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Abstract 

The exponential growth of biomedical data in recent years urged the application of numerous 

machine learning techniques to address emerging problems in biology and clinical research. By 

enabling automatic feature extraction, selection and generation of predictive models, these 

methods can be used to efficiently study complex biological systems. Machine learning 

techniques are frequently integrated with bioinformatic methods, as well as curated databases 

and biological networks, to enhance training and validation, identify the best interpretable 

features, and enable feature and model investigation. Here, we review recently developed 

methods that incorporate machine learning within the same framework with techniques from 

molecular evolution, protein structure analysis, systems biology and disease genomics. We 

outline the challenges posed for machine learning, and in particular, deep learning in 

biomedicine and suggest unique opportunities for machine learning techniques integrated with 

established bioinformatics approaches to overcome some of these challenges. 
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Introduction 

Over the past decades, the advances of computational resources and computer science, 

combined with next generation sequencing and other emerging omics techniques, ushered in a 

new era of biology, allowing for sophisticated analysis of complex biological data. 

Bioinformatics is evolving as an integrative field between computer science and biology, that 

allows representation, storage, management, analysis and investigation of numerous data 

types with diverse algorithms and computational tools.  The bioinformatics approaches include 

sequence analysis, comparative genomics, molecular evolution studies and phylogenetics, 

protein and RNA structure prediction, gene expression and regulation analysis, and biological 

network analysis, as well as genetics of human diseases, in particular, cancer, and medical 

image analysis [1–3].  

 

Machine learning (ML) is a field in computer science that studies the use of computers to 

simulate human learning by exploring patterns in the data and applying self-improvement to 

continually enhance the performance of learning tasks. ML algorithms can be roughly divided 

into supervised learning algorithms, which learn to map input example into their respective 

output, and unsupervised learning, which identify hidden patterns in unlabeled data. The 

advances made in machine-learning over the past decade transformed the landscape of data 

analysis [4–6]. In the last few years, ML and particularly deep learning (DL) have become 

ubiquitous in biology (Figure 1). However, clinical applications have been limited, and follow-up 

mechanistic investigation of ML-based predictions is often lacking, due to the difficulty in the 

interpretation of the results obtained with these techniques. To overcome these problems, 

numerous approaches have been developed to incorporate ML and DL into established 

bioinformatics frameworks, for training data selection and preparation, identification of 

informative features, or data integration. Such integrated frameworks exploit the power of ML 

and DL methods, offering interpretability and reproducibility of the predictions. 

 

In this brief review, we survey recent efforts to integrate ML and DL with established 

bioinformatic methods, across four areas in computational biology. We discuss the strengths 

and limitations of these integrated methods for specific applications and propose avenues to 

address the challenges impeding even broader application of ML techniques in biomedical 

research. 
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Figure 1. Machine learning algorithms frequently used in biomedical research.  

An example of the usage of each algorithm and the respective input data are indicated on the 

right. Abbreviations: SVM, Support Vector Machines; KNN, K-Nearest Neighbors; CNN, 

Convolutional Neural Networks; RNN, Recurrent Neural Networks; PCA, Principal Component 

Analysis; tSNE, t-distributed Stochastic Neighbor Embedding. 

 

 

 

Integrating machine-learning into molecular evolution research 
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Combining computer science approaches with principles of molecular evolution analysis has 

revolutionized the field of molecular evolutionary studies. Application of diverse and 

increasingly advanced computational methods has enabled accurate determination of 

evolutionary distances between species, reconstruction of evolutionary histories and 

ancestries, identification conserved genomic regions, functional annotation of genomes, and 

phylogenetics. In recent years, ML methods have been developed to address the challenges 

faced by molecular evolution research, in particular, by overcoming the difficulties of analyzing 

increasingly massive sets of sequence and other omics data. Examples of such applications 

include the  use of autoencoders to impute incomplete data for phylogenetic tree construction 

[7], application of random forest for phylogenetic model selection [8], harnessing convolutional 

neural networks (CNNs) to infer tree topologies [9] and tumor phylogeny [10], and utilization of 

deep reinforcement learning for the construction of robust alignments of many sequences [11].   

 

Evolutionary algorithms and strategies have been the most successful in solving diverse 

bioinformatic problems, far beyond core phylogenetic and molecular evolution tasks. Indeed, a 

wide range of computational techniques are founded on evolutionary strategies, including 

application of population-based analysis, fitness-oriented rules or variation-driven research 

[12,13]. For instance, genetic algorithms (GA) [14] are a type of search heuristic which is 

inspired by principles of biological evolution. The GA is widely used in for optimization of 

multiple criteria and for features selection [15–17]. Evolutionary approaches underlie 

effectively all types of biological sequence analysis.  Therefore, integrating ML with molecular 

evolution and phylogenetic methods is essential to uncover robust and biologically relevant 

patterns and discriminative features. For example, recent methods combined sequence 

attributes, alignment and phylogenetic trees with ML for protein sequence analysis and 

clustering [18,19] for tasks as different as identification of determinants of viral pathogenicity 

and infectivity [20–22], prediction CRISPR-Cas9 cleavage efficiency [23] and detection of anti-

CRISPR proteins [24,25]. 

 

Although numerous bioinformatics methods continue to rely on sequence alignments, the 

advent of ML gave rise to a variety of alignment-free methods that allow skipping the alignment 

step and learning directly from unaligned sequences. Alignment-free methods are especially 

useful, for example,  for the identification of viral sequences in complex sequence datasets, 

where highly divergent viruses are often difficult to identify with straightforward alignment and 

sequence comparison [26–29]. Alignment-free methods are also useful for the functional 

annotation of nucleic acids and proteins, where in some cases function may be inferred from 

particular domains or motifs that can be detected without complete nucleotide or protein 

alignment. In cases where sequence profiles are difficult to derive, ML and particularly DL 

techniques can be trained to rapidly recognize specific domains or motifs, without the need to 
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devise explicit sequence profiles [26,30,31]. Several DL techniques have been employed for the 

annotation of functional features in nucleotide sequences, typically relying on a large, 

annotated sequence dataset for training. These applications include identification of promoters 

[32,33], enhancers [34,35],  long noncoding RNAs [36–39],[40], microRNA targets [41,42], and 

CRISPR arrays [43]. 

 

The key challenge in the application of ML to molecular evolution and phylogenetics, where 

traditional bioinformatic strategies efficiently resolve many substantial problems, is the 

identification of tasks that have not been yet properly addressed, but involve learnable patterns 

and features. This challenge stems from the difficulty of estimating the learnability of different 

problems, but also, from the shortage of labeled datasets of sufficient size for problems that 

are not easily amenable to standard bioinformatic techniques. 

 

Integrating machine-learning with protein structure analysis 

In the study of proteins, numerous methods have been developed to process the amino acid 

sequence, and predict the protein structure, function and post translational modifications, such 

as phosphorylation and glycosylation, that are crucial to the function of many if not most 

proteins.  ML techniques have been incorporated with traditional proteomic methods to predict 

post translational modifications [44,45]. The Musite suite integrated machine learning tools 

with the search for local sequence similarity to known phosphorylation sites, protein disorder 

scoring and amino acid frequency calculation to predict general and kinase-specific 

phosphorylation sites [46]. EnsembleGly developed an ensemble classifier of protein 

glycosylation site based on curated glycosylated protein database [47]. More recently, several 

DL models have been incorporated with other modeling techniques and curated databases for 

the prediction of phosphorylation sites [48,49], and protein glycosylation [50].  

 

Fundamental computational challenges in the field of protein analysis include prediction of 

protein structure from sequence, accurate estimation of structural similarity to infer homology 

and prediction of protein contact maps [51,52]. Solving these problems is crucial for the 

characterization of protein functions, localization and interactions, and can directly contribute 

to many research directions, from deciphering evolutionary history [53] to drug discovery [54]. 

Existing computational methods for protein structure prediction that rely on thermodynamics, 

molecular mechanics, heuristics, and similarity to previously solved structures have 

demonstrated varying levels of success [55–57]. ML and particularly DL techniques have 

recently entered this field but have already shown the potential to revolutionize protein 

structure prediction, inference of homology from structure comparison and estimation of 

contact maps. 
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Numerous ML methods have been developed for protein structural prediction, with particular 

success achieved with deep learning architectures [52,58]. The Critical Assessment of Structure 

Prediction (CASP), which assesses prediction methods and models [58], has recently noted 

substantial progress in structure modeling by deep learning, in particular, template free 

modeling (FM), that is, modeling structure without an existing template, as opposed to 

homology modeling. Numerous deep learning methods now require fewer proteins in the input 

MSA and have demonstrated increasing success in FM modelling [59–65], primarily due to more 

precise prediction of contact maps and inter-residue distances [58]. Some methods are more 

narrow in scope and focus on contact prediction [66–69]. The strongest predictor for CASP13, 

the most recent CASP with a published report, was AlphaFold [70,71] a deep learning predictor 

from DeepMind. The results from CASP14 have not been yet described in detail but are 

available online [72]. CASP14 was marked with the striking success of AlphaFold2, the next 

version of AlphaFold, which integrates established sequence search tools into a deep learning 

framework. AlphaFold2 employs sequence database search to construct multiple sequence 

alignments (MSA), and extracts MSA-based features that are given as input to a deep residual 

convolutional neural network [73]. This network architecture eases the training of deep 

networks by introducing shortcut connections with gating functions, that avail the input of 

lower layers to higher layer nodes in the network. In CASP14, AlphaFold2 vastly outperformed 

every other method, both FM and template-based modeling approaches. The results of 

AlphaFold2 are so impressive that there seems to be a realistic possibility that this 

computational approach could begin to replace the expensive and time-consuming protein 

crystallography and even the more efficient cryo-EM. Regardless of whether and when this 

promise materializes, it is becoming clear that DL has already revolutionized protein structure 

analysis, and rapid and broad improvements can be expected to occur in the next few years.  
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Figure 2. Applications of integrated machine learning techniques with bioinformatics in 

molecular evolution, protein structure analysis, systems biology and disease genomics. 

 

Integrating ML into systems biology  

The rapid growth and diversification of biological data calls for an increasingly wide range of 

modeling and analysis techniques to be employed in systems biology. With complex omics 

datasets that are now incessantly accumulating, there is a growing need for techniques that can 

integrate different data types, incorporate datasets into established biological networks and 

combine different systems biology approaches to investigate multi-omics datasets. Various ML 

methods have been developed to utilize multi-dimensional datasets together with biological 

networks, study complex interactions and model biological systems. ML techniques in network 

biology can be classified into those that infer the network architecture and those that integrate 

existing network architectures with biological data measurements [74]. Consequently, some of 

these techniques also require sophisticated data integration methods to incorporate different 

data types into a model. 

 

Different ML frameworks have been utilized for the inference of biological networks, such as 

the gene regulatory network (GRN) in the DREAM5 project [75] which utilizes  SIRENE [76], a 

support vector machines based approach for regulatory networks utilization. More recently, a 

transfer learning technique [77], and a single-cell RNA sequencing based ML technique [78] 

have also been proposed for GRN reconstruction. ML methods also have been employed for the 

inference of protein-protein interactions (PPI) networks. Such methods include the recently 
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developed signed variational graph auto-encoder [79], a graph representation learning method 

that incorporated graph structure and sequence information to study PPI networks, PPI_SVM 

[80], which integrated support vectors machines with domain affinity and frequency tables, and 

LightGBM-PPI [81], which utilizes elastic net models with different protein descriptors for 

inference of PPI networks. In addition, several DL-based techniques have been proposed for PPI 

network reconstruction [82–86]. These methods primarily exploit recent advances in deep 

learning architectures to enhance the prediction of PPI networks [83]. Network inference 

techniques were additionally developed to advance disease research, and several ML 

techniques have been developed to identify drug-target interaction networks using drug 

similarity [87,88] or by integrating different networks and data types [89,90]. Several deep 

learning based techniques have been developed to predict drug response based on cell line 

data [91,92], by integrating genomic profiles [93], or through multi-omics integration [94]. 

Some methods incorporate chemical properties of compounds with ML to predict their clinical 

effects [95–97] and recently, a cancer network inference technique has been proposed to 

identify signal linkers which coordinate oncogenic signals between mutated and differentially 

expressed genes [98]. 

 

ML methods have also been incorporated with established network structures to analyze 

diverse biological datasets. ML techniques have been incorporated with biological networks to 

predict anti-cancer drug efficacy [99], to model drug response by integrating prior biological 

knowledge with different biological data types [100], and by computing “network profiles” 

based on PPI networks [101]. Several strategies have been proposed to employ ML for network-

based prediction of drug side effects [102–104] and drug combinations [105] , for prediction of 

synergistic drugs [106,107] and drug repositioning [108–110]. Several studies have used 

machine and deep learning techniques to investigate properties of metabolic networks, such as 

inference of metabolic pathways [111,112], differential metabolic activity [113] and pathway 

reconstruction [114,115]. A variety of studies have integrated information obtained for 

different data types using ML methods, including the integration of network and pathway data 

for the discovery of drug targets [113,116,117], incorporation of a pathway-derived mechanistic 

model with gene expression to identify new drug targets [118], and inference of the activity of 

oncogenic pathways in cancer [119,120]. Recent strategies integrate multi-omics datasets with 

ML techniques to enhance the prediction of pathway dynamics [121] and utilize pathway based 

multi-omics integration for patient clustering [122].  

 

With the recent increased availability of multiple, powerful omics techniques (that is, genomics, 

transcriptomics, proteomics, and metabolomics), a key emerging challenge is the integration of 

different omics platforms. Although several methods have been developed for multi-omics 

integration using machine and deep learning techniques [123–126], for example, for cancer 
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subtype and survival prediction [127–129] and for prediction of drug response [94,130], the 

paucity of studies systematically comparing different multi-omics integration methods is a 

serious bottleneck in the advancement of this field. Such systematic comparison was recently 

performed for a subset of the multi-omics techniques aimed at the prediction of tumor subtype 

[131]. The lack of standardized techniques and clear recommendation of methods to use for 

particular applications may lead to inadequate selection of analysis strategy and overfitting 

[132].  

 

 

Integrating ML with genomics and biomarker analysis for disease research 

In recent years, molecular phenotyping using genetic and genomic information has allowed 

early and accurate prediction and diagnosis of many diseases, and critically improved clinical 

decision making [133,134]. In disease research, the key challenges are the identification of 

disease-associated genes and mutations for diagnosis, and prediction of the disease 

progression and clinical outcome as well as drug response and personalized medicine. 

 

Traditional algorithms for the identification of disease-associated genes and disease-causing 

mutations mostly rely on analysis of sequence data, which can be limited for rare diseases. In 

addition, some diseases are caused by epigenetic alterations, and thus are not linked to specific 

mutations or genetic variation. Therefore, several techniques have been developed to identify 

genes that are associated with complex diseases by incorporating machine and deep learning 

methods with different types of data, biological networks and bioinformatic techniques. For 

example, incorporation of network analysis of differentially expressed genes with ML allowed 

the prioritization of disease-genes even without disease phenotype information [135]. Other 

examples include training machine learning classifiers on gene functional similarities inferred 

with Gene Ontology (GO) resulting in successful identification of genes associated with the 

Autism Spectrum Disorder [136], and applying ML to features calculated based on protein 

sequences, allowing inference of the probability of a protein’s involvement in disease, without 

considering their function or expression [137]. In addition, ML has been integrated with PPI 

networks to infer a phenotype similarity score and rank protein complexes by phenotypes that 

are linked to human disease [138], to identify topological features of disease-associated 

proteins [139], and recently, to identify host genes that are associated with infectious diseases 

[140]. Furthermore, ML algorithms have been employed for the detection and investigation of 

cancer driver genes, by incorporation of ML with statistical scoring of genomic sequencing 

[141], pathway-level mutations [142], mutation and gene interaction data [143], and by 

application of deep convolutional neural networks for analysis of mutations and gene similarity 

networks [144,145]. 
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A biomarker is a biological measure that can be used as an indicator of a disease state or 

response to therapeutic interventions [146,147]. There are three categories of disease 

biomarkers. First, risk biomarkers are used to identify patients that are at risk of developing a 

disease. Second, diagnostic biomarkers help detect a disease state and determine the disease 

category. Third, prognostic biomarkers help predict disease progression, response to treatment 

and recurrence [148]. Various ML approaches, and in particular, feature selection methods 

have been applied to discover molecular biomarkers and classify clinical cases. For example, an 

approach for the discovery of biomarker signatures has been proposed based on a pipeline that 

applies feature selection through integration of different data types with biological networks 

[149]. Several machine learning techniques have  been developed for biomarker discovery in 

cancer, by using protein biomarkers to classify cancer states [150], and developing biomarkers 

for early cancer diagnosis from microarray and gene expression data [151–153], urine 

metabolomics [154,155] and multidimensional omics data [156–158]. Several methods have 

been developed that integrate network information with omics data for biomarker discovery 

[149,156,159], and some methods incorporated prior knowledge into feature selection 

algorithms for biomarker discovery, such as diseases associated genes [160,161], evolutionary 

conservation [160,162], pathway information [163–165], and by applying network feature 

selection [166,167]. Recently, ML techniques have been proposed to develop biomarkers that 

match patients to treatments, such as identification of markers that correlate with enhanced 

drug sensitivity [93,99,168],  and treatment recommendations [169,170]. 

 

Key challenges and future directions 

ML methods including, recently, DL algorithms have become a rapidly growing research area, 

redefining the state-of-the-art performance for a wide range of fields [4,5]. Given the rapid 

growth in the availability of biomedical and clinical datasets in the past decades, these 

techniques can be expected to similarly transform multiple avenues of biomedical research, 

and indications of their high efficacy are already accumulating. The success of AlphaFold2 that 

dramatically outperforms all other existing methods for protein structure prediction from 

amino acid sequences [71] is perhaps the strongest case in point. It appears more than likely 

that similar efforts will result in breakthroughs in a variety of biomedical fields through the 

integration of ML with more traditional bioinformatics approaches. However, there are several 

key obstacles that have to be overcome to enable the development and acceptance of ML 

solutions to pressing problems in biomedicine. We discuss some of the most substantial 

challenges and suggest means to overcome them through integration of ML frameworks with 

prior biological knowledge, databases and established bioinformatics techniques. 
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A major challenge for the application of ML and particularly DL to biological sequences is the 

representation of nucleotides or amino acid sequences as a sequence of numbers or vectors. 

Representation of biological sequences as well as feature extraction methods for genetic, 

molecular and clinical data are imperative for the subsequent successful application of ML and 

DL techniques. The leading method developed for biological sequence representation is BioVec 

[171], which includes GeneVec, a representation of gene sequences, and ProtVec that 

represents protein sequences. BioVec relies on the Word2Vec algorithm [172], a natural 

language processing (NLP) technique that employs a neural network-based model, and is 

applied to n-gram representations of the protein sequence. This approach has been applied to 

protein family classification and visualization of proteins [171]. More recent methods for 

distributed representation of biological data operate by learning gene co-expression patterns 

[173], representation of cancer mutations [174], and representation of residue-level sequences 

for kinase specific phosphorylation site prediction [175].  These efforts are almost entirely data-

driven, and do not make use of the curated databases and bioinformatic tools that are widely 

employed for the analysis of biological sequences. For example, well established matrices that 

have been designed to evaluate amino acid substitutions [176] and codon usage [177] could be 

considered when encoding biological sequences. Furthermore, numerous manually curated 

conserved domains databases that document functional and structural units of proteins [178] 

could be integrated into the training and evaluation steps of DL frameworks for protein 

annotation and functional classification. Incorporation of curated databases and established 

bioinformatic matrices into sequence representation methods is expected to enhance the 

training, evaluation and interpretability of DL models.  

 

One consequence of the lack of efficient protein sequence representation is a frequent use of 

the simplest, assumption-free representation, which is one-hot encoding, where each position 

in a sequence is represented by a 20-dimensional vector with 19 positions set to 0 and the 

position identifying a specific amino acid set to 1. Although the one-hot representation can 

sometimes outperform other scales [179], one-hot encoded protein sequences are sparse, 

memory-inefficient and high-dimensional [180]. In addition, one-hot encoding lacks the notion 

of similarity between sequences, and thus, is more appropriate for categorical data with no 

relationship between the categories [180]. This could be a particularly severe problem when a 

one-hot representation is given to a convolutional neural network. Most convolutional layers 

identify spatial patterns in the data, which the one-hot encoding inherently lacks. By using a 

sparse, one-hot encoded protein sequences, a deep convolutional network can wrongly infer 

similarity patterns and spatial connections between amino acids, which could be meaningless 

and could lead to overfitting [181,182]. In addition, a convolution is more likely to capture local 

and proximal patterns and dismiss long-range patterns [183], which is problematic for any 

sparse representation, but especially, when long-range dependencies are known or suspected 
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to exist in the data. Therefore, it is crucial to carefully consider the appropriate data 

representation and neural network architecture for every prediction problem. 

 

Despite the advent of the big data era, for many major challenges in biomedicine, the available 

data is small, sparse and highly dependent. This is a major problem for training DL models, 

which require massive amounts of training data and an independent test set. Biological data, 

and especially biological sequence databases, tend to include high proportion of duplicate or 

near-duplicate samples [184], which can seriously bias learning algorithms, especially when 

duplicates are present between the training and test datasets [185–187]. For training and 

evaluation of DL algorithms on highly dependent biological data, careful data processing is 

needed to minimize duplicates and near-duplicates and ensure independence between the 

training and test sets [26,188]. With the growing availability and appeal of DL frameworks, the 

issue of sample size and independence of biological data is frequently ignored, so that large-

scale models are trained without data filtering and preparation, and therefore without ever 

being evaluated on a truly independent test. To overcome these limitations, it is necessary to 

develop neural network architectures that are specifically designed for small and sparse 

datasets [26,189,190]. In addition, there is a pressing need for the development of methods 

that estimate the dependencies between biological samples using existing bioinformatics 

techniques (such as clustering of nucleic acid and proteins by sequence similarity), with 

subsequent evaluation of the maximum model size and the number of parameters given the 

true size of independent samples.  

 

Another important challenge in biomedical applications of ML is the difficulty with 

incorporating different data types. With the growing availability of multi-omics datasets that 

combine genomics, transcriptomics, metabolomics and proteomics data, there is a pressing 

need for systematic evaluation of the strategies for multi-omics integration techniques, and for 

the assessment and development of learning algorithms that can be applied to integrated 

datasets. In particular, methods are required for data reduction, visualization and feature 

selection that allow a combined view and evaluation of integrated multi-omics datasets. 

Integration of multi-omics datasets through incorporation of curated network topology can 

enhance the development of multi-omics ML pipelines, and provide means for feature 

connection, selection and reduction based on established biological networks. 

 

Reproducibility is another major issue that has been extensively discussed in the context of 

biomedical applications of ML and other computational techniques [191]. Code sharing and 

open-source licensing and sufficient documentation and additional recommended practices are 

crucial factors to allow reproducibility of computational biology methods [192]. In biomedical 

research, poor reproducibility can also be attributed to data processing, where different 
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pipelines can differ even in estimations for the same dataset [193–195]. Documentation and 

deposition of the processed data are imperative, and when possible, benchmarking of the 

processing pipeline and optimized parameters can substantially increase the reproducibility of 

ML approaches.   

 

Last but not least, the lack of interpretability is a principal issue impeding the widespread usage 

and adaptation of ML, and especially DL techniques in biomedical research. Investigation of the 

biological mechanisms underlying the success of predictive models and features is highly 

desirable for the acceptance and use of these techniques, and particularly for clinical 

applications. Despite several important efforts to improve interpretability of DL models in 

biomedicine [196–198], model interpretability research in genomic and medicine is highly 

underdeveloped. Common techniques to address the interpretation of concepts learned by a 

deep neural network include activation maximization, which identifies input patterns that 

maximize a desired model response [199,200]; sensitivity analysis or network function 

decomposition, aimed to explain the network’s decisions and input representation [200–202]; 

and layer-wise backpropagation, which propagates the prediction to highlight the supporting 

input features [203]. Use of bioinformatic techniques, for example, for input representation, 

will enhance the interpretation of these analyses by revealing biological implications of the 

input patterns. Therefore, incorporation of established bioinformatics methods and curated 

databases into ML frameworks is a powerful way to increase the interpretability of these 

approaches, enhance their utility and use in biomedicine and allow for follow-up investigation 

and derivation of hypotheses. 

 

 

 

Problem Bottleneck Example solutions Potential integrated ML/DL 
and bioinformatics solutions 

Small and dependent 
datasets 

Data availability Restricting the number of 
parameters [26,204] 

Neural network 
architectures for small and 
sparse datasets  

Separating training and 
test sets by phylogenetic 
similarity [26] 

Methods to evaluate data 
dependency by protein and 
sequence similarities 

Biological sequence 
representation 

Methodological NLP with neural 
networks-based 

modeling [171,173–
175] 

Incorporating amino acid 
substitution and codon 
usage matrices to 
representation frameworks 

Incorporating conserved 
domain databases to the 
training framework 

Methodological 
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Incorporation of 
different data types 

Integration of multi-omics datasets through existing 
network topologies 

 

Reproducibility Acceptance Documentation and 
deposition of the 
processed data [192] 

  
 

Benchmarking of the 
processing pipeline and 
optimized parameters 
[205] 

  
 

Interpretability Acceptance Incorporation of established bioinformatic methods and 
databases with ML and DL frameworks [118,205] 

 

Generation of interpretable DL models [196–198] 
 

Table 1. Challenges posed for ML and DL in biomedicine, existing strategies to overcome these 

challenges and proposed solutions by integrating ML techniques with established 

bioinformatics approaches. 

 

Conclusions  

Machine learning and deep learning in particular are powerful computational tools that have 

already revolutionized many domains of research. With the recent expansive growth of the 

genomic, molecular and clinical data, ML offers unique solutions for interrogation, analysis and 

processing of this data, and for extracting substantial new knowledge on the underlying 

processes. The ML techniques are especially appealing in computational biology because of 

their ability to rapidly derive predictive models in the absence of strong assumptions about the 

underlying mechanisms, which is typical of some of the most pressing challenges in 

biomedicine. However, this unique ability also imposes serious obstacles for the development 

and widespread acceptance of the ML and particularly DL methods, impeding reproducibility 

and interpretability of predictive models. Researchers in biomedical fields often lack the 

background and skills to perform or evaluate ML and especially DL analysis, which may lead to 

erroneous practices and conclusions [206]. The development of ML frameworks for 

biomedicine requires expertise in biology or clinical research, to comprehend and evaluate the 

strengths and limitations of intricate biological and clinical data, to be combined with a strong 

background in data mining and computational techniques.  

 

Incorporation of ML techniques into established bioinformatics and computational biology 

frameworks has already notably facilitated the development of predictive models and powerful 

tools in molecular evolution, proteomics, systems biology and disease genomics. The reliance 

on bioinformatics frameworks for data processing, training and evaluation of predictive models 

has been instrumental for the use and acceptance of these techniques in biomedicine, and such 

integrated approaches present promising solutions for many of the major obstacles for 

machine learning in biology and medicine.  
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