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Abstract: We consider the developed turbulence of capillary waves on shallow water. Analytic theory
shows that an isotropic cascade spectrum is unstable with the respect to small angular perturbations,
in particular, to spontaneous breakdown of the reflection symmetry and generation of nonzero
momentum. By computer modeling we show that indeed a random pumping, generating on average
zero momentum, produces turbulence with a nonzero total momentum. A strongly anisotropic
large-scale pumping produces turbulence whose degree of anisotropy decreases along a cascade.
It tends to saturation in the inertial interval and then further decreases in the dissipation interval.
Surprisingly, neither the direction of the total momentum nor the direction of the compensated
spectrum anisotropy is locked by our square box preferred directions (side or diagonal) but fluctuate.
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1. Introduction

Most of the ripples one observes on the puddles are capillary waves with wavelengths
exceeding fluid depth, so they are one of the most ubiquitous waves in nature. Yet surpris-
ingly little is known about their turbulence, except isotropic weak-turbulence spectrum
and its small perturbations [1]. Needless to say that neither nature nor human activity
generally provides us with nearly isotropic turbulence. This work is devoted to anisotropic
turbulence of capillary waves. We consider developed turbulence excited by a large-scale
force producing zero wave momentum. We show that the energy cascade towards small
scales spontaneously breaks the reflection symmetry k→ −k and acquires non-zero mo-
mentum. The direction of this momentum fluctuates, yet even a long-time average in a
fixed reference frame demonstrates substantial anisotropy. We also elucidate connection
between anisotropy and interaction non-locality in k-space.

2. Methods

Here we present the model that describes small-amplitude capillary waves on shallow
fluid and the analytical methods of its statistical analysis.

2.1. Basic equations

Perturbations of the fluid surface can be described by the two scalar variables: the
surface elevation η(x, y, t) and the velocity potential Ψ(x, y, t). In the limit of small surface
perturbations and shallow layer η < h < λ, the Hamiltonian has a very simple form [1]:

H=
1
2

∫ (
σ|∇η|2 + ρ(h + η)|∇Ψ|2

)
dxdy (1)
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Here h is the depth of an undisturbed fluid in cm, σ is the surface tension in erg/cm2 and ρ
is the density in g/cm3. The two dynamical equations of motion are

∂η

∂t
=

1
ρ

δH
δΨ

= −div (h + η)∇Ψ = −h∆Ψ− div η∇Ψ , (2)

∂Ψ
∂t

= −1
ρ

δH
δη

=
σ

ρ
∆η − |∇Ψ|2

2
. (3)

In the dimensionless variables, η/h, Ψ
√

ρ/(σh), and t
√

σ/(ρh3), we obtain:

H=
1
2

∫ (
|∇η|2 + (1 + η)|∇Ψ|2

)
dxdy (4)

∂η

∂t
= −div (1 + η)∇Ψ = −∆Ψ− div η∇Ψ , (5)

∂Ψ
∂t

+
|∇Ψ|2

2
= ∆η . (6)

Wave amplitudes are defined as ak = (ηk − iΨk)/
√

2 and satisfy the equation of
motion:

∂ak
∂t

= −ık2ak − ı
∫

dqVkqk−qaqak−q − 2ı
∫

dqV∗qkq−kaqa∗q−k , (7)

which corresponds to the Hamiltonian

H=
∫

ωk|ak|2dk +
1
2

∫ (
Vqpka∗qapak + c.c.

)
δ(q− p− k) dqdpdk (8)

where ωk = k2 and Vqpk = p2 + k2 + (k · p). In dimensional units ωk = k2
√

σh/ρ.

2.2. Simplest properties

The system allows for 1D running wave of a permanent shape. Looking for η(x− vt),
Ψ(x − vt) and introducing z = 1 + η one obtains vΨ′ = (zΨ′)′, which gives the mass
flux constancy z(Ψ′ − v) = V, where the constant V is the solution parameter. Now we
substitute that into 2z′′ = −2vΨ′ + ψ′2 = V2z−2 − v2. Since we expect the profile inflection
point where the surface is undisturbed, then z′′ = 0 when z = 1 and V = v. Integrating
once, we obtain

z′2/v2 = 2C− z− 1/z . (9)

Integrating numerically this equation, one obtains the form of the solution for any v and
C ≥ 1. The wavelength is determined by the integral

λ

2
=

1
v

C+
√

C2−1∫
C−
√

C2−1

dz′√
2C− z′ − 1/z′

, (10)

and must be commensurate with the box size, so that L/λ = is an integer. For small
amplitude waves, z− 1 = ε � 1, which requires C − 1 � 1 we have the solution ε =√

C2 − 1 sin(kx− k2t), that is v = k = 2π/λ. Existence of such solutions may hint that the
system is integrable in one dimension, which can be expressed as a lack of thermalization,
recurrence, etc. This is left for future studies.
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3. Weak turbulence

We now consider a set of many waves with small amplitudes. The only analytic
results were obtained for the kinetic equation written for the occupation numbers defined
according to nk = 〈|ak|2〉. In the continuous limit the equation has the form [1,2]:

∂nk
∂t = Stk =

∫
dk1dk2

[
Uk12(n1nk − n2nk − n1n2)− 2U1k2(n2nk − n1nk − n1n2)

]
, (11)

Uqpk = π|Vqpk|2δ(ωq −ωp −ωk)δ(q− p− k) .

It is valid when the interaction time tNL(k)'nk/Stk exceeds the wave period, so that the
dimensionless nonlinearity parameter εk =1/ωktNL(k) = |Vkkk|2nkkd/ω2

k � 1.
The kinetic equation (11) conserves the energy

∫
ωknk dk and the momentum P =∫

knk dk. It has two known stationary isotropic solutions. The first one is the thermal
equipartition ωknk = const, so that in 2D the nonlinearity varies as a logarithm: εk =
ln(1/k). The second solution describes energy cascade in turbulence [1]:

nk = k−4 . (12)

or in dimensional variables

〈|ηk|2〉 = 8ε1/2√π(ρh/σ)1/4k−4 , (13)

where ε is the energy flux. Such spectrum is expected to be realized in the inertial interval
of wavenumbers between the pumping wavenumber κ and the dissipation wavenumber
K. For (12), εk ∝ k−2, so that if nonlinearity εκ is small at the pumping scale, it is small
everywhere. It is straightforward to check that the integrals in (11) converge on (12).
Numerics demonstrate that the angle-averaged spectrum is indeed close to k−4, as seen in
Figure 1 below.

To study the linear stability of the isotropic weak-turbulence spectrum (12), one takes
nk = k−4 + δnk and linearizes the kinetic equation with respect to δnk:

∂δnk
∂t =

∫
dk1dk2

{
Uk12

[
δn1
(
k−4 − k−4

2
)
+ δn2

(
k−4 − k−4

1
)
− δnk

(
k−4

1 + k−4
2
)]

−2U1k2
[
δnk

(
k−4

1 − k−4
2
)
+ δn2

(
k−4

1 − k−4)− δn1
(
k−4 + k−4

2
)]}

. (14)

Spectral analysis of this equation can be found in [3], here we employ the method of
moments as the most compact way to establish the instability. We denote θ the polar angle
of the vector k and define the moments of the relative perturbation δnk/nk = k4δnk:

Mm =
∫ K

κ
k3dk

∫ 2π

0
δnk cos(mθ) dθ , (15)

Here κ and K are respectively pumping and dissipation scales, setting the inertial interval
of the turbulence cascade. We now substitute Vk12 and ωk into (14) and integrate it to obtain
the time derivatives of the moments. The most salient point is that convergence of the
integrals are different for even and odd angular harmonics. For even m, two cancelations at
small wavenumbers and one cancelation at large ones make the integrals convergent and
thus independent of κ → 0 and K → ∞. Convergent integrals give dMm/dt proportional
to m times a negative number (expressed via beta functions). The isotropic spectrum is
thus linearly stable with respect to even harmonics. On the contrary, for odd harmonics
m = 2j + 1, the cancelation proceed in powers of k rather than k2, so that logarithmic
divergencies remain. With logarithmic accuracy we obtain:

dMm

dt
= (−1)jm ln(K/κ) . (16)

We see that the isotropic spectrum must be linearly unstable with respect to double odd
harmonics m = 1, 5, . . .
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4. Anisotropic spectra

Analysis of substantially anisotropic turbulence is done by direct numerical simu-
lations. We solve system (5)-(6) numerically, in double periodic domain. Partial deriva-
tives are taken spectrally, while time advancement is done with the 4th-order Runge-
Kutta scheme. The small-scale dissipation is provided by dealiasing (that is setting to
zero the amplitudes of one third of highest modes). We add to the equation of motion,
∂ak/∂t = . . . + f ξk−2, a random force, which is applied in Fourier space to 44 modes
0 < |k| < 4. Here f is the force amplitude and ξ is the random noise white in time and
uniformly distributed in the interval [−1, 1]. The forcing is intended to model inhomoge-
neous pressure imposed on the surface by wind turbulence; such force must have zero
total integral over space. Our forcing is substantially anisotropic, yet statistically invariant
with respect to the transformation k → −k, so that on average it does not produce any
momentum. On the other hand, we have shown above that unstable harmonics include
m = 1 which has non-zero momentum.

1 2 4 8 16 32 64 128

|k|

10−12
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10−4
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n
k

f = 0.001, 2562

f = 0.002, 2562

f = 0.005, 2562

f = 0.001, 5122

k−4

Figure 1. Stationary angle-averaged spectra for different force amplitudes f .

Figure 1 shows that the angle-averaged spectrum is indeed close to k−4, as predicted
by (12,13). We see that weak turbulence work well even for a sufficiently strong forcing:
f = 0.005 corresponds to ηrms ' 0.2.

The most interesting questions are then as follows:

• Is there a spontaneous breaking of symmetry k→ −k and generation of nonzero total
momentum of the wave system?

• How does the degree of anisotropy behave as one goes along the energy the cascade
to higher k?

Figures 2,3 answer the first question. Figure 2 presents a long run which includes the
spectrum formation. We see that nonzero momentum spontaneously appears and persists.
Its direction wanders around, but here mostly oriented along the box sides (θ/π ' 0.5) or
diagonal (θ/π ' 0.75, 0.25).
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Figure 2. Time dependence of the momentum modulus and angle. f = 0.001.

Figure 3 presents the results of 10 runs starting with the same initial data of established
spectrum with randomized phases. The runs are subjected to different random force
realizations. For turbulence, the momentum ∑k knk(t) is mostly determined by the lowest
wavenumbers. To characterize the overall degree of turbulence anisotropy, we define the
vector ∑k kk4nk. We find that its modulus is of order unity in all cases, that is all the spectra
are substantially anisotropic.
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Figure 3. Time dependence of the momentum modulus and angle in four simulations started from
the same initial spectrum, |ak|2, but having different initial phases and different realizations of the
random force. f = 0.002.

Figures 4,5,6 answer the second question (on the k-dependence of the degree of
anisotropy). Here we see that pumping-connected strongly anisotropic spectrum at low k
undergoes partial isotropization as one proceeds along the cascade and tend to saturate at
moderate anisotropy in the inertial interval. Figure 4 shows the average over a long run
(about 25 000 dimensionless times) presented in Figure 2; we have checked that averaging
in the fixed reference frame gives about the same spectra as averaged in the local frame
directed along the instantaneous anisotropy vector ∑k k4nk(t).
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Figure 4. Angular (left) and radial (right) slices of the spectra averaged over a single long in the local
frame along the instantaneous anisotropy vector. f = 0.005.

One obtains similar results averaging over in the local frame over 10 relatively short
runs (4000 dimensionless time), all started from the same state with randomized phases, as
shown in Figure 5, which is counterpart to Figure 3.
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Figure 5. Angular (left) and radial (right) slices of the spectra averaged over 10 runs in the local
frame along the instantaneous anisotropy vector, as in Figure 3. f = 0.002.

Note how the angular form of the spectrum in the inertial interval approaches the
first harmonic in agreement with the theoretical prediction (16). Further, we compute the
angular harmonics of the spectra

Fm(k) =
∫ 2π

0
nk cos(mθ) dθ , (17)

Figure 6 shows the normalized first two angular harmonics for short and long averages.
The data are too noisy for harmonics with m > 2 to be reliable. One sees that the second
harmonic decays with k much faster than the first one. Comparison of the dotted and
dashed lines for the first harmonic shows that anisotropy in a static reference frame tend to
be smaller, apparently because the direction of the anisotropy vector fluctuates in time. Yet
the static average depends on k only weakly, which shows that anisotropy persist in the
inertial interval even on such a long timescale (over 25000 dimensionless times).

For interpretation of Figure 6, it is instructive to recall the difference in k-dependence
of angular perturbations to thermal equilibrium and to turbulence. Wave system with a
nonzero total momentum (drift) has thermal equilibrium nk ∝ [ωk − (k · v)]−1, where v is
the drift velocity. Therefore, the angular harmonics for weakly anisotropic spectra behave
as follows:

Fm(k)
F0(k)

∝
(

kv
ωk

)m
∝ k−m . (18)
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On the contrary, stationary anisotropic corrections to turbulence spectra cannot be obtained
from the isotropic spectrum by the Galilean transform ωk → ωk − (k · v) [1,4]. The
anisotropic correction carrying small momentum flux R from pumping to damping must
be proportional to the dimensionless ratio of the fluxes: Fm(k)/F0(k) ∝ (R · k)ωk/εk2 ∝ k,
which grows with k. Since our low-k pumping does not produce any momentum, we do
not expect any spectral momentum flux and such behavior. Indeed, Figure 6 does not
show any growth with k in relative amplitude of harmonics. Surprisingly, the short-run
averages behave according to (18) in the inertial interval (red and blue solid lines in Figure
6) despite this being turbulence rather than thermal equilibrium. On the other hand, long-
run averages of the first harmonic do not follow these laws but rather tend to saturate
(broken and dotted red lines in Figure 6).
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m
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Figure 6. Dependence of the angular modes on k for runs with f = 0.002. Solid lines with circles are
for 10 short runs, averaged in the reference frame of the anisotropy vector, as in Figure 3. Dashed
lines with diamonds are for one long run, averaged in the reference frame of the anisotropy vector, as
in Figure 2; dotted lines are for the long run averaged in a static reference frame.

5. Discussion

Classical weak-turbulence theory gives an isotropic spectrum with local interaction
and local cascade in k-space. However, the isotropic spectrum is unstable with respect to
the anisotropic angular perturbations of double odd orders, m = 4n + 1, which interact
non-locally both with smallest and largest wavenumbers. That instability must lead, in
particular, to the spontaneous breakdown of the reflection symmetry and generation of a
nonzero momentum of the wave system.

Direct numerical simulations support the prediction and show substantially anisotropic
spectra without reflection symmetry. We apply an anisotropic large-scale random pumping
having the square box symmetry, thus producing on average zero momentum. In all runs,
the spectra spontaneously acquire nonzero momentum. Directions of the momentum and
anisotropy vectors wander with time. It may well be that averages on astronomically large
timescales produce isotropic spectra; we have not been able to see any tendency towards
that even on the largest timescales of tens of thousands dimensionless times.

The degree of spectrum anisotropy decreases along the cascade and tend to saturate in
the inertial interval, so that the dimensionless parameter of anisotropy is of order unity, that
is the anisotropy is neither weak nor strong. In [5], isotropization of decaying turbulence
and in [7] for a cascade was found for capillary waves on deep water, despite theoretical
prediction for linear instability with respect to angular perturbations [1,6]. It is likely
that this seeming contradiction can be explained similarly to what we observe: stationary
spectrum deep in the inertial has a moderate degree of anisotropy.
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