Bacteria-bacteriophage cycles facilitate Cholera outbreak cycles: an indirect Susceptible - Infected - Bacteria - Phage (iSIBP) model-based mathematical study

Asma Al Habees¹, Eman Aldabbas¹, Nicola L. Bragazzi ², and Jude D. Kong²,³,*

¹Department of Mathematics, The University of Jordan, Jordan
²Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
³Canadian Center for Diseases Modeling (CDM), York University, Toronto, ON M3J 1P3, Canada
*Correspondence: jdkong@yorku.ca

February 15, 2021

1
Mathematical Analysis

1 Existence of Equilibria with No shedding

Substituting $\xi = 0$ in system (1) and noticing that $R = N - S - I$, the third equation is then not necessary. Thus, system (1) reduces to

$$
\dot{S} = -\alpha(B_p)S - \mu S - \eta S + \mu N + \eta N - \eta I
$$

$$
\dot{I} = \alpha(B_p)S - \mu I - \delta I
$$

$$
\dot{B}_p = rB_p \left(1 - \frac{B_p + B_{np}}{K}\right) - \gamma_1 \frac{B_p}{K_1 + B_p} P + \theta(B_{np}, P)
$$

$$
\dot{B}_{np} = rB_{np} \left(1 - \frac{B_p + B_{np}}{K}\right) - \gamma_2 \frac{B_{np}}{K_1 + B_{np}} P - \theta(B_{np}, P)
$$

$$
\dot{P} = \beta \left(\gamma_1 \frac{B_p}{K_1 + B_p} + \gamma_2 \frac{B_{np}}{K_1 + B_{np}}\right) P - dP
$$

Then system (2) becomes:

Case 1: if the pathogenic bacteria level is below or equal to the minimum infectious dose, then $\alpha(B_p) = 0$. Hence system (2) becomes:

$$
\dot{S} = -\mu S - \eta S + \mu N + \eta N - \eta I
$$

$$
\dot{I} = -\mu I - \delta I
$$

$$
\dot{B}_p = rB_p \left(1 - \frac{B_p + B_{np}}{K}\right) - \gamma_1 \frac{B_p}{K_1 + B_p} P + \theta(B_{np}, P)
$$

$$
\dot{B}_{np} = rB_{np} \left(1 - \frac{B_p + B_{np}}{K}\right) - \gamma_2 \frac{B_{np}}{K_1 + B_{np}} P - \theta(B_{np}, P)
$$

$$
\dot{P} = \beta \left(\gamma_1 \frac{B_p}{K_1 + B_p} + \gamma_2 \frac{B_{np}}{K_1 + B_{np}}\right) P - dP
$$

Then system (3) has 4 equilibrium points which are listed below:

1. $E_0 = (N, 0, 0, 0, 0)$ always exists.

2. $E_1 = (N, 0, m, K - m, 0)$ always exists, where m is a non-negative constant such that if $K \leq c$, then $m \leq K$, and if $K > c$, then $m \leq c$. Special cases of E_1 are:
 a. $E_{11} = (N, 0, 0, K, 0)$.
 b. $E_{12} = (N, 0, K, 0, 0)$, where $K \leq c$.

2
3. \(E_2 = (N, 0, B_{p2}, 0, P_2) \) exists if \(\beta \gamma_1 - d > 0 \). In this case, \(B_{p2} = \frac{dK_1}{\beta \gamma_1 - d} > 0 \) is such that if \(K \leq c \), then \(B_{p2} \leq K \), and if \(K > c \), then \(B_{p2} \leq c \), so that \(P_2 = \frac{r}{\gamma_1 K} (K_1 + B_{p2}) (K - B_{p2}) > 0 \).

4. The interior point \(E^* = (N, 0, B^*_p, B^*_{np}, P^*) \), exits if the following conditions hold:

(i) \(B^*_p < c \).

(ii) \(B^*_p \neq \frac{dK_1}{\beta \gamma_1 - d} = B_{p2} \). Note that the existence of \(B^*_p \) and \(B_{p2} \) is contrary.

(iii) \(B^*_p \neq \frac{K_1(d - \beta \gamma_2)}{\beta (\gamma_1 + \gamma_2) - d} \).

(iv) \(K > B^*_p + B^*_{np} \).

(v) \(B^*_p, B^*_{np} \) and \(P^* > 0 \).

The existence of the equilibria \(E_0 \) and \(E_1 \) is obvious. In the following we will show the existence of equilibria \(E_2 \) and \(E^* \).

Equation (4) of system (3) implies that at steady state either \(B_{np} = 0 \) or \(B_{np} \neq 0 \). Under the assumption that \(B_{np} = 0 \), one can obtain the equilibrium point \(E_2 \) by solving the following system of equations:

\[
0 = -\mu S - \eta S + \mu N + \eta N - \eta I \quad (1)
\]
\[
0 = -\mu I - \delta I \quad (2)
\]
\[
0 = r B_p \left(1 - \frac{B_p}{K}\right) - \gamma_1 \frac{B_p}{K_1 + B_p} P \quad (3)
\]
\[
0 = \beta \left(\frac{B_p}{K_1 + B_p}\right) - d \quad (4)
\]

From equation (2), we have \(I = 0 \) and then from equation (1), we have \(S = N \). From equation (4), we have \(d = \frac{\beta \gamma_1 B_p}{K_1 + B_p} \) so \(B_{p2} = \frac{dK_1}{\beta \gamma_1 - d} \) such that \(B_{p2} \leq c \) and \(\beta \gamma_1 > d \).

From equation (3), we get \(P_2 = \frac{r}{\gamma_1 K} (K_1 + B_{p2}) (K - B_{p2}) \). In order to have a positive value for \(P_2 \), the following conditions on \(B_{p2} \) must hold:

\(B_{p2} < K \) and if \(K \leq c \), then \(B_{p2} < K \), and if \(K > c \), then \(B_{p2} \leq c \).

If \(B_{np} \neq 0 \) and \(P \neq 0 \), then the equilibrium \(E^* \) is obtained by solving the following
system of equations:

\[
0 = -\mu S - \eta S + \mu N + \eta N - \eta I \\
0 = -\mu I - \delta I \\
0 = rB_p \left(1 - \frac{B_p + B_{np}}{K}\right) - \gamma_1 \frac{B_p}{K_1 + B_p} P + \theta B_{np} P \\
0 = r \left(1 - \frac{B_p + B_{np}}{K}\right) - \gamma_2 \frac{1}{K_1 + B_{np}} P - \theta P \\
0 = \beta \left(\gamma_1 \frac{B_p}{K_1 + B_p} + \gamma_2 \frac{B_{np}}{K_1 + B_{np}}\right) - d
\]

Clearly, \(I = 0 \) from equation (6). Thus, from equation (5), we get \(S = N \). From equation (9), we have

\[
B_{np} = \frac{x}{y} = \frac{K_1(-d(K_1 + B_p) + \beta \gamma_1 B_p)}{K_1(d - \beta \gamma_2) + B_p(d - \beta(\gamma_1 + \gamma_2))},
\]

where \(x = K_1[-d(K_1 + B_p) + \beta \gamma_1 B_p] \) and \(y = K_1(d - \beta \gamma_2) + B_p(d - \beta(\gamma_1 + \gamma_2)) \) are such that \(B_p \neq \frac{dK_1}{\beta \gamma_1} = B_{p2} \); otherwise \(x = 0 \) but \(B_{np} > 0 \). Clearly \(B_p \neq \frac{K_1(d - \beta \gamma_2)}{\beta(\gamma_1 + \gamma_2) - d} \). Thus, we get \(B_{np} = \frac{x}{y} \), where either \(x, y > 0 \) or \(x, y < 0 \).

In order to show that both \(x \) and \(y \) are negative, and by solving equation (8) above, we get

\[
P^* = \left(\frac{r}{K}\right)(K - B_p - B_{np}) \left(\frac{K_1 + B_{np}}{\gamma_2 + \theta(K_1 + B_{np})}\right)
\]

Since \(P^* > 0 \), then we must have \(K > B_p + B_{np} \). Consequently, and by substituting equation (10) in equation (11), we get

\[
P^* = \left(\frac{r}{K}\right)(K - B_p - \frac{x}{y}) \left(\frac{K_1 + \frac{x}{y}}{\gamma_2 \theta(K_1 + \frac{x}{y})}\right)
\]

\[
= \left(\frac{r}{K}\right) \left[\frac{yK - B_p - x}{y}\right] \left[\frac{(yK_1 + x)}{y\gamma_2 + \theta(yK_1 + x)}\right]
\]

Thus,

\[
P^* = \left(\frac{r}{K}\right) \left[\frac{yK - B_p - x}{y}\right] \left[\frac{yK_1 + x}{b\gamma_2 + \theta(yK_1 + x)}\right],
\]

(12)
where $yK - yB_p - x < 0$ in order for P^* to be positive. To see that, and by simplifying $yK_1 + x$, we get

$$yK_1 + x = (-K_1\beta\gamma_2)(K_1 + B_p) < 0$$

(13)

Thus, $x, y < 0$. Hence, equation (12) becomes

$$P^* = \left(\frac{r}{K}\right)\left[\frac{yK - B_p - x}{y}\right]\left[\frac{-K_1\beta\gamma_2(K_1 + B_p)}{y\gamma_2 - \theta K_1\beta\gamma_2(K_1 + B_p)}\right]$$

(14)

Using equation (10) and equation (14) in equation (7), we get

$$0 = \left(\frac{r}{K}\right)\left[\frac{yK - B_p - x}{y}\right]\left[\frac{\gamma_1\gamma_2 K_1\beta B_p}{y\gamma_2 - \theta K_1\beta\gamma_2(K_1 + B_p)}\right] - \theta\left(\frac{x}{y}\right)\left(\frac{K_1\beta\gamma_2(K_1 + B_p)}{y\gamma_2 - \theta K_1\beta\gamma_2(K_1 + B_p)}\right)$$

Then

$$\left[\frac{yK - B_p - x}{y}\right] = 0$$

(15)

or

$$\left[\frac{\gamma_1\gamma_2 K_1\beta B_p}{y\gamma_2 - \theta K_1\beta\gamma_2(K_1 + B_p)}\right] - \theta\left(\frac{x}{y}\right)\left(\frac{K_1\beta\gamma_2(K_1 + B_p)}{y\gamma_2 - \theta K_1\beta\gamma_2(K_1 + B_p)}\right) = 0$$

(16)

Notice that equation (15) has no solution since $P^* > 0$. Thus, and by using Mathematica, equation (16) has three solutions, one of which is real, say B^*_p, and the other two are imaginary. Substituting B^*_p in equation (14) to get P^* and in equation (10) to get B^*_np, and this proves the existence of the interior point E^*.

Case 2: if the pathogenic bacteria level is above the minimum infectious dose, then $\alpha(B_p) \neq 0$. Leaving us with the following system:

$$\dot{S} = -\alpha(B_p)S - \mu S - \eta S + \mu N + \eta N - \eta I$$

$$\dot{I} = \alpha(B_p)S - \mu I - \delta I$$

$$\dot{B}_p = rB_p \left(1 - \frac{B_p + B_{np}}{K}\right) - \gamma_1\frac{B_p}{K_1 + B_p}P + \theta B_{np}P$$

$$\dot{B}_{np} = rB_{np} \left(1 - \frac{B_p + B_{np}}{K}\right) - \gamma_2\frac{B_{np}}{K_1 + B_{np}}P - \theta B_{np}P$$

$$\dot{P} = \beta\left(\frac{\gamma_1 B_p}{K_1 + B_p} + \frac{\gamma_2 B_{np}}{K_1 + B_{np}}\right)P - dP$$

Let $\Gamma_1 = a(\mu + \delta + \eta)(B_p - c) + (\mu + \eta)(\mu + \delta)(B_p - c + H)$. Then One can easily check that $\dot{I} = 0$ if $I_1 = \frac{\alpha(B_p)}{\mu + \delta}S$, and hence $\dot{S} = 0$ if
$S_1 = (\mu + \eta) (\mu + \delta) \left(\frac{(B_p-c)+h}{1} \right) N$. Consequently, $I_1 = \left(\frac{(\mu+\eta)(B_p-c)}{1} \right) N$.

The third, forth and fifth equations of (4) do not contain terms including S and I so the non-trivial values for B_p and the values of B_{np} and P that satisfy these equations of system (4) are the same as third, fourth and fifth equations of system (3) with the condition that $B_p > c$ so that $\alpha(B_p) \neq 0$. That is, the equilibrium points of system (4) are:

1. $E_3 = (S_1, I_1, m, K-m, 0)$, where m is a positive constant such that if $K > c$, then $c < m \leq K$ and the point does not exist if $K \leq c$.

 Special case of E_3 is $E_{31} = (S_1, I_1, K, 0, 0)$, where $K > c$.

2. $E_4 = (S_1, I_1, B_{p4}, 0, P_4)$, where $B_{p4} = B_{p2} = \frac{dK_1}{\beta\gamma_1 - d} > 0$ is such that if $K \leq c$, then E_4 does not exist, and if $K > c$, then $c < B_{p2} \leq K$. Hence, $P_4 = P_2 = \frac{r_1}{\gamma_1}(K_1 + B_{p2})(K - B_{p2}) > 0$.

3. $E^{**} = (S_1, I_1, B_{p**}, B_{np**}, P^{**})$, exits if the following conditions are hold:

 (i) $B_{p**} > c$.

 (ii) $B_{p**} \neq \frac{dK_1}{\beta\gamma_1 - d} = B_{p4}$. Note that the existence of B_{p**} and B_{p4} is contrary.

 (iii) $B_{p**} \neq \frac{K_1(d - \beta \gamma_2)}{\beta(\gamma_1 + \gamma_2) - d}$.

 (iv) $K > B_{p**} + B_{np**}$.

 (v) B_{p**}, B_{np**} and $P^{**} > 0$.

2 Linearization

Depending on the pathogenic bacteria level, the linearization of system (2) has two forms, one for system (3) when $\alpha(B_p) = 0$, denoted J, and one for system (4) when $\alpha(B_p) \neq 0$, denoted J'.

Define: $U = r - \frac{2rB_p}{K} - \frac{rB_{np}}{K} \frac{K_1\gamma_1 P}{(K_1 + B_p)^2}$ and $V = r - \frac{rB_p}{K} - \frac{2rB_{np}}{K} \frac{K_1\gamma_2 P}{(K_1 + B_{np})^2} - \theta P$. Then:

$$J_1 = \begin{bmatrix}
-\mu - \eta & 0 & 0 & 0 & 0 \\
0 & -(\mu + \delta) & 0 & 0 & 0 \\
0 & 0 & -\frac{rB_p}{K} & + \theta P & 0 \\
0 & 0 & -\frac{rB_{np}}{K} & V & 0 \\
0 & 0 & -\frac{\beta\gamma_1 K_p}{(K_1 + B_p)^2} & -\frac{\beta\gamma_2 K_p}{(K_1 + B_{np})^2} & \beta(\frac{\gamma_1 + B_p}{K_1 + B_p} + \frac{\gamma_2 + B_{np}}{K_1 + B_{np}}) - d
\end{bmatrix}$$

and
2.1 Stability of the equilibrium E_0

The Jacobin matrix for E_0 is:

$$
J_0 = \begin{bmatrix}
-\mu - \eta & 0 & 0 & 0 \\
0 & -(\mu + \delta) & 0 & 0 \\
0 & 0 & r & 0 \\
0 & 0 & 0 & -d
\end{bmatrix}
$$

The eigenvalues corresponding to E_0 are: $-\mu - \eta, -(\mu + \delta), -d < 0$ and $r, r > 0$. Since $r > 0$, then E_0 is unstable.

2.2 Stability of the equilibrium E_1

The Jacobin matrix for E_1 is:

$$
J_1 = \begin{bmatrix}
-\mu - \eta & 0 & 0 & 0 & 0 \\
0 & -(\mu + \delta) & 0 & 0 & 0 \\
0 & 0 & \frac{-\gamma_1 m}{K_1 + m} + \theta(K - m) & -\frac{r(K-m)}{K} & \frac{\gamma_1 m}{K_1 + m} + \theta(K - m) \\
0 & 0 & 0 & 0 & \beta\left(\frac{\gamma_1 m}{K_1 + m} + \frac{\gamma_2 (K-m)}{K_1 + K - m}\right) - d
\end{bmatrix}
$$

The eigenvalues corresponding to E_1 are: $-\mu - \eta, -(\mu + \delta), -r, 0$ and $\beta\left(\frac{\gamma_1 m}{K_1 + m} + \frac{\gamma_2 (K-m)}{K_1 + K - m}\right) - d$.

Hence, E_1 might be stable if the following condition holds:

$$
R_B = \frac{\beta}{d}\left(\frac{\gamma_1 m}{K_1 + m} + \frac{\gamma_2 (K-m)}{K_1 + K - m}\right) < 1.
$$

Considering the special case E_{11}, we get the following eigenvalues: $-(\mu + \eta), -(\mu + \delta), -r, 0$ and $\frac{\beta \gamma_1 K}{K_1 + K - d} - d$. Thus, if $\frac{\beta \gamma_1 K}{d(K_1 + K)} < 1$, then E_{11} might be stable, and if $\frac{\beta \gamma_1 K}{d(K_1 + K)} > 1$, then E_{11} might be unstable.

When considering the equilibrium point E_{12}, we found that the eigenvalues corresponding to J_1 are: $-(\mu + \eta), -(\mu + \delta), -r, 0$ and $\frac{\beta \gamma_1 K}{K_1 + K - d} - d$. So, E_{12} might be stable if $\frac{\beta \gamma_1 K}{d(K_1 + K)} < 1$, which is equivalent to say that E_{12} might be stable if $K < \frac{dK_1}{\beta \gamma_1 - d} = B_{p_2}$. But if E_2 exists, then $K > \frac{dK_1}{\beta \gamma_1 - d} = B_{p_2}$ and hence, E_{12} might be unstable whenever E_2 exists.
2.3 Stability of E_2

Let $O = r - \frac{2rB_p}{K} - \frac{K_1\gamma_1 P_2}{(K_1 + B_p)^2}$, $Q = r - \frac{rB_p}{K} - \frac{\gamma_2 P_2}{K_1} - \theta P_2$ and $L = \frac{\beta_2 K_1 P_2}{(K_1)^2}$, then the Jacobin matrix is:

$$J_2 = \begin{bmatrix}
-\mu - \eta & 0 & 0 & 0 & 0 \\
0 & -(\mu + \delta) & 0 & 0 & 0 \\
0 & 0 & O & -\frac{rB_p}{K} + \theta P_2 & -\frac{d}{\beta} \\
0 & 0 & 0 & Q & 0 \\
0 & 0 & L & \frac{\beta_2 K_1 P_2}{(K_1)^2} & 0
\end{bmatrix}$$

Now,

$$\det(J_2 - \lambda I) = (-\mu - \eta - \lambda)(-\mu - \delta - \lambda)(Q - \lambda)\left[\frac{d}{\beta} L - \lambda(O - \lambda)\right]$$

$$= (-\mu - \eta - \lambda)(-\mu - \delta - \lambda)\frac{d}{\beta} (Q - \lambda)(\lambda^2 - \lambda O + \frac{d}{\beta} L)$$

Note that the equation $(\lambda^2 - \lambda O + \frac{d}{\beta} L) = 0$ has two real solutions non of which is zero since $\frac{d}{\beta} L > 0$. Hence, the stability of E_2 is determined by the sign of the eigenvalue $\lambda = Q$.

If $Q \leq 0$, then

$$r - \frac{rB_p}{K} - \frac{\gamma_2 P_2}{K_1} - \theta P_2 \leq 0$$

$$K \leq \frac{dK_1}{\beta_1 - d} + \left(\frac{\gamma_2}{\gamma_1 K_1} + \frac{\theta}{\gamma_1}\right)(K_1 + \frac{dK_1}{\beta_1 - d})(K - \frac{dK_1}{\beta_1 - d})$$

$$(1 - \frac{\gamma_2\beta + \theta K_1\beta}{\beta_1 - d})K \leq \frac{dK_1}{\beta_1 - d} - \frac{dK_1\beta(\gamma_2 + \theta K_1)}{(\beta_1 - d)^2}$$

$$K \leq \frac{dK_1}{\beta_1 - d} = B_{p_2}$$

which is not the case since we must have $B_{p_2} < K$. Thus, $Q > 0$, and hence E_2 is unstable.

2.4 Stability of E_3

We have the following Jacobin matrix for E_3:

$$J_3 = \begin{bmatrix}
-\alpha(m) - \mu - \eta & 0 & -\frac{aS_1 H}{(m-c+H)^2} & 0 & 0 \\
\alpha(m) & -(\mu + \delta) & -\frac{aS_1 H}{(m-c+H)^2} & 0 & 0 \\
0 & 0 & -\frac{m}{K} & 0 & 0 \\
0 & 0 & -\frac{r(K-m)}{K} & -\frac{\gamma_1 m}{K_1 + K - m} + \theta(K - m) & 0 \\
0 & 0 & 0 & \beta(\frac{\gamma_1 m}{K_1 + K - m} + \frac{\gamma_2(K-m)}{K_1 + K - m}) - d & 0
\end{bmatrix}$$

The eigenvalues of J_3 are: $-\alpha(m) - \mu - \eta, -(\mu + \delta), -r, 0$ and $\beta(\frac{\gamma_1 m}{K_1 + K - m} + \frac{\gamma_2(K-m)}{K_1 + K - m}) - d$.

Hence, E_3 might be stable if $R_B < 1$.

8
Considering the equilibrium point $E_{31} = (S_1, I_1, K, 0, 0)$, $K > c$, we get the following eigenvalues: $-(\alpha(K) + \mu + \eta), -(\mu + \delta), -r, 0$ and $\frac{\beta\gamma_1 K}{K_1 + K} - d$. Hence, E_{31} might be stable if $\frac{\beta\gamma_1 K}{d(K_1 + K)} < 1$.

2.5 Stability of E_4

We recall that $E_4 = (S_1, I_1, B_{p4}, 0, P_4)$, where $B_{p4} = B_{p2} = \frac{dK_1}{\beta\gamma_1 - d} > 0$ is such that if $K \leq c$, then E_4 does not exist, and if $K > c$, then $c < B_{p4} \leq K$, so that $P_4 = P_2 = \frac{r}{\beta K} (K_1 + B_{p2}) (K - B_{p2}) > 0$.

Let $O = r - \frac{2rB_{p2}}{K} - \frac{K_1 \gamma_2 p_2}{(K_1 + B_{p2})^2}$, $Q = r - \frac{rB_{p2}}{K_1} - \frac{\gamma_2 p_1}{K_1} - \theta P_2$ and $L = \frac{\beta\gamma_1 K K_1 P_2}{(K_1 + B_{p2})^2}$, then the Jacobin matrix corresponding to E_4 is:

$$\hat{J}_4 = \begin{bmatrix}
-\alpha(B_{p4}) - \mu - \eta & 0 & 0 \\
\alpha(B_{p4}) & -(\mu + \delta) & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \frac{\beta\gamma_1 K}{K_1}
\end{bmatrix}$$

Then, $\det(\hat{J}_4 - \lambda I) = (-\alpha(B_{p4}) - \mu - \eta - \lambda)(-\mu - \delta - \lambda)(Q - \lambda)\left[\frac{d}{\beta} L - \lambda(O - \lambda)\right] = (-\mu - \lambda)(-\mu - \delta - \lambda)\frac{d}{\beta}(Q - \lambda)(\lambda^2 - \lambda O + \frac{d}{\beta} L)$

Hence, and is shown in Section 2.3, none of the eigenvalues is zero, and one of the eigenvalue, namely Q, is positive. So, E_4 is unstable.

For the equilibrium points E^*, E^{**} we lack exact expressions for the equilibrium quantities, and so the local stability is difficult to find analytically.
3 Existence of Equilibria with shedding

In this section, we determine the equilibrium points of the model system when \(\xi \neq 0 \), and then perform stability analysis of the equilibria. Since \(R = N - S - I \), then the third equation of system (1) is not necessary, leaving us with the following system:

\[
\begin{align*}
\dot{S} &= -\alpha(B_p)S - \mu S + \mu N + \eta R \\
\dot{I} &= \alpha(B_p)S - \mu I - \delta I \\
\dot{B}_p &= rB_p \left(1 - \frac{B_p + B_{np}}{K} \right) - \gamma_1 \frac{B_p}{K_1 + B_p} P + \xi I + \theta(B_{np}, P) \\
\dot{B}_{np} &= rB_{np} \left(1 - \frac{B_p + B_{np}}{K} \right) - \gamma_2 \frac{B_{np}}{K_1 + B_{np}} P + \xi I - \theta(B_{np}, P) \\
\dot{P} &= \beta \left(\gamma_1 \frac{B_p}{K_1 + B_p} + \gamma_2 \frac{B_{np}}{K_1 + B_{np}} \right) P - dP + \phi \xi I \\
\end{align*}
\]

(5)

If \(\alpha(B_p) = 0 \), then we will have the same equilibrium points \(E_0, E_1, E_2 \) and \(E^* \) as in Section 1, with the same conditions.

If \(B_P > c \), then \(\alpha(B_p) \neq 0 \), and hence at steady state system (5) reduces to:

\[
\begin{align*}
0 &= -\alpha(B_p)S - \mu S - \eta S + \mu N + \eta N - \eta I \\
0 &= \alpha(B_p)S - \mu I - \delta I \\
0 &= rB_p \left(1 - \frac{B_p + B_{np}}{K} \right) - \gamma_1 \frac{B_p}{K_1 + B_p} P + \xi I + \theta(B_{np}, P) \\
0 &= rB_{np} \left(1 - \frac{B_p + B_{np}}{K} \right) - \gamma_2 \frac{B_{np}}{K_1 + B_{np}} P + \xi I - \theta(B_{np}, P) \\
0 &= \beta \left(\gamma_1 \frac{B_p}{K_1 + B_p} + \gamma_2 \frac{B_{np}}{K_1 + B_{np}} \right) P - dP + \phi \xi I \\
\end{align*}
\]

(6)

Then solving equation (2) of (6) for \(I \), one has \(I = \frac{\alpha(B_p)S}{\mu + \eta} \), and hence, and by solving equation (1) of (6), one can easily check that \(S = S_1 = (\mu + \eta) (\mu + \delta) \frac{(B_{p**} - c) + H}{\Gamma_1} N \).

Thus, \(I = I_1 = \frac{(a(\mu + \delta + \eta)(B_{p**} - c) + (\mu + \eta)(\mu + \delta)(B_{p**} - c + H)}{\Gamma_1} N \), where
\(\Gamma_1 = a(\mu + \delta + \eta)(B_{p**} - c) + (\mu + \eta)(\mu + \delta)(B_{p**} - c + H) \). Noting that these are the same formulas for \(S \) and \(I \) in system (4) at steady state.

By solving the other three equation of system (6), we will prove that system (6) has only one equilibrium point, namely \(E^{**} = (S_1, I_1, B_{p**}, B_{np**}, P^{**}) \) which exists if the following condition holds:

\[
\frac{B_{p**}}{K_1 + B_{p**}} + \frac{B_{np**}}{K_1 + B_{np**}} < \frac{d}{\beta},
\]

10
where \(P^{***} = -\phi \xi I_1 \left[\frac{(K_1 + B_p^{***})(K_1 + B_{np}^{***})}{l_2} \right] \), where

\[
\Gamma_2 = \beta \gamma_1 B_p^{***}(K_1 + B_{np}^{***}) + \beta \gamma_2 B_{np}^{***}(K_1 + B_p^{**}) - d(K_1 + B_p^{**})(K_1 + B_{np}^{**}).
\]

In order to have a well-defined and positive value for \(P^{***} \), \(\Gamma_2 \) must be negative. That is, the value of \(P \) provides a condition for \(B_p^{***} \) and \(B_{np}^{***} \).

Now, \(\Gamma_2 < 0 \) if

\[
\beta \gamma_1 B_p(K_1 + B_{np}) + \beta \gamma_2 B_{np}(K_1 + B_p) < d(K_1 + B_p)(K_1 + B_{np}).
\]

Dividing both sides by: \((K_1 + B_p)(K_1 + B_{np})\), to get:

\[
\frac{\beta \gamma_1 B_p}{K_1 + B_p} + \frac{\beta \gamma_2 B_{np}}{K_1 + B_{np}} < \frac{d}{\beta}.
\]

Consequently,

\[
0 = K \phi \xi \mu N a (B_p - c)(1 + B_p) - \frac{\xi \mu N a (B_p - c)}{(\mu + \delta)(a + \mu)(B_p - c) + \mu H} + \frac{\phi \xi \mu N a \left[\frac{\gamma_2 B_{np}(B_p - c)(K_1 + B_p)}{(\mu + \delta)(a + \mu)(B_p - c) + \mu H} \frac{1}{\Gamma_2} \right]}{B_{np}^{**} + \frac{\theta}{\Gamma_2} \left(K \phi \xi \mu N a (B_p - c)(K_1 + B_p) \right)}
\]

Using Mathematica to solve equation (18), we found out that it is a cubic equation of \(B_p \), which has three solutions. Only one of these solutions is a real solution, say \(B_p^{***} \), which is in-terms of \(B_{np} \).

Substitute \(B_p^{***} \), \(I \) and \(P^{***} \) in equation (3) of system (6) to get an equation in terms of \(B_{np} \) only, then solve the resulting equation to get the value of \(B_{np}^{***} \). The exact formula of \(B_{np}^{***} \) is so complicated, and since the other four coordinates of \(E^{***} \) depend on \(B_{np}^{***} \), exact formulas of these variables are not given.

4 Linearization

According to the level of pathogenic bacteria, we will have two linearizations of system (5). First when \(\alpha(B_p) = 0 \), denoted by \(\mathcal{J} \) and the other when \(\alpha(B_p) \neq 0 \),
denoted by \hat{J}. Set: $U = r - \frac{2rB_p}{K} - \frac{rB_{np}}{K} - \frac{K_1\gamma_1P}{(K_1+B_p)^2}$ and $V = r - \frac{rB_p}{K} - \frac{2rB_{np}}{K} - \frac{K_1\gamma_2P}{(K_1+B_{np})^2} - \theta P$. Then:

$$J = \begin{bmatrix}
-\mu & 0 & 0 & 0 & 0 \\
0 & -\mu - \delta & 0 & 0 & 0 \\
0 & \xi & -\frac{rB_p}{K} + \theta P & \frac{-\gamma_1B_p}{K_1+B_p} + \theta B_{np} & 0 \\
0 & \xi & -\frac{rB_{np}}{K} & \frac{-\gamma_2B_{np}}{K_1+B_{np}} - \theta B_{np} & 0 \\
0 & \phi \xi & \frac{\beta_1K_1P}{(K_1+B_p)^2} & \frac{\beta_2K_1P}{(K_1+B_{np})^2} & \beta \left(\frac{\gamma_1+B_p}{K_1+B_p} + \frac{\gamma_2+B_{np}}{K_1+B_{np}}\right) - d
\end{bmatrix},$$

Letting J_i be the Jacobian matrix corresponding to the equilibrium point E_i, $i = 0, 1$ or 2, one can easily check that the eigenvalues of J_i are the same as those for J. Consequently, the stability of the equilibrium points of system (5) has been already stated in section 2.

The Jacobian matrix corresponding to system (6) is

$$\hat{J} = \begin{bmatrix}
-\alpha(B_p) - \mu & 0 & 0 & 0 & 0 \\
\alpha(B_p) & -\mu - \delta & 0 & 0 & 0 \\
0 & \xi & -\frac{rB_p}{K} + \theta P & \frac{-\gamma_1B_p}{K_1+B_p} + \theta B_{np} & 0 \\
0 & \xi & -\frac{rB_{np}}{K} & \frac{-\gamma_2B_{np}}{K_1+B_{np}} - \theta B_{np} & 0 \\
0 & \phi \xi & \frac{\beta_1K_1P}{(K_1+B_p)^2} & \frac{\beta_2K_1P}{(K_1+B_{np})^2} & \beta \left(\frac{\gamma_1+B_p}{K_1+B_p} + \frac{\gamma_2+B_{np}}{K_1+B_{np}}\right) - d
\end{bmatrix},$$

Since we lack exact expressions for the coordinates of E^{***}, the stability of this equilibrium point is difficult to find analytically.