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Abstract: Motivated by the work of Saridakis (Phys. Rev. D 102, 123525 (2020)), the present study

reports the cosmological consequences of Barrow holographic dark energy (HDE) and its ther-

modynamics. Literatures demonstrate that Dark Energy (DE) may result from electroweak sym-

metry breaking that triggers a phase transition from early inflation to late time acceleration. In

the present study, we incorporated viscosity in the Barrow HDE. A reconstruction scheme is pre-

sented for the parameters associated with Barrow holographic dark energy under the purview

of viscous cosmology. Equation of state (EoS) parameter is reconstructed in this scenario and

quintessence behaviour is observed. Considering Barrow HDE as a specific case of Nojiri-Odintsov

(NO) HDE, we have observed quintom behaviour of the EoS parameter and for some values of

n the EoS has been observed to be very close to −1 for the current universe. The generalised

second law of thermodynamics has come out to be valid in all the scenarios under consideration.

Physical viability of considering Barrow HDE as a specific case of NO HDE is demonstrated in

this study.

Keywords: Barrow holographic dark energy; bulk viscosity; thermodynamics.

0. Introduction

Gerard ’t Hooft proposed the famous Holographic Principle (HP) inspired by black-
hole thermodynamics [1,2]. HP states that all the information contained in a volume of
space can be represented as a hologram, which corresponds to a theory located on the
boundary of that space [3]. It is widely believed that HP is a fundamental principle of
quantam gravity.
In the late 90’s, Reiss et al. [4] and Perlmutter et al. [5] independently reported that
the current universe is passing through a phase of accelerated expansion. This started a
new era in Modern Cosmology. The authors of [4,5] proved this by observational data.
This was further supported by other observational studies [6–10]. Characterised by neg-
ative pressure to some exotic matter is thought to be responsible for this acceleration.
The exotic matter is dubbed as "Dark Energy" (DE) [11,12]. It is described by an equation
of state (EoS) parameter defined as w =

p
ρ , where p is the pressure and ρ is the density

due to DE. One can easily verify from Friedmann’s equations that w <
−1
3 is a neces-

sary condition for the accelerated expansion of the universe. The simplest candidate of
DE is cosmological constant (Λ), characterised by EoS parameter w = −1 [14]. Various
DE models have been reviewed in the literatures [11–13,33–38,46–51]. Note that around
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68.3% of the total energy density of the present observable universe is contributed by
DE. Remaining density are due to dark matter (DM), baryonic matter and radiation.
The contributions of baryonic matter and radiation are negligible with respect to the
total density of the universe. Dimopoulos and Markkanen [59] have demonstrated that
it is possible to obtain DE from the interplay of Higgs boson and inflation and it has fur-
ther been demonstrated that a key element for the same is the electroweak symmetry
breaking that can lead to a transition to inflation to late time acceleration.
One of the broad type of DE candidate is Holographic DE (HDE), which is discussed
in the references [15–18,28–30]. The principle of HDE is HP. Its density is given by
ρΛ = 3c2Mp

2L−2 [16,31,32], where c2 represents a dimensionless constant, Mp is the
reduced Planck mass and L stands for infrared (IR) cut-off. Till date there are different
modifications in IR cut-off being made. In this paper, we will study the Barrow Holo-
graphic DE.
In the pandemic Covid19, Barrow was very much inspired by its illustrations and de-
duced that intricate, fractal features on the black-hole structured may be introduced by
the quantam - gravitational effects [19]. This complex structure leads to infinite / finite
area but with finite volume. Therefore, the entropy expression to a deformed black-hole
is [19]

SB =

(

A

A0

)∆+1

, (1)

where A is the standard horizon area and A0 is the Planck area. The quantam gravita-
tional deformation is quantified by ∆. ∆ = 0, corresponds to the standard Bekenstein -
Hawking entropy. ∆ = 1, corresponds to the most intricate and fractal structure. Note
that the usual " quantam - corrected" entropy with logarithmic corrections is very much
different than the "above quantam - gravitationally corrected entropy ". No doubt, the
involved foundation and physical principles are completely different but resemble to
Tsallis non- extensive entropy.
As it is known, Viscosity refers to the resistance to flow. By considering many compo-
nents in the cosmology, there is a contribution of bulk viscosity in the thermodynamic
pressure [25], which also plays a very important and crucial role in accelerating the
universe. The term bulk viscosity arises because of different cooling rates of the compo-
nents. We can affirm that the bulk viscous pressure in cosmic media emerges as a result
of coupling among the different component of the cosmic substratum [26,27,39–43].
Gordon M. Barrow quoted "Thermodynamics should be built on energy not on heat and
work" [20–24]. The standard HDE is given by ρDEL4 ≤ S, where L = horizon length
and S ∝ A ∝ L2. Therefore, by using the Barrow entropy Eq.( 1) lead to

ρDE = CL−2(1−∆), (2)

where C is the parameter with dimension [L]−2(∆+1). When ∆ = 0, the expression (2)
will be standard HDE i.e., ρDE = 3c2Mp

2L−2 ( Mp is the Planck mass and L is IR cut-
off) where C = 3c2Mp

2 and c2 is the model parameter. When the deformation effects
quantified by ∆, Barrow HDE will deviate from standard HDE and hence leading to
different cosmological consequences. It is very interesting to note that in the limiting
case of ∆ → 1, the above expression becomes the constant i.e., ρDE = constant.
Nojiri and Odintsov [52,53] developed cosmological models, where the DE and DM
were treated as imperfect fluids. Viscous fluids represent one particular case of what
was presented in [52,53]. In the paper, we will incorporate the viscosity term in the
various parameters of Barrow HDE. The paper is organised as follows: In Section 1,
we will reconstruct the density, thermodynamic pressure of Barrow HDE. We will also
reconstruct effective pressure, effective EoS of Viscous Barrow HDE. We will also cal-
culate viscous pressure of Barrow HDE. We will plot density versus redshift z versus
∆; effective EoS versus redshift z and bulk viscous pressure of viscous Barrow HDE
versus redshift z versus C1. We will study accordingly. In Section 2, we will study the
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generalised second law of thermodynamics of viscous Barrow HDE using Barrow en-
tropy. In Section 3, we will reconstruct the density, EoS parameter of Barrow HDE as
a Specific NO HDE. We will plot EoS versus redshift z in this case and will study the
outcomes. In Subsection 3.1, we will study the validity of generalised second law of
thermodynamics for Barrow HDE with NO cut-off. Here, we will plot the total entropy
of the Barrow HDE with NO cut-off against the cosmic time t. We give our conclusions
in Concluding Remarks.

1. Viscous Barrow Holographic Dark Energy

In this section we study the effect of viscosity in Barrow HDE. We will reconstruct
the thermodynamic pressure of Barrow HDE with viscosity. Let us assume Rh be the
radius of event horizon, then it is given by

Ṙh = HRh − 1, (3)

or,

Rh ≡ a
∫

∞

t

dt

a
= a

∫

∞

a

da

Ha2 . (4)

Let us assume infrared (IR) cut-off as the event horizon. Therefore replacing L in Eq.(
2)with Rh, we get the density of Barrow HDE ρDE as

ρDE = CRh
2(∆−1). (5)

where Rh = radius of event horizon and C is constant. The deformation effect is quan-
tified by ∆. As the DM is in the form of dust particle, so we can consider it as pres-
sureless DM i.e., pm = 0. The two Friedmann equations are 3H2 = ρDE + ρm and
6 ä

a = −(ρDE + ρm + 3(pDE + Π)), where Π = Viscous Pressure = −3Hξ and ξ =
ξo + ξ1H + ξ2(Ḣ + H2).
Conservation equation for pressureless DM is ρ̇m + 3Hρm = 0. By solving the expres-
sion, we get

ρm = ρm0a−3. (6)

Now we are introducing density parameters Ωm and ΩDE and are given by

Ωm ≡ 1
3H2 ρm, (7)

and

ΩDE ≡ 1
3H2 ρDE. (8)

For ∆ = 1, the scenario coincides with ΛCDM cosmology with ρDE = constant = Λ.
Using density parameters (7) and (8) in the expressions (4) and (5), we obtain

∫

∞

x

dx

Ha
=

1
a

(

C

3H2ΩDE

) 1
2(1−∆)

. (9)

Using ρm from Eq. (6) in Eq.(7), we obtain

Ωm = Ωm0
H0

2

a3H2 . (10)

where Ωm0H0
2 = ρm0

3 . Now using the Friedmann Equation Ωm + ΩDE = 1 and also
using Eq.(8) and Eq.(10), we get

1
aH

=

√

a(1 − ΩDE)

H0
√

Ωm0
. (11)
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Inserting Eq.(11) into Eq.(9) it results

∫

∞

x

√

a(1 − ΩDE)

H0
√

Ωm0
dx =

1
a

(

C

3H2ΩDE

) 1
2(1−∆)

. (12)

Differentiating Eq.(12) with respect to x = lna one gets

Ω
′

DE
ΩDE(1−ΩDE)

= 2∆ + 1 + Q(1 − ΩDE)
∆

2(∆−1) (ΩDE)
1

2(1−∆) e
3∆

2(∆−1) x
. (13)

where Q ≡ 2(1 − ∆)(C
3 )

1
2(∆−1) (H0

√
Ωm0)

∆

1−∆ . Eq.(13) is the evolution of Barrow HDE
in a flat universe for dust matter. For ∆ = 0, it coincides with the usual HDE i.e.,

Ω
′
DE]∆=0 = ΩDE(1 − ΩDE)(1 + 2

√

3ΩDE
C ). Now from Eq.(11), we have

H =
H0

√
Ωm0

a
√

a(1 − ΩDE)
. (14)

From Eq.(3) taking H from Eq.(14), we get Rh as

Rh =
a
√

−a(ΩDE − 1)

H0
√

Ωm0
+ e

H0
√

Ωm0t

a
√

−a(ΩDE−1) C1. (15)

Now using this Rh in Eq.(5), we obtain reconstructed density of Barrow HDE ρDE,rec as

ρDE,rec = C

(

C1e

H0
√

Ωm0t

a
√

a−aΩDE +
a
√

a − aΩDE

H0
√

Ωm0

)2(−1+∆)

. (16)

As we are having now ρDE,rec (Eq.(16)), H (Eq.(14)) and let us take pe f f = pDE + Π and
using these in the conservation equation ρ̇DE,rec + 3H(ρDE,rec + pe f f ) = 0, we obtain

pe f f =

1
3H0

√
Ωm0

a
√

a(1 − ΩDE)















−
3CH0






C1e

H0
√

Ωm0t

a
√

a−aΩDE +
a
√

a−aΩDE
H0

√
Ωm0







2(−1+∆)

√
Ωm0

a
√

a(1−ΩDE)
−

2CC1e

H0
√

Ωm0t

a
√

a−aΩDE H0






C1e

H0
√

Ωm0t

a
√

a−aΩDE +
a
√

a−aΩDE
H0

√
Ωm0







−3+2∆

√
Ωm0(−1+∆)

a
√

a−aΩDE















.

(17)

Therefore, thermodynamic pressure pDE = pe f f − Π. Hence,

pDE =
(

1
3a
√

a−aΩDE

)



−aCH0
2√a − aΩDE

(

C1e

H0
√

Ωm0t

a
√

a−aΩDE + a
√

a−aΩDE

H0
√

Ωm0

)2∆

Ωm0

(

3a
√

a − aΩDE + C1e

H0
√

Ωm0t

a
√

a−aΩDE H0
√

Ωm0(1 + 2∆)

)

(

a
√

a − aΩDE + C1e

H0
√

Ωm0t

a
√

a−aΩDE H0
√

Ωm0

)−3

+ 9H0
√

Ωm0ξ



.

(18)
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which is the thermodynamic pressure of DE involving the viscous term ξ. As, viscous
term is involved here, so we can take pDE = effective pressure. Hence, effective pres-
sure pe f f is Eq.(18). As we know that effective Eos, we f f =

pe f f

ρDE,rec
. There, using pe f f

from Eq.(18) and ρDE,rec from Eq.(16), we get effective EoS as

we f f =






C1e

H0
√

Ωm0t

a
√

a−aΩDE +
a
√

a−aΩDE
H0

√
Ωm0







2−2∆

3aC
√

a−aΩDE



−aCH0
2√a − aΩDE

(

C1e

H0
√

Ωm0t

a
√

a−aΩDE + a
√

a−aΩDE

H0
√

Ωm0

)2∆

Ωm0

(

3a
√

a − aΩDE + C1e

H0
√

Ωm0t

a
√

a−aΩDE H0
√

Ωm0(1 + 2∆)

)

(

a
√

a − aΩDE + C1e

H0
√

Ωm0t

a
√

a−aΩDE H0
√

Ωm0

)−3

+ 9H0
√

Ωm0ξ



 .

(19)
Now we will insert ∆ in Π, to make it a viscous pressure in Barrow HDE. Now using
ρDE,rec from Eq.(16), we f f from Eq.(19) in the conservation equation ρ̇DE,rec+ 3HρDE,rec(1+
we f f ) = 0, we get H. Let us name it as Hrec and is given by

Hrec =

−



2CC1e

H0
√

Ωm0t

a
√

a−aΩDE H0
3

(

C1e

H0
√

Ωm0t

a
√

a−aΩDE + a
√

a−aΩDE
H0

√
Ωm0

)2∆

Ωm0
3/2(−1 + ∆)





(

−9a4(−1 + ΩDE)
√

a − aΩDEξ − 27a3C1e

H0
√

Ωm0t

a
√

a−aΩDE H0(−1 + ΩDE)
√

Ωm0ξ+

9C1
3e

3H0
√

Ωm0t

a
√

a−aΩDE H0
3
Ωm0

3/2ξ+

aC1e

H0
√

Ωm0t

a
√

a−aΩDE H0
2√a − aΩDEΩm0



−2C

(

C1e

H0
√

Ωm0t

a
√

a−aΩDE + a
√

a−aΩDE

H0
√

Ωm0

)2∆

(−1 + ∆) + 27C1e

H0
√

Ωm0t

a
√

a−aΩDE ξ









−1

.

(20)

Let us assume power-law form of scale factor as a(t) = a(t − t0)
n. As, we know that

H = ȧ
a . Hence , by using the power-law form of scale factor, we get H. Let us denote

this H by Hrecc and is given by

Hrecc =
n

t − t0
. (21)

Now, by using Hrecc in place of H in ξ i.e., ξ = ξ0 + ξ1Hrecc + ξ2(Ḣrecc + H2
recc). The,

using this ξ and H as Hrec from Eq.(20) in Π = −3Hξ, we obtain the viscous pressure
in Barrow HDE as

Π =
(

6CC1el H0
3
Ω

3/2
m0

(

C1el + j
)2∆

(−1 + ∆)(k + (−1 + n)nξ2)

)

(

9C1
3e3l H0

3
Ω

3/2
m0 (k + (−1 + n)nξ2)− 27a0

3C1el H0(−1 + ΩDE)
√

Ωm0(t − t0)
3n

(k + (−1 + n)nξ2) + 9a0
3(t − t0)

3n(−a0(−1 + ΩDE)(t − t0)
n)3/2(k + (−1 + n)nξ2)+

a0C1e2l H0
2
Ωm0(t − t0)

n
√

−a0(−1 + ΩDE)(t − t0)n
(

−2Ce−l
(

C1el + j
)2∆

(t − t0)
2(−1 + ∆) + 27C1(k + (−1 + n)nξ2)

))−1

,

(22)

where, l = − H0(−1+ΩDE)
√

Ωm0t

(−a0(−1+ΩDE)(t−t0)n)3/2 ,

k = (t − t0)(tξ0 − t0ξ0 + nξ1),
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Figure 1. Evolution of effective EoS (Eq.(19)) of viscous Barrow Holographic Dark Energy against
redshift z. We consider a0 = 0.001, C = 0.09, C1 = 0.00015, H0 = 0.999, Ωm0 = 0.002, t0 = 0.20,
ξ0 = 0.000005, ξ1 = 0.00001, ξ2 = 0.92, ∆ = 0.04 and the red, green and blue lines correspond to
n = 0.9, 0.91, 0.92 respectively.

j =
a0(t−t0)

n
√

−a0(−1+ΩDE)(t−t0)n

H0
√

Ωm0
. Now we will reconstruct a thermodynamic DE pres-

sure i.e., pDE,rec to make it thermodynamic pressure of viscous Barrow HDE. So, in
the conservation equation ρ̇DE,rec + 3H(ρDE,rec + pDE,rec + Π) = 0, using ρDE,rec from
Eq.(16), Π from Eq.(22), H as Hrec from Eq.(20), we obtain pDE,rec , which is a ther-
modynamic pressure of viscous Barrow HDE. Now using Taylor series expansion in
the term

√
1 − ΩDE of Eq.(11) and ignoring higher order derivatives, we obtain 1

aH =√
a

H0
√

Ωm0
(1 − 1

2 ΩDE). From the above equation, we get ΩDE as

ΩDE = 2 − 2H0
√

Ωm0

ȧ
√

a
. (23)

Now, using ΩDE from Eq.(23) in Eq.(19), we get we f f and plotted the evolution of effec-
tive EoS (19) of viscous Barrow HDE against the redshift z in Fig.1.

From the figure we observe that behaviour of the effective EoS parameter we f f (19)
is quintessence. Now we will study the behaviour of ρDE,rec (Eq.(16)) when ∆ → −1.
We have plotted the reconstructed density of Barrow HDE against redshift z in Fig.2
for a range of values of ∆. From Fig.2, we obtain that as ∆ approaches to 1, the density
of Barrow HDE is also increasing. This indicates that at that point we can study the
evolution of the universe at its large due to Dark Energy. Using the expression of ΩDE

from Eq.(23) in the expression of bulk viscous pressure of Barrow HDE Π i.e., Eq.(22),
we have plotted Π versus redshift z versus C1 in Fig.3. We have found that with the
passage of time, the effect of bulk viscous pressure is decreasing.

2. Generalised Second Law of Thermodynamics of Viscous Barrow HDE

In this section, we will study the generalised second law of thermodynamics using
barrow entropy [24]. We consider the universe horizon to be the boundary of thermo-
dynamical system . We can take it as an apparent horizon as it the most appropriate
one. There are many choices in the literature and we chose here the apparent horizon
[20–22]. Apparent horizon is given by

r̃A =
1

√

H2 + k
a2

. (24)
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Figure 2. Evolution of density of Barrow HDE (Eq.(16)) against redshift z and against ∆. We
consider a0 = 0.001, C = 0.09, C1 = 0.00015, H0 = 0.999, Ωm0 = 0.002, t0 = 0.20, n = 0.9
.

Figure 3. Evolution of bulk viscous pressure of Barrow HDE (Eq.(22)) against redshift z and
against C1. We consider a0 = 0.001, C2 = 0.09, ∆ = 0.5, H0 = 0.999, Ωm0 = 0.002, t0 = 0.20,
n = 0.9, ξ0 = 0.02, ξ1 = 0.005, ξ2 = 0.03
.
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where k quantifies the spatial curvature and hence k = 0 as we considered the universe
to be flat. Therefore Eq.(24) becomes

r̃A =
1
H

. (25)

From the first Friedmann equation 3H2 = ρm + ρDE and Eq.(25), we get

1
r̃2

A

=
1
3
(ρm + ρDE). (26)

Using ρm = ρm0a−3, a = a0(t − t0)
n and ρDE,rec from Eq.(16) in place of ρDE in Eq.(26),

we get apparent horizon r̃A.
Now we will check whether the total entropy of the system i.e., sum of the entropy
enclosed by apparent horizon plus entropy of the apparent horizon of the system is
non-decreasing function of time or not. Apparent horizon r̃A is dependent on time . So,
changes in apparent horizon dr̃A in time interval dt will contribute a change in volume
dV. Hence, the energy and entropy of the system will change by dE and dS respectively.
The first law of Thermodynamics is TdS = dE+ PdV. Therefore the dark enery entropy
and dark matter entropy will be [23]:

dSDE =
1
T
(PDEdV + dEDE), (27)

dSm =
1
T
(PmdV + dEm). (28)

where dSDE = DE entropy, dSm = DM entropy, PDE = DE pressure, Pm = DM pressure.

V is the universe volume bounded by apparent horizon and is given by V =
4πr̃3

A
3 .

Therefore, dV = 4π ˜rA
2dr̃A. We assume the system to be in equilibrium, so we can

consider the temperature of the universe fluids to be same. Dividing Eqns. (27), (28) by
t, we get

ṠDE =
1
T
(PDE4πr̃2

A
˙̃rA + ˙EDE), (29)

Ṡm =
1
T
(Pm4π ˜rA

2 ˙̃rA + Ėm). (30)

To consider the relationship between thermodynamical quantities ĖDE and Ėm with
cosmological quantities ρDE and ρm, we use

EDE =
4π

3
r̃3

AρDE, (31)

Em =
4π

3
r̃3

Aρm. (32)

Now we have r̃A, so we can find ˙̃rA, EDE from Eq.(31), Em from Eq.(32) and hence
ĖDE and Ėm. We consider T ≈ horizon temperature (Th) =

1
2πr̃A

. Therefore, we can

calculate ṠDE and Ṡm from Eqns. (29) and (30), respectively. Now we will calculate
horizon entropy Ṡh. Applying entropy expression to a deformed black hole Eq.(1) with

standard horizon area A = 4πr̃2
A, we get Sh = γr̃

2(∆+1)
A , where γ ≡

(

4π
A0

)1+∆

. Therefore

horizon entropy is given by

Ṡh = γ2(1+ ∆)r̃2∆+1
A

˙̃rA. (33)

Therefore, Ṡtotal = ṠDE + Ṡm + Ṡh. After calculating Ṡtotal, we plotted it in Fig.4. From
the figure we have seen that Ṡtotal is positive and is non-decreasing. Hence, it satisfies
the second law of thermodynamics. This implies the validity of the generalised second
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Figure 4. Plot of Ṡtotal of viscous Barrow HDE against the cosmic time t. We consider a0 = 0.001,
C = 0.09, C1 = 0.00015, H0 = 0.999, Ωm0 = 0.002, t0 = 0.20, ξ0 = 0.000005, ξ1 = 0.00001,
ξ2 = 0.92, ∆ = 0.04, ρm0 = 0.32, A0 = 0.00905. The red, green and blue lines correspond to
n = 0.9, 0.8 and 0.7 respectively.

law of thermodynamics in the case of viscous Barrow HDE. It is further observed that
with evolution of the universe Ṡtotal is increasing. This indicates that the validity of the
generalised second law of thermodynamics is expected to occur with the evolution of
the universe in case of viscous Barrow HDE.

3. Barrow HDE as a Specific NO HDE

Nojiri and Odintsov [54] demonstrated a unifying approach to the early and late
time universe through a phantom cosmology. They considered a gravity-scalar system
containing usual potential and scalar coupling function within the kinetic term. Their
study [54] resulted in the possibility of phantom - non-phantom transition in such a
manner that the universe could have the phantom EoS in the early as well as in the late
time. Contrary to the study of [54], our work, a specific case of NO HDE, has led to a
quintessence behaviour with no crossing of phantom boundary, see Fig.1. In this con-
nection, we further note that the generalised HDE with NO cut-off as proposed in [54]
suggested unified cosmological scenario for tachyon phantoms and for time-dependent
phantomic EoS. We further take into account the study of Nojiri and Odintsov [55],
where a generalised HDE was proposed with infrared cut-off identified with the com-
bination of the FRW universe parameters. Their study took into account the Hubble
rate H(t) = f0|ts − t|α. However in our study, we have taken into consideration a Hub-
ble rate H = n

t−t0
, for which we could get a universe where generalised second law of

thermodynamics has come out to be valid. Hence, we can state that the Barrow HDE,
a specific case of more general NO HDE can lead to a universe where generalised sec-
ond law of thermodynamics is valid. Nojiri et. al. [56] established that at late times,
the effective fluid can act as the driving force behind the accelerated expansion in ab-
sence of cosmological constant. Consistent with the findings of [56] in our work on a
specific form of NO HDE the generalised second law came out to be valid without any
cosmological constant. In this context let us mention the work of Nojiri et. al. [57]
that applied the HP at early times to realise the bounce scenario. The current study
with a specific NO HDE cut-off can further be extanded to check the realisation of holo-
graphic bounce and to study the mechanism of holographic preheating [57] under this
framework. Lastly, let us mention the study of Nojiri et. al. [58] that confronted the
cosmological scenario arising from the application of non extensive thermodynamics
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with varying exponent. Their study could provide a description of both inflation and
late time acceleration with the same choices of parameters. We further re-iterate that
the current Barrow HDE can be examined for its realisation for early inflation and late
time acceleration as a specific case of NO HDE.
In this section, we consider Barrow HDE as a particular case of NO HDE. The NO HDE
was proposed in the work of Nojiri and Odintsov [54]. This was further studied in [11].
The DE density for NO HDE is defined as

ρNO =
3c2

L2 , (34)

with
c

L
=

1
Rh

(α0 + α1Rh + α2Rh
2), (35)

where Rh is the future event horizon discussed in the equations (3) and (4). For the
choice of power law form of scale factor a(t) = a0(t − t0)

n, we have IR cut off L as

L =
c

(n−1)α0
t+C2(n−1)(t−t0)n−t0

+ α1 +
(t−t0)α2

n−1 + C2(t − t0)nα2

. (36)

In equations (34), (35) and (36), c, α0, α1 and α2 are numerical constants and C2 is the
constant of integration. Equation (36) represents the NO cut-off as a function of cosmic
time t. Now, we consider this NO cut-off as the cut-off for Barrow HDE and from
this consideration, we get Barrow HDE generalised by NO HDE and hence, we get the
density for Barrow HDE generalised through NO cut-off ρBarrowHDE is

ρBarrowHDE = C





c
(n−1)α0

t+C2(n−1)(t−t0)n−t0
+ α1 +

(t−t0)α2
n−1 + C2(t − t0)nα2





2(−1+∆)

. (37)

We will find the thermodynamic pressure for Barrow HDE generalised through NO
cut-off i.e., pBarrowHDE from the conservation equation ρ̇BarrowHDE + 3H(ρBarrowHDE +
pBarrowHDE) = 0, we get pBarrowHDE. Hence, EoS parameter for Barrow HDE gener-
alised through NO cut-off i.e., wBarrowHDE can be calculated by using ρBarrowHDE from
Eq.(37) and pBarrowHDE on equation wBarrowHDE = pBarrowHDE

ρBarrowHDE
. In Fig.5, we have plotted

the EoS parameter for Barrow HDE as a specific case of NO HDE. In this figure, the evo-
lution of the reconstructed EoS parameter is demonstrated for ∆ = 0.4 and the range of
values of 1.5 ≤ n ≤ 2. It is apparent from this figure that for smaller values of n, the
transition from quintessence to phantom is happening at an earlier stage of the universe.
However, for n ≈ 2, the transition is happening at a later stage. Therefore, in general
we can say that the EoS parameter for Barrow HDE reconstructed through NO HDE is
characterise by quintom behaviour. Moreover, for n ≈ 1.56, we have wBarrowHDE ≈ −1
for z = 0 and hence, it is consistent with observation. Hence, we can conclude that as
the IR cut-off for Barrow HDE is reconstructed through NO HDE the transition from
quintessence to phantom is available. It further indicates that under this reconstruction
scheme the universe may end with a Big-Rip in the future.

3.1. Generalised Second Law of Thermodynamics for Barrow HDE with NO Cut-off

In this subsection, we have studied the generalised second law of thermodynamics
for Barrow HDE with NO cut-off using Barrow entropy likewise in Section 2. We have
proceeded similarly as Section 2 just by taking the scale factor as a(t) = a0(t − t0)

n,
with n > 0. We have calculated the total entropy of the Barrow HDE with NO cut-off
i.e., Ṡtotal,BarrowHDE and plotted this in Fig.6 against the cosmic time t. The Fig.6 indi-
cates that Ṡtotal,BarrowHDE is positive and non-decreasing. Therefore, we have observed
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Figure 5. Evolution of EoS parameter for Barrow HDE generalised through NO cut-off i.e.,
wBarrowHDE against the redshift z and against n. We consider a0 = 0.05, c = 0.06, C2 = 0.09,
C = 0.9, t0 = 0.02, α0 = 0.41, α1 = 0.135, α2 = 0.003, ∆ = 0.4.

the validity of the generalised second law of thermodynamics when Barrow HDE is
considered as a specific case of NO HDE.

4. Concluding remarks

Motivated by the work of Saridakis [19], the present study is attempted to probe
the cosmological consequences of Barrow HDE and its thermodynamics. In the first
phase of the study, we have studied the effect of bulk viscosity in presence of Bar-
row HDE. We have reconstructed the density of Barrow HDE as ρDE,rec in Eq.(16). We
also found effective pressure pe f f of viscous Barrow HDE as in Eq.(18). After finding
pe f f (Eq.(18)), we have derived effective EoS of viscous Barrow HDE we f f as in Eq.(
19). Thereafter, we calculated viscous pressure Π in Eq.(22) and we also reconstructed
thermodynamic pressure pDE,rec of viscous Barrow HDE. In Fig.1, we have plotted we f f

(Eq.(19)) versus redshift z. From the Fig.1, we observed that the behaviour of we f f (Eq.(
19)) is quintessence. Next, we studied the behaviour of ρDE,rec (Eq.(16)) when ∆ → 1.
We have plotted ρDE,rec (Eq.(16)) against redshift z for a range of values of ∆ ∈ [0, 1]
in Fig.2. It is apparent from this figure that there is an increasing tendency of ρDE,rec

(Eq.(16)) as ∆ → 1, which indicates that we can study the evolution of the universe at
its large due to DE. Also, we have studied the behaviour of the bulk viscous pressure
Π (Eq.(22)) under the purview of Barrow HDE with the evolution of the universe for a
range of values of C1 in Fig.3. The study demonstrated above shows the decaying effect
of bulk viscous pressure with the evolution of the universe. This is in contrast with
the finding of [44], where the effect of bulk viscosity was found to have an increasing
pattern under the purview of holographic Ricci DE.
In Section 2, we have demonstrated the generalised second law of thermodynamics un-
der the purview of the bulk-viscosity of the Barrow HDE. Here, for the study we have
taken apparent horizon as the enveloping horizon of the universe. We have calculated
the total entropy Ṡtotal of the system. The Ṡtotal has been plotted in Fig.4. From Fig.
4 it results that with the evolution of the universe Ṡtotal of the viscous Barrow HDE is
increasing and is staying at positive level. Therefore, we conclude that the generalised
second law of thermodynamics is obeyed by this model [45]. This finding is consistent
with the study of [45], where the validity of generalised second law of thermodynam-
ics was examined in presence of viscous DE and it was observed that the generalised
second law of thermodynamics is fulfilled in presence of bulk viscosity. However, the
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Figure 6. Plot of Ṡtotal,BarrowHDE of Barrow HDE with NO cut-off against the cosmic time t. We
consider a0 = 0.001, c = 0.06, α0 = 0.004, α1 = 0.005, α2 = 0.0003, C = 0.00015, C2 = 0.09, t0 =

0.20, ∆ = 0.04, ρm0 = 0.32, A0 = 0.00905. There, green, blue lines correspond to n = 0.9, 0.8, 0.7
respectively.

approach of the current study differs from Setare and Sheykhi [45] in the sense that the
standard Eckart approach is adopted here.
In Section 3, we have demonstrated reconstructed schemes of Barrow HDE as a spe-
cific NO HDE. We have reconstructed the density i.e., ρBarrowHDE in Eq.(37) for Barrow
HDE generalised through NO cut-off. We have also reconstructed the EoS parameter
wBarrowHDE for Barrow HDE generalised through NO cut-off and plotted it in Fig.5.
This figure shows the quintom behaviour of wBarrowHDE. Moreover, wBarrowHDE ≈ −1
at z = 0 for some values of n. It also suggests that the universe may end with a Big-Rip
in the future. Finally, for this reconstructed Barrow HDE we have demonstrated the
generalised second law of thermodynamics. For the Barrow HDE with NO cut-off it is
observed that ( see Fig.6) the time derivative of the total entropy is staying at positive
level and hence, it is concluded that the generalised second law holds if we consider
Barrow HDE as a specific case of NO HDE. In the future study, we proposed to carry
out the similar viscous cosmology under the purview of modified theories of gravity
with the background evolution as Barrow HDE.
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