with a high data rate. By deploying the team on multiple occasions at a
2a1  diversity of locations one can rapidly build a comprehensive training dataset.

282 The traditional approach for creating remote sensing data products, as shown on
203 the left of Figure 8, is compared with the approach used in this study, shown on the right.
2ea  Using the REPAA approach, data collection and the creation of derivative data products
2es  can be carried out on the same day, for example in the December 2020 exercises in North
206 lexas (Figure 1).

207 5.3. Improving Product Quality & Automating Cal/Val

288 Critical in improving product quality is the comprehensive training data set, which
280 Sspans as much parameter space and variability that is actually found in the real world.
200 This necessitates making observations in a large number of diverse contexts. Being able
201 to make these observations with such a highly automated platform is a tremendous
202 step forward and costs less. In summary, our robotic platform can address the issue
203 Of small scale variability encountered across a satellite pixel. These capabilities assist
20 continuing validation/quality control and can help optimize the waveband selection for
20 future satellite instruments and missions.

Satellite Ground
S?a io‘n e Grount Satellite multi-spectral imaging. BRobotic Aerial Vehicle automatically tracks
‘:\\\ l No onboard real-time processing boat and observes water with Hyperspectral
or derived product creation Imaging )
BAutomated reception of real-time co-located
/

Live Data Product training data from robotic boat.

Streamy >Onboard machine learning with over 1
‘A
. Manual data colocation between

ship and satellite. Manual analysis
Satelite Data Cenler for product creation. Sub-optimal overlap
between in-situ and remotely sensed data. Data Cemer

/

Research ship making
in-situ observations of
Water Composition. Large
expense & sub-optimal
Smp Data Cen(er overlap with remotely

sensed observations

Teraflop of embedded GPUs (256 Cuda
cores)

P>Onboard real-time derived product
creation.

High Bandwidth
Wireless Communication

Robotic Boat with

real-time streaming of in-situ
observations of Water Composition
direct to the Aerial Vehicle

§§=3 - @

Near Real Time Data Product Development Timescale with
Automated Quality Control & Validation

Data Product Devel it Ti le of many hs to years

Figure 8. Schematics illustrating the traditional approach to creating remote sensing data products
(left) and that used in this study (right).
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Figure 9. Photographs of the smaller walking robot (from Ghost Robotics) and a robotic hover-
board (conceived and built by Aaron Barbosa). For illustrative purposes both of these small robots
carried exactly the same payload of sensors measuring the size spectrum of airborne particulates in
the size range 0.3—43 microns and the abundance of a selection of gases. The laser scanner onboad
the walking robot acquired a map of the vicinity while also measuring in-situ the atmospheric
composition, finding very localized changes in the abundance of the airborne particulates of
various sizes.

206 5.4. Reducing Latency for Product Delivery as well as Mission Risk, Cost, Weight and Size

207 Utilizing new embedded onboard processing (1 TeraFlop weighing just 88 g with a
208 size of only 87 mm x 50 mm) for real-time onboard processing leads to reducing the
200 latency in product delivery from hours/days to just the downlink time. The product
s00 delivery latency can be critical for decision support applications, such as oil spills, or
so1  other disaster response applications, and for routine forecasting and data assimilation
302 applications. A risk reduction is also realized, by the ability to first deploy an end to end
33 demonstrator, using entirely commercial off the shelf components and low cost aerial
s0s  vehicles, with all software made Open Source.

s0s 5.5, Onboard App Store

306 There is currently a rapid enhancement in both observing capabilities and the em-
sr  bedded computing power from miniaturized low power devices. As these enhanced
s0s  Observing capabilities become routinely available on small cubesats (like hyperspectral
500 imaging), the number of possible uses and applications for societal benefit grows. How-
;10 ever, so does the bandwidth required for the downlink of the hyperspectral datacubes.
s So the possibility of onboard processing, for example using embedded machine learning,
;12 means that product creation can occur directly onboard the cubesats and then streamed
a3 live via the downlink. This reduces the latency of product creation and the bandwidth
s14 needed for the downlink. The next logical step, then, of a rapid prototyping and agile
a5 workflow, is an onboard app store, where new data products can be deployed to the
;16 remote sensing platform for seamless use onboard. A formalized development, testing,
sz and deployment workflow with an app store facilitates an Earth-observing system that
s1s  responds to the rapidly changing societal needs while maintaining a rigorous approach
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s10 to validation. This onboard app store can leverage the smart automated code generation
s20 that already exists off the shelf and is now routinely used for automobiles and aircraft
sz across the world. The time has come for this to be the standard paradigm for earth
322 Observation as well.

s2s 5.6. Smaller Robots

324 There is also value in smaller robots that are easy to transport by a single individual.
;s Figure 9 shows photographs of the smaller walking robot (from Ghost Robotics) and a
326 robotic hover-board (conceived and built by Aaron Barbosa) that we deployed along size
32z the larger autonomous robotic team for illustrative purposes. Both the walking robot
s2s  and the robotic hover-board carried exactly the same payload of sensors that could be
s20  rapidly switched between the robots. The sensing payload measured every few seconds
s30  the full size spectrum of airborne particulates in the size range 0.3-43 microns and the
s abundance of a selection of gases. The laser scanner onboad the walking robot acquired
32 a map of the vicinity while also measuring in-situ the atmospheric composition, finding
a3 very localized changes in the abundance of the airborne particulates of various sizes.

3¢ 6. Conclusions

335 This paper described and demonstrated an autonomous robotic team that can
s3s  rapidly learn the characteristics of environments that it has never seen before. The
sz flexible paradigm is easily scalable to multi-robot, multi-sensor autonomous teams, and
se  is relevant to satellite calibration/validation and the creation of new remote sensing
s data products. A case study was described for the rapid characterisation of the aquatic
;0 environment, over a period of just a few minutes we acquired thousands of training
saa data points. This training data allowed our machine learning algorithms to rapidly
sz learn by example and provide wide area maps of the composition of the environment.
ss Along side these larger autonomous robots two smaller robots that can be deployed by a
saa  single individual were also deployed, a walking robot and a robotic hover-board, each
;s measuring the full size spectrum of airborne particulates in the size range 0.3-43 microns
:s  and the abundance of a selection of gases, significant small scale spatial variability with
sz evident in these hyper-localized observations.
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