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Abstract: New analysis regarding the structure of center vortices and their color structure is presented:
Using data from gluonic SU(2) lattice simulation with Wilson action a correlation of fluctuations in
color space to curvature of vortex fluxes was found. Finite size effects of the S2-homogeneity hint at
color homogeneous regions on the vortex surface.
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0. Introduction

The center vortex model of Quantum Chromodynamics [1,2] explains confinement [3] and chiral
symmetry breaking [4–6] by the assumption that the relevant excitations of the QCD vacuum are
Center vortices, closed color magnetic flux lines evolving in time. In four dimensional space-time
these closed flux lines form closed surfaces in dual space, see Figure 1. In the low temperature phase
they percolate space-time in all dimensions. In Maximal Center gauge the center vortex surface can

Figure 1. left) After transformation to maximal center gauge and projection to the center degrees of
freedom, a flux line can be traced by following non-trivial plaquettes. right) Due to the evolution in
time such a flux can be traced in two dimensions. In dual space it results in a closed surface.

be detected by the identification of Wilson loops evaluating to non-trivial center elements and by
projecting the links to the center degrees of freedom: The piercing of a Wilson loop by a center flux line
contributes a non-trivial factor to the numerical value of the loop. The detection of plaquettes pierced
by a flux line is schematically shown in Figure 2. The vortex flux has a finite thickness, but is located
by thin P-vortices. As long as these P-vortices successfully locate vortices, we speak of a valid vortex
finding property. A problem concerning this property was discovered by Bornyakov et al. [7]. We were
able to resolve these problems using an improved version of the gauge fixing routines [8–10] and could
show for relatively small lattices that center vortices reproduce the string tension. We found hints
towards a color structure existing on the vortex surface [11]. This color structure might be directly
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Figure 2. Vortex detection as a best fit procedure of P-Vortices to thick vortices shown in a two
dimensional slice through a four dimensional lattice.

related to the topological charge of center vortices and could lead to a more detailed explanation of
their chiral properties. Their study is especially complicated by the fact that measurements of the
topological charge require sufficiently smooth field configurations, whereas the quality of the center
vortex detection suffers with increasing smoothness of the lattice, that is, the vortex finding property can
get lost during smoothing or cooling the lattice. We want to bring more light into this difficulties by an
analysis of the

• correlation between color structure and surface curvature,
• size of color-homogeneous regions on the surface,
• influence of cooling on color-homogeneous regions on the surface.
• influence of smoothing the vortex surface on color-homogeneous regions.

As this is the first time these measurements are performed with our algorithms, this work is to be
understood as a proof of concept.

1. Materials and Methods

Our lattice simulation is based on gluonic SU(2) Wilson action with inverse coupling β covering an
interval from β = 2.1 to β = 3.6 in steps of 0.05. The corresponding lattice spacing a is determined
by a cubic interpolation of literature values given in Table 1 and complemented by an extrapolation
according to the asymptotic renormalization group equation

a(β) = Λ−1e−
β

8β0 with β0 =
11

24π2 and Λ = 0.015(2)fm−1. (1)

We assume a physical string tension of (440 MeV)2. Our analysis is performed on lattices of size 84,

β 2.3 2.4 2.5 2.635 2.74 2.85
a [fm] 0.165(1) 0.1191(9) 0.0837(4) 0.05409(4) 0.04078(9) 0.0296(3)

σ [lattice] 0.136(2) 0.071(1) 0.0350(4) 0.01459(2) 0.00830(4) 0.00438(8)

Table 1. The values of the lattice spacing in fm and the string tension corresponding to the respective
value of β are taken from Refs. [12–16], setting the physical string tension to (440 MeV)2.

104 and 124 and 164.
We use an improved version of maximal center gauge to identify the position of the flux lines

building up the vortex surface via center projection. The improvements are described in detail in
Refs. [8–10] and identify non-trivial center regions by perimeters evaluating to non-trivial center elements.
These regions are used as guidance for maximal center gauge. By simulated annealing we look for
gauge matrices Ω(x) ∈ SU(2) at each lattice point x, so that the functional

R2
SA = ∑

x
∑
µ

| Tr[Úµ(x)] |2 with Úµ(x) = Ω(x + eµ)Uµ(x)Ω†(x) ∈ SU(2) (2)

is maximized. After fixing the gauge we project to center degrees of freedom and identify the non-trivial
plaquettes but save the un-projected lattice for our measurements concerning the color structure.
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These measurements are based on the S2-homogeneity which compares the color vector of two
plaquettes related to the same lattice point. With the two plaquettes written as Wj = σ0 cos αj +

i ∑3
k=1(nj)kσk sin αj the S2-homogeneity is defined as

hS2 := 0.5 | ~n1 + ~n2 | ∈ [0, 1] with Pauli-matrices σk and ~nj ∈ S2. (3)

It is a gauge independent quantity proportional to cos α
2 , where α is the angle between the two color

vectors ~n1 and ~n2.
By calculating the S2-homogeneity of two plaquettes that are pierced by a center flux-line, we

restrict the measurement to the vortex surface and can distinguish the two scenarios depicted in Figure
6:

• Parallel plaquettes corresponding to a weakly curved flux-line, that is, plaquettes located in the
same plane in dual space.

• Orthogonal plaquettes, plaquettes that are neighbours in dual space but have different orientation,
corresponding to strongly curved flux-lines,

Figure 3. Depicted are two plaquettes that are related to the same lattice-point via parallel transport
along the single edge depicted as thicker black line. We distinguish two scenarios: left) two parallel
pierced plaquettes correspond to a weakly curved flux-line. right) two orthogonal pierced plaquettes
correspond to a strongly curved flux-line.

As the curvature of the flux-line directly correlates to the curvature of the vortex surface, this allows an
analysis of the correlation between S2-homogeneity and curvature of the vortex surface.

Calculating the S2-homogeneity for different lattice spacings and lattice sizes allows to examine
the size of homogeneous regions on the vortex surface by exploiting finite-size effects: we assume
that for sufficiently big lattices the S2-homogeneity is independent of the lattice size and at most
linear dependent on the lattice spacing. As long as the color structure fits into the lattice we assume a
decoupling of this structure from the lattice parameters. Shrinking the lattice by reducing the lattice
spacing allows to identify the physical lattice extent below which finite size effects introduce stronger
dependencies on the lattice parameters, see Figure 4. Varying the physical lattice size by changing
the number of lattice sites and repeating the procedure we can check whether these finite size effects
define a physical scale independent of the lattice parameters: at the onset of the finite size effects
the lattice spacing times the lattice size should be a constant defining the size of color-homogeneous
regions on the vortex surface. With decreasing lattice sizes the onset of the finite size effects occurs at
lower values of β, hence we choose small lattices to perform these measurements. As this procedure
requires sufficiently good statistics at high values of β, we include in the averages all pairs of plaquettes
belonging to the same P-vortex.

For measurements of topological properties sufficiently smooth configurations are required, but
smooth configurations complicate the vortex detection. There are many different procedures for
generating such smooth configurations or smoothing excitations belonging to specific degrees of
freedom. We use Pisa Cooling [17] with a cooling parameter of 0.05. Repeating the aforementioned
measurements in cooled configurations we compare the influence of a direct smoothing of the vortex
surface, described in detail in [18,19], with the effects of cooling. The smoothing procedure consist
of "cutting out" parts of the vortex surface and "sewing together" the surface again, see Figure 5.
Additional to the three depicted procedures we have "smoothing 0" which deletes isolated unit-cubes
and is part of all other listed smoothing routines. All smoothing procedures remove short range
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Figure 4. The S2-Homogeneity on the vortex surface is shown for an 84-lattice for different lattice
spacings. The data points, used for the fit of the upper, nearly horizontal red line are marked in red.
The green line at small values of the lattice spacing a is fit to the green data points. The allocation of the
data points to the lines is based on minimizing the sum of horizontal and vertical squared deviations.
For both lines a mean prediction band is calculated and the respective intersections define the lattice
spacing below which finite size effects dominate. Multiplying this lattice spacing with the lattice size
gives the physical size of the homogeneous regions.

smoothing 1 smoothing 2 smoothing 3

Figure 5. The effect of the smoothing procedures on the vortex surface is depicted, taken from [18,
Fig.5.8.] .

fluctuations from the vortex surface and are considered to have no influence on the infra-red degrees
of freedom, but smoothing 2 has influence on the connectivity of the vortex surface in contrast to the
other smoothing methods.

2. Results

We start by presenting our findings concerning the correlation between color structure and surface
curvature of vortices. The measurements were performed on lattices of size 164 and the data
show a clear distinction between weakly and strongly curved parts of the vortex surface with
respect to S2-homogeneity: the more the vortex surface is curved, the smaller is the value of
the color-homogeneity. This can be seen in Figure 6 where we show distinct evaluations of the
S2-homogeneity hS2 for parallel plaquette pairs (larger values) and orthogonal plaquette pairs (smaller
values) for various smoothing and cooling steps. The difference between parallel and perpendicular
plaquettes indicates a clear correlation of fluctuations in color space to fluctuations in space-time. hS2
increases with more intense cooling, especially for parallel plaquettes. Also the mentioned difference
and the correlation increases. It is interesting to observe that with cooling this difference between
parallel and perpendicular plaquette pairs increases more for pairs off the vortex (red lines) than for
pairs on P-vortices (data points). For 0 cooling steps the difference between the red lines is roughly
50% of the difference between data points. This difference increases to ≈ 100% for 5 cooling steps.
Since the thickness of vortices increases with cooling and P-vortices stay thin "off the P-vortex" can
still be "on the thick vortex" and those pairs "on the thick vortex" contribute to the "off the vortex"
averages. This shows that the correlation between curvature and S2-homogeneity is a property of the
thick vortices and not of the surrounding vacuum.

Comparing the different smoothing procedures it can be seen that smoothing 1 and smoothing 3
lead to quantitatively identical results with a homogeneity raised above those of smoothing 0. With
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Legend:

Figure 6. Averaged over 10 configurations of size 164, the S2-homogeneity hS2 for four different cooling
strengths is shown in the four diagrams. For each of them we apply the smoothing procedures 0, 1,
2 and 3, indicated by different symbols, see the legend, and perform distinct evaluations of hS2 for
weakly and strongly curved regions on the vortex surface. These two types of regions lead to clearly
separated values of hS2: low values for strongly curved and high values for weakly curved regions.

smoothing 2 the difference between weak and strong curvature is reduced: The homogeneity of weak
curvature is decreased and the homogeneity of strong curvature increased. As smoothing 2 is the only
procedure influencing the connectivity of the vortex surface we conclude that this connectivity might
be of importance in further considerations of the color structure and that smoothing 2 should be used
with care. This is strengthened by the fact, that smoothing 2 results in the vortex becoming overall
more homogeneous than the vacuum, see Figure 7. A non-trivial color structure is indicated by color

Figure 7. Averaged over 100 configurations of size 124, the S2-homogeneity along the vortex surface is
shown for different smoothing procedures. The vacuum value (black line), that is, the value throughout
the whole lattice, is shown for comparison.

inhomogeneities, hence we suspect that smoothing 2 cuts out parts of the vortex surface that might
carry potential color structure.

The dependency of the S2-homogeneity on the physical lattice volume allows a more detailed
investigation of the color structure on the vortex surface. In Fig. 8 we compare the S2-homogeneity
along the vortex surface for different lattice sizes and smoothing procedures. We find a loss of the
S2-homogeneity for small lattice volumes and give arguments that the loss of the homogeneity is
caused by finite size effects indicating a physical non-vanishing size of color-homogeneous regions. We
estimate the size of these homogeneous regions by linear fits to the values of the S2-homogeneity in
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the large and small volume region as shown in Figure 4. This procedure is applied to different lattice
sizes and numbers of cooling steps. Multiplying the lattice spacing at the intersection with the lattice

Figure 8. Averaged over 100 configurations, the S2-homogeneity along the vortex surface is compared
for different lattice sizes and smoothing procedures. With increasing lattice size the curves shift to
smaller lattice spacing indicating finite size effects.

extent, we estimate the size of the homogeneous regions. In Figure 9 it can be seen that the values are
compatible within errors for smoothing 0, smoothing 1 and smoothing 3 on lattices of size 84 and 104.
The measurements in lattices of size 124 result in higher values with bigger errors.

Figure 9. The estimation of the size of color-homogeneous regions on the vortex surface is done by
fitting two lines to the data, see Fig. 4. The asymmetric errors are calculated via the mean prediction
bands of the respective fits.

The estimate of the size of the homogeneous regions is repeated for different numbers of
cooling steps in lattices of size 84 and 104. This allows to infer the influence of the smoothness of
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the lattice on homogeneous regions. In Figure 10 the S2-homogeneities are shown after 1 cooling
step. Of interest is that with cooling the S2-homogeneities of the different smoothing procedures

Figure 10. Averaged over 100 configurations, the S2-homogeneity along the vortex surface is compared
for different lattice sizes and smoothing procedures after 1 cooling step. Observe that cooling increases
the overall homogeneity on the vortex surface.

become more and more similar to those of smoothing 2. After 2 cooling steps smoothing 1 results in

Figure 11. After 1 cooling step the extension of homogeneous regions is not significantly bigger than
without cooling. For further analysis the data of smoothing 2 will be ignored.

the S2-homogeneity of the vortex becoming no longer distinguishable from the vacuum, see Figure
12. After 3 cooling steps smoothing 1, smoothing 2 and smoothing 3 result in the S2-homogeneity
of the vortex growing above those of the vacuum, while the homogeneity of smoothing 0 is no
longer distinguishable from those of the vacuum, see Figure 14. After 5 cooling steps all smoothing
procedures result in the vortex becoming more homogeneous than the vacuum. The calculations
with 10 cooling steps where complicated by a loss of the vortex finding property: In many of the
configurations with 10 cooling steps no vortices could be detected, making the configurations unusable
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Figure 12. Averaged over 100 configurations, the S2-homogeneity along the vortex surface is compared
for different lattice sizes and smoothing procedures after 2 cooling steps. The vortex is no longer
distinguishable from the vacuum for smoothing 1 and smoothing 3

Figure 13. With 2 cooling steps an increase in the size of homogeneous regions becomes apparent, but
the big error bars of the respective data do not allow a precise statement.

for analysing color structures on the vortex surface. The cause for this loss of the vortex finding property
and a possible resolution is of special interest as it hints at possible ways to improve the vortex
detection algorithms. This topic is discussed in another article [20]. The S2-homogeneities of the
usable part of the data are shown in Figure 18. The line fits used to identify the onset of the finite size
effects became problematic, causing a possible underestimation of the error, hence the data resulting
from 10 cooling steps should be taken with care.
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Figure 14. Averaged over 100 configurations, the S2-homogeneity along the vortex surface is compared
for different lattice sizes and smoothing procedures after 3 cooling steps. The vortex is no longer
distinguishable from the vacuum for smoothing 0 and all other smoothing procedures homogenize the
vortex compared to the vacuum.

Figure 15. Estimated size of color-homogeneous regions after 3 cooling steps.
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Figure 16. Averaged over 100 configurations, the S2-homogeneity along the vortex surface is compared
for different lattice sizes and smoothing procedures after 5 cooling steps. All smoothing procedures
result in a vortex more homogeneous than the vacuum.

Figure 17. Estimated size of color-homogeneous regions after 5 cooling steps.
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Figure 18. The S2-homogeneity along the vortex surface is compared for different lattice sizes and
smoothing procedures after 10 cooling steps. The Vortex detection mostly failed, only a minority of the
data collected could be used.

Figure 19. Estimated size of color-homogeneous regions after 5 cooling steps. The error bars are to be
considered with care.
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As the error bars result from intersections of line fits they are not necessarily symmetric. To combine
the data, the error bar was interpreted as two separate datapoints. Using the data from the lattize sizes
84 and 104 with smoothing 0, smoothing 1 and smoothing 3 we estimate the size of the homogeneous
regions to the values shown in Figure 20. The estimation starts at 0.85± 0.07 fm without cooling,

Figure 20. The dependence of the size of homogeneous regions on the number of cooling steps is
estimated by combining the data from the lattice sizes 84, 104, respective smoothing 0, smoothing 1
and smoothing 3.

reaching 1.1± 0.2 fm after 10 cooling steps. This increase seems to have a maximal value, that is,
cooling does not let the size of homogeneous regions increase to infinity. The dependency of the
S2-homogeneities on the lattice spacing below the onset of the finite size effects showed hints at a
stepwise reduction. To distinguish whether these results from random fluctuations of our data or is
caused by a quantization of the sizes of the homogeneous regions might be possible with more lattice
data.

3. Discussion

Our results show that curvature of flux lines correlates to fluctuations in color space. This correlation
becomes stronger when cooling procedures are applied, but weakens when the connectivity of the
vortex surface is harmed. The correlation seems to be a special feature along the center vortex surface
as it weakens when restricting the analysis to plaquettes that are not pierced.

As intersections and twistings of vortices can produce topological charge and the twisting of the
vortex is correlated to color fluctuations, see [21], our data strengthens the assumption that the color
structure of vortices directly relates to topological charge, enabling center vortices to explain chiral
symmetry breaking.

Complications concerning measurements of the topological charge and center vortices raise
the question, whether the topological properties of center vortices get lost during cooling or if the
properties are kept but the vortex detection fails. Our data indicate the latter because a possible loss of
the color structure due to expanding color homogeneous regions on the vortex surface is not probable
as the size of these regions seems to be bound by an upper limit. Cooling increases the S2-homogeneity
of the Vortex stronger than it increases the homogeneity of the vacuum.

The finite size of these color homogeneous regions is of further interest concerning the question
whether the vortex surface covers the S2 defining the color space or not. It indicates that finite areas on
this color S2 can not correspond to arbitrarily big areas on the vortex surface.

To stay sufficiently far away from finite size effects and guaranty a sufficiently high resolution
concerning homogeneous regions we advice to keep the physical lattice volume well above and the
lattice spacing well below 0.78 fm. As our analysis at a higher number of cooling steps suffered
from a loss of the vortex finding property, further improvements at detecting center vortices in lattice
simulations are needed. Further analysis of this loss of the vortex finding property is to be published
in [20].
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