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Abstract: Beer fermentation is typically monitored by periodic sampling and off-line analysis. In-
line sensors would remove the need for time-consuming manual operation and provide real-time 
evaluation of the fermenting media. This work uses a low-cost ultrasonic sensor combined with 
machine learning to predict the alcohol concentration during beer fermentation. The highest accu-
racy model (R2=0.952, MAE=0.265, MSE=0.136) used a transmission-based ultrasonic sensing tech-
nique along with the measured temperature. However, the second most accurate model (R2=0.948, 
MAE=0.283, MSE=0.146) used a reflection-based technique without the temperature. Both the reflec-
tion-based technique and the omission of the temperature data are novel to this research and 
demonstrate the potential for a non-invasive sensor to monitor beer fermentation.  

Keywords: Machine learning; Ultrasonic measurements; Long Short-Term Memory; Industrial Dig-
ital technologies  
 

1. Introduction 
During beer fermentation, yeast metabolism produces ethanol and carbon dioxide 

from a sugar-water mixture called wort [1, 2]. The fermentation is conventionally moni-
tored through off-line wort density measurements until a predetermined ethanol concen-
tration is reached [3], after which the process is continued for a predefined time for devel-
opment of flavour compounds [4]. This requires manual sampling, takes time, and wastes 
resources by disposing of the measured sample. In-line measurement techniques directly 
measure the process material and on-line methods use bypasses to automatically collect, 
analyse, and return samples to the process [5]. By providing real-time, automatic alcohol 
concentration measurements, in-line and on-line techniques would ensure product qual-
ity through early detection of anomalous batches, allow effective scheduling of produc-
tion equipment by predicting fermentation endpoint, and reduce the burden of manual 
sampling by operators. Furthermore, real-time data is key to the Fourth Industrial Revo-
lution which will implement Industrial Digital Technologies such as the Internet of 
Things, Cloud Computing and Machine Learning (ML) to integrate entire processes, au-
tomatically make decisions, and improve manufacturing productivity, efficiency, and sus-
tainability [6]. 

Several in-line and on-line methods to monitor alcoholic fermentation have been in-
vestigated, including: in-situ transflectance near-infrared spectroscopy [7, 8] and Raman 
spectroscopy probes [9]; automated flow-through mid-infrared spectroscopy [10], Fourier 
transform infrared spectroscopy [11], and piezoelectric MEMS resonators [12]; non-inva-
sive Raman spectroscopy through transparent vessel walls [13]; and CO2 emission moni-
toring [14]. Ultrasonic (US) sensors are an attractive monitoring technique owing to their 
low cost and have previously been used to study fermentation, including as in-line 
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methods on circulation lines [15], in-situ in tanks [16], and using non-invasive, through-
transmission of the fermenting media [17, 18]. US monitoring techniques use high fre-
quency (>1 MHz), low power (<1 Wcm-2) pressure waves to characterise material proper-
ties whilst causing no alterations to the material in which they propagate [19]. However, 
US properties vary with temperature and the presence of gas bubbles causes attenuation 
of the sound wave [20]. Previous in-line, on-line, and off-line studies to monitor fermen-
tation using US measurements have developed empirical or semi-empirical models from 
the speed of sound or acoustic impedance to determine alcohol content [16]. These meth-
ods require extensive calibration procedures to compensate for the effects of temperature, 
dissolved CO2 [16, 18, 21], and yeast cell concentration [18]. Supervised ML uses data to 
train predictive algorithms for classification or regression problems. Through ML, com-
pensation procedures are not required as the complexities caused by varying process pa-
rameters imbedded in the sensor data can be unraveled. Furthermore, procedures for ac-
curate determination of the speed of sound are not necessary, as developed in: [15, 16, 22]. 

This work presents three novel contributions to US monitoring of alcoholic fermen-
tations: Firstly, ML is used to predict alcohol concentration during lab-scale beer fermen-
tations from US measurements. Secondly, although an in-situ sensor probe is used, the 
potential for non-invasive monitoring of fermentation is investigated by only using the 
US wave reflected from the interface between the probe and the wort. This technique is 
similar to previous work by our group [23-26]. Implementation of this technique would 
provide in-line, non-invasive process monitoring without the need for circulation or by-
pass lines. This method would also not require transmission through the total vessel con-
tents, which would need high power and high-cost transducers. Therefore, this technique 
could be inexpensively fitted to the outside of existing vessels. Finally, exclusion of the 
temperature as a feature in the ML models is evaluated. Effective monitoring without the 
need for an invasive temperature sensor would further reduce the cost and complexity of 
industrial implementation. 

2. Materials and Methods 
The fermentation was conducted in a 30 l cylindrical plastic vessel (Figure 1). A lid 

sealed the vessel to protect the wort from contamination. The lid contained an air lock to 
release the CO2 produced during fermentation. A belt heater increased the temperature of 
the wort to facilitate fermentation. The wort was prepared in the vessel by dissolving and 
mixing 1.5 kg of malt (Coopers Real Ale) and 1 kg of sugar (brewing sugar, The Home 
Brew Shop) in 22 l of water. Once the ingredients were mixed, a US probe was installed, 
consisting of a US transducer (Sonatest, 2 MHz central frequency) and a temperature sen-
sor (RTD, PT1000). The US transducer was connected to a Lecouer Electronique US Box 
that excited the transducer and digitised the received US signal. The temperature sensor 
was connected to a Pico electronic box (PT-104 Data Logger). The two electronic boxes 
were connected to a laptop that controlled the data acquisition. Coupling gel was applied 
between the US transducer and the probe, and a spring was used to maintain the contact 
pressure. A Tilt hydrometer was installed to provide real-time density measurements. 
This device was a small cylinder that floats in the liquid with its centre of gravity different 
from its centre of buoyancy. This causes an inclination of the device that is dependent on 
the specific gravity of the fermenting media. The inclination of the hydrometer was meas-
ured by a self-contained accelerometer and was transmitted by radio to a smartphone lo-
cated outside of the vessel. A calibration procedure related the inclination to the specific 
gravity. It should be noted hydrometers are not suitable for in-line monitoring of indus-
trial fermentations: Firstly, the balance of the device can be easily distorted by foam or 
solids floating on the surface, or by bubbles produced during fermentation. Secondly, as 
the hydrometer floats on the wort surface, it would need manual removal at the end of 
each fermentation batch. The most accurate method of specific gravity measurement is to 
extract samples and use a portable density meter. However, this would require manual 
sample withdrawal at least every two hours and would decrease the volume of liquid in 
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the vessel, affecting the fermentation process. Furthermore, this would only produce 
sparse ground truth measurements of the density to train the ML models.  

The yeast (Coopers Real Ale) was distributed on the surface and the vessel sealed. 
The mixture was left for 4 to 7 days while the fermentation occurred. After this time, the 
fermentation equipment was cleaned and a new batch was prepared. In total, 13 batches 
were completed. During the fermentation, data was collected from the three different sen-
sors: the US sensor, the temperature sensor, and the hydrometer. The time of each meas-
urement was also recorded. 

 

 
Figure 1. Experimental apparatus and measured US wave reflections.   

Sets of US and temperature data were collected periodically. Each of the sets con-
sisted of 36 US waves and 36 temperature readings. For the US signal, 7000 sampling 
points were collected at 80 MHz sampling frequency. The time between each wave acqui-
sition was 0.55 s. Between each set of data collection, 200 s elapsed. As depicted in Figure 
1, the US transducers emitted sound waves which travelled along a PMMA buffer. At the 
interface between the buffer material and the wort, part of the sound wave is reflected 
back to the transducer (the 1st reflection). The rest of the sound wave continues through 
the wort, reflects at the opposite probe wall, and travels back to the transducer to be rec-
orded (the 2nd reflection). An example of the signal recorded by the transducer is presented 
in Figure 2a. Close-ups of each reflection are presented in Figure 2b and c. The first section 
of the waveform (sample points < 500) is reflected back to the transducer before contacting 
the buffer material and wort interface and therefore contains no useful information about 
the process. The 1st reflection is identified between sample point 900 and 1500, and the 2nd 
reflection between 6000 and 6500 in Figure 2a.  
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(a) 

  
(b) (c) 

Figure 2. Example ultrasonic waveform obtained: (a) The 1st reflection is located around sample point 1000, the 2nd reflection is lo-
cated around sample point 6000; (b) a close-up of the 1st reflection; (c) a close-up of the 2nd reflection.  

2.1. Volume of alcohol calculation  
The volume of alcohol (%) can be calculated from the specific gravity of the ferment-

ing media using Equation 1 [27].  

ABV = (SGin – SG) × 131.25 , (1)

Where ABV is the Alcohol By Volume (%), SGin is the starting specific gravity of the liquid 
before the yeast was added, and SG is the current specific gravity of the fermenting liquid.  

2.2. Ultrasonic wave features   

The following features were calculated from the obtained US waveform to use in the ML 
models. These are common features extracted from US waveforms [28]. The theory 
behind the selection of each feature is presented in their respective sections. Different 
combinations of these features were tested during ML model optimisation. The optimal 
feature combinations are presented in Table 1, Section 3.1. 
2.2.1. Energy  
 The waveform energy is a measure of the size of the waveform received by the 
transducer. For the 1st reflection, this is a measure of the proportion of the sound wave 
reflected from the interface between the buffer material and the wort. This is dependent 
on the change in acoustic impedance between these two materials [29]. Monitoring the 
waveform energy of the 2nd reflection offers additional information on the level of sound 
wave attenuation in the wort. This is caused by viscous losses in the media and scatter-
ing due to heterogeneities such as bubbles and yeast cells [29].  

E = ∑ 𝐴௜
ଶ௜ୀ௘௡ௗ

௜ୀ௦௧௔௥௧ , (2)

Where E is the waveform energy, Ai is the waveform amplitude at sample point i, and 
start and end denote the range of samples points for the reflection of interest [28].  

2.2.2. Peak-to-peak amplitude, maximum amplitude and minimum amplitude 
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The peak-to-peak amplitude, maximum amplitude and minimum amplitude pro-
vide additional information as to how the energy is distributed in the waveform. 
Changes in wort composition or temperature may affect how the sound wave travels 
and reflects from boundaries, presenting differences in the shape of the received wave-
form. These three features were calculated for both the 1st and 2nd reflections.  

PPA = max(Astart:end) – min(Astart:end), (3)

Amax = max(Astart:end), (4)

Amin = min(Astart:end), (5)

Where PPA is the peak-to-peak amplitude, Amax is the maximum amplitude, and Amin

is the minimum amplitude.  

2.2.5. Energy standard deviation   
A total of 36 US waves were collected during each acquisition block. Phenomena in 

the process, e.g. the presence of bubbles at different times during fermentation, may 
cause fluctuations in the energy of the received waveforms. Therefore, the standard de-
viation of the energy in a block of acquired waveforms was investigated as a feature. 
The standard deviation of the energy was calculated for both the 1st and 2nd reflections.  

STD = ට ଵ

ௐ
∑ (𝐸௜ − 𝐸ത)ଶ௜ୀௐ
௜ୀଵ  (6)

Where STD is the standard deviation, W is the number of waveforms collected in the 
block, i is an individual waveform, andE is the mean waveform energy in the block. 

2.2.6. Time of flight   
 The time of flight was calculated using a thresholding method, i.e. the waveform 
sample point where the second reflection amplitude rises above the signal noise. This is 
a measure of the speed of sound in the wort, which is dependent on its density and com-
pressibility [20].  
2.2.7. Feature gradients  
 A one-sided, backwards moving mean was applied to obtain lagged feature repre-
sentations over the previous 5 hours. For the ANNs, this allows the use of past process 
information. For the LSTMs, this allows for a way of storing past process information in 
some features, reducing the burden on the LSTM units to remember all feature trajecto-
ries.  

2.3. Machine learning    
 The ground truth data for the percentage volume of alcohol during fermentation was 
calculated from the portable density meter and hydrometer measurements. In total, 13 
fermentation batches were monitored. The final two batches were selected as the test set. 
The remaining 11 batches were used in a 5-fold cross-validation procedure to optimize 
the ML models’ hyperparameters. Long Short-Term Memory neural networks (LSTMs) 
are able to retain information from previous time-steps in a sequence. LSTMs are a type 
of recurrent neural network that reduces the likelihood of vanishing or exploding gradi-
ents by using gate units. This enables their use over much longer sequences [30]. To eval-
uate the utility of using LSTMs to predict alcohol concentration, they were compared with 
Artificial Neural Networks (ANNs) which are unable to store past process information. 
ANNs combine input features to produce new features which can approximate the rela-
tionship with the target variable given enough neurons in the hidden layer [31, 32]. 
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 For the LSTMs, zero-padding was applied to the US features to make every fermen-
tation batch sequence an equal length. A masking layer specified that the LSTM units ig-
nore this padding. Each sequence consisted of 4646 timesteps. All timesteps for each batch 
were used as a single sequence rather than being split into multiple sequences of shorter 
length. While long LSTM sequences (250-500 timesteps) are prone to produce vanishing 
gradients when predicting a single output, this is not a problem when predicting an out-
put at every timestep as used in this task [33].  

For the ANNs, a single hidden layer and the Adam optimization algorithm was used. 
Cross-validation determined the optimal batch size, number of neurons in the hidden 
layer, learning rate, drop-out rate, L2 regularisation penalty, and number of epochs for 
training. For the LSTMs, the Adam optimsation algorithm was used and the cross-valida-
tion procedure determined the optimal batch size, number of LSTM units, learning rate, 
drop-out rate, L2 regularisation penalty, gradient norm clipping value, and number of 
epochs. After cross-validation, the set of hyperparameters which resulted in the lowest 
average validation error were used to train a final model using all of the training set. The 
networks were trained using TensorFlow 2.3.0. The coefficient of determination (R2), mean 
squared error (MSE) and mean absolute error (MAE) were used as performance metrics 
to evaluate the ML models. Multiple metrics produce a comprehensive assessment of a 
model’s ability to fit to the test set and improve comparison between models.  

3. Results 
Figure 3 displays selected features from all the fermentation batches. It is shown that 

the energy of 1st reflection (Figure 3a), energy of the 2nd reflection (Figure 3b), and the time 
of flight of the sound wave through the wort (Figure 3c) start at different values for each 
batch. There are several explanations for this: Firstly, as presented in Figure 3d, the pro-
cess temperature is not the same at the start of each batch. As the speed of sound is highly 
dependent on temperature, the US properties begin from different magnitudes. Secondly, 
the US probe required manual removal and repositioning when disposing each batch after 
fermentation. This disturbed the spring maintaining the contact pressure of the US trans-
ducer, which affects the sound energy transferred through the materials from the sensor.  

The trajectories of the waveform features are also not smooth. Again, this is partly 
due to the oscillating process temperature. In addition, bubbles of CO2 produced during 
the fermentation were observed to attach to the surface of the probe material, which 
would cause scattering and reflection of the sound wave. During the fermentation, as fur-
ther CO2 bubbles were produced, the new bubbles would replace the previous ones on 
the surface. This is likely to cause fluctuations in the waveform energy transferring 
through the interface between the probe and the wort.  

The energy of the 1st reflection increases throughout the fermentation (Figure 3a). The 
energy of the 1st reflection is proportional to the change in acoustic impedance at the 
buffer-wort interface, with the acoustic impedance being a product of the material density 
and speed of sound [20]. As the density of the wort decreases during fermentation, the 
speed of sound also decreases as found in [17, 18, 34]. As the solid buffer material has a 
greater density and speed of sound than the starting wort, the proportion of sound wave 
reflected at the buffer-wort material increases throughout the fermentation. However, the 
time of flight (Figure 3c), the inverse of the speed of sound, shows no general trend. This 
contrasts with the results obtained in [17, 18, 34] which suggest it should increase. This is 
likely due to the changing process temperature masking an increasing time of flight. The 
results in [17, 18, 34] were all obtained at a constant temperature. The reduced time of 
flight for the last three batches (Batches 11, 12, and 13 in Figure 3c) is most likely due to a 
disturbance of the sensor positioning after Batch 10. The energy of the 2nd reflection fol-
lows the same trend as the 1st reflection (Figures 3b), indicating that it is dependent on the 
proportion of the soundwave travelling through the first buffer-wort interface opposed to 
attenuation in the wort.   
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(a) (b) 

  
(c) (d) 

Figure 3. US waveform features for all fermentation batches: (a) The energy of the 1st reflection; (b) the energy of the 2nd 
reflection; (c) the time of flight for the 2nd reflection; (d) the process temperature. 

3.1. Machine learning    
The ANN model with the highest accuracy only achieved an R2 of 0.398 (MAE=1.010 

% ABV, MSE=1.942 % ABV). As such, only results from the LSTM models are included in 
Table 1. This shows that the gradients of the features, as provided to the ANNs, is insuf-
ficient, and the enhanced memory of the feature history provided by the LSTM units is 
required for this process. The results of four final LSTM models are presented in Table 1, 
which either use the 1st reflection or both reflections, and either use the temperature as a 
feature or not. The optimal features, optimal hyperparameters, and performance metrics 
are included. The most accurate LSTM model (Model 1) used features from both the 1st 
and 2nd reflections and the process temperature. Interestingly, the second most accurate 
model (Model 4) only used features from the 1st reflection, excluding the process temper-
ature. The third most accurate model (Model 2) used features from the 1st and 2nd reflec-
tions without the process temperature. Finally, the least accurate model (Model 3) com-
bined features from the 1st reflection and the process temperature. Graphical representa-
tions of these predictions are shown in Figure 4a-h.  
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Table 1. Results for the LSTM models.  

Model 1 2 3 4 
Reflections 1st and 2nd 1st and 2nd 1st 1st 
Tempera-
ture 

Yes No Yes No 

Optimal 
features 

 1st reflection en-
ergy  

 2nd reflection en-
ergy  

 1st reflection en-
ergy standard de-
viation 

 2nd reflection en-
ergy standard de-
viation 

 Time of flight 
 Temperature 

 1st reflection en-
ergy  

 2nd reflection en-
ergy  

 1st reflection en-
ergy standard de-
viation 

 2nd reflection en-
ergy standard de-
viation 

 Time of flight 

 1st reflection en-
ergy  

 1st reflection en-
ergy standard de-
viation 

 Temperature 
 

 1st reflection en-
ergy  

 1st reflection en-
ergy standard de-
viation 

 1st reflection peak-
to-peak amplitude 

 1st reflection maxi-
mum amplitude 

 1st reflection mini-
mum amplitude 

Feature 
gradients 

Yes Yes Yes Yes 

Batch size 2 2 4 4 
Learning 
rate 

0.01 0.01 0.033 0.033 

LSTM 
units 

2 2 4 4 

L2 regular-
isation 

0.0001 0.0001 0.00001 0.0001 

Dropout 
rate 

0 0 0 0 

Epochs 100 100 100 100 
Clip norm 
value 

1 1 1 1 

R2 0.952 0.939 0.878 0.948 
MAE (% 
ABV) 

0.265 0.355 0.426 0.283 

MSE (% 
ABV) 

0.136 0.173 0.345 0.146 

 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 4. Predicted alcohol by volume percentage from the final LSTM models for the two test set batches (batches 12 and 
13): (a) Model 1, Batch 12; (b) Model 1, Batch 13; (c) Model 2, Batch 12; (d) Model 2, Batch 13; (e) Model 3, Batch 12; (f) 
Model 3, Batch 13; (g) Model 4, Batch 12; (h) Model 4, Batch 13.  

4. Discussion 
The most accurate model (Model 1) uses features from both the 1st and 2nd reflec-

tions and the process temperature. This shows the potential of US sensors to predict the 
endpoint of fermentation and, as demonstrated in Figure 4a and b, accurately predict the 
alcohol concentration throughout the fermentation process. However, industrial imple-
mentation of this model would require the use of an invasive probe in order to obtain the 
2nd reflection. In addition, an invasive temperature probe would be required to monitor 
the changing temperature of the fermentation media. Interestingly, the second most accu-
rate model (Model 4) only used features from the 1st reflection and excluded the process 
temperature. The use of only the 1st reflection indicates that accurate results could be ob-
tained using a non-invasive, no-transmission US sensor, similar to the techniques used in 
previous works by our group [23-26]. This is advantageous as it allows the alcohol volume 
to be accurately predicted by easily mounting a US sensor externally to an existing vessel. 
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Therefore, it can be easily implemented into existing industrial settings at low effort and 
cost. The use of Model 4 would also remove the requirement for an invasive process tem-
perature measurement. Furthermore, the performance metrics for Model 4 (R2=0.948, 
MAE=0.283, MSE=0.146) are similar to those of Model 1 (R2=0.952, MAE=0.265, 
MSE=0.136) indicating that no prediction accuracy would be lost through using a non-
invasive and no-transmission sensor approach.  

 In Model 3, the features from the 1st reflection combined with the process tempera-
ture produces a reduced accuracy. This is likely because the additional features required 
in Model 4 (the peak-to-peak amplitude, maximum amplitude, and minimum amplitude 
of the 1st reflection) contained more pertinent information about the temperature at the 
probe-wort interface than the non-local temperature sensor. The suggestion that the tem-
perature sensor measured the temperature of the bulk wort instead of the region through 
which the 1st reflection passes is supported by the results from Model 2. When the tem-
perature was removed as a feature, Model 2 produced a reduced accuracy compared with 
Model 1. This indicates that for accurate prediction using the 2nd reflection, the bulk wort 
temperature measurement is required as the sound wave travels through this region. The 
reduced accuracy obtained when combining the temperature data with the 1st reflection 
for Model 3 is most likely caused by the temperature at the probe-wort interface not 
closely following the trend of the bulk wort temperature. Therefore, using the tempera-
ture measurement as a feature increases the model complexity with little benefit, meaning 
it is more difficult for the network to find an optimal solution. This further supports the 
aforementioned point that accurate, invasive temperature measurement would not be re-
quired with a non-invasive, no-transmission US sensing technique. 

Figure 4 displays the predicted Alcohol By Volume (ABV) percentage from the 
trained LSTM models for the two batches used for the test set (batches 12 and 13). Model 
1 (Figure 4a and b) accurately determines the fermentation endpoint. However, the final 
ABV prediction is not as accurate as Model 4, indicating that it may not be sensitive 
enough to determine differences in final ABV between batches. Whilst Model 3 appears 
to have no utility, Models 1, 2, and 4 are all shown to accurately follow the ABV trajectory. 
Owed to the real-time data acquisition of US sensors, these models suggest that the ob-
tained data could be used to train additional anomaly detection models to provide early 
warning of undesired process trajectories within a batch.  

Several locations in the prediction require improvement; for example, the detection 
of ABV plateau for Model 2 (Figures 4c and d around the 2nd day), the settling at a final 
ABV for Model 3 (Figures 4e and f), and the detection of the initial ABV rise for Model 4 
(Figures 4g and h around the first day). This is likely due to the varying temperature 
throughout the fermentation having a large effect on the US properties of the wort com-
pared with the changing density. There are also locations of decreasing ABV prediction 
(Figure 4d during the first day) or sudden increases in ABV prediction (Figure 4h at the 
end of the fourth day). This is likely due to the temperature variations being different for 
each batch and the particular temperature variations during the test set causing these ef-
fects. These problems would likely be reduced through obtaining more training data. 

In this work, ML models were trained to predict the ABV throughout the fermenta-
tion. However, in industrial settings this may not be the most appropriate output value 
with which to fit a model. For example, ML models could be trained to predict the final 
ABV of each batch, the time remaining until the ABV plateaus, classify the end of fermen-
tation, or provide early detection of anomalous batches. In each of these cases, the models 
would be trained for a more specific purpose, as such the models may perform better than 
indicated by Figure 4. This work is therefore demonstrative of the efficacy of real-time 
fermentation monitoring using US sensors and ML, and increased accuracy may be 
achieved through predictions of more specific outputs. 
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4.1. Future research directions    
The largest barrier to industrial implementation of sensors and ML combined tech-

nologies is the burden of obtaining labelled data. Labelled data is used as the targets for 
training supervised ML models. To obtain the ground truth to label the data requires an-
other analysis method. In this work, the hydrometer readings were used due to the sample 
density measurements producing insufficient data points and disturbing the fermenta-
tion. In an industrial setting, the hydrometer may only be able to be used for a small num-
ber of batches for ML model development. In this case, semi-supervised learning may be 
required to train high accuracy models. Semi-supervised learning uses both labelled and 
unlabelled samples to train a model [35 - 37]. Firstly, unsupervised learning techniques, 
such as principal component analysis or autoencoders, can be used on the total dataset to 
learn relationships between features across the labelled and unlabelled samples. Then tra-
ditional supervised learning can be used on the new features using just the labelled sam-
ples. Secondly, a self-training (or pseudo-labelling) approach may be used to predict the 
labels of the unlabelled data from the trained model. These pseudo-labels may then be 
added to the labelled data set and the procedure repeated to improve the label predictions 
or to train a final model.  

Alternatively, conventional sample extraction and density measurement may be 
used to obtain the labelled data. Either a curve may be fitted to these sparse density meas-
urements to produce interpolated data points, or a similar semi-supervised learning pro-
cedure can be implemented. Active learning may also be used to identify data points for 
labelling that may be the most useful to the model [38, 39]. These datapoints may be dur-
ing a sparsely sampled time in the fermentation, or be in a particular temperature and 
composition range. Operators could then analyse these samples to provide the most ben-
efit to the ML model at the lowest investment in effort.   

5. Conclusions 
The transition to Industry 4.0 promises increased manufacturing efficiency, sustain-

ability and productivity. By implementing digital technologies such as the Internet of 
Things, Cloud Computing and ML, not only can entire processes be integrated, but supply 
chains as well. Sensors are a key technology in this revolution by providing the real-time 
data to inform automatic, intelligent decision-making. Currently, beer fermentation is 
monitored through periodic manual sampling and off-line wort density measurements. 
This work has presented an in-line, low-cost US sensing technique combined with ML 
which would remove the need of operator sampling. This work has shown that US sensor 
data combined with LSTM models are able to accurately predict the volume of alcohol 
during beer fermentation. The highest accuracy model (R2=0.952) used a transmission-
based ultrasonic sensing technique along with the process temperature. Importantly, the 
second most accurate model (R2=0.948) only used a reflection-based technique without 
measurement of the temperature. This demonstrates the potential for a non-invasive, no-
transmission US technique, which doesn’t require invasive measurement of the process 
temperature. This sensing technique could be easily and inexpensively retrofitted onto 
existing fermentation vessels.  
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