On the Recurrence Properties of Generalized Tribonacci Sequence

Yüksel Soykan
Department of Mathematics, Art and Science Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey e-mail: yuksel_soykan@hotmail.com

Abstract

In this paper, we investigate the recurrence properties of the generalized Tribonacci sequence and present how the generalized Tribonacci sequence at negative indices can be expressed by the sequence itself at positive indices.

2020 Mathematics Subject Classification. 11B37, 11B39, 11B83.
Keywords. Tribonacci numbers, negatif indices, recurrence relations.

1. Introduction

In 2021, Lin [1] stated on page 4 of 12 that "Recently, Professor Tianxin Cai visited Northwest University and gave a talk about a series of linear recurrence sequences and their properties, which incited our interest in this field. There are many recursive identities concerning the Fibonacci, Tribonacci, and Lucas sequences, etc. However, few studies have been conducted regarding the Narayana sequence. Professor Cai proposed an open problem: Whether and how can the Narayana sequence at negative indices be expressed by the sequence itself at positive indices?" Then Lin presented the following theorem as a main result and proved it:

Theorem 1. For $n \in \mathbb{Z}$, we have

$$
N_{-n}=2 N_{n}^{2}+N_{2 n}-3 N_{n+1} N_{n}
$$

Here, Narayana's cows sequence $\left\{N_{n}\right\}$ satisfies a third-order recurrence relation:

$$
N_{n}=N_{n-1}+N_{n-3}, \text { for } n \geq 3
$$

with the initial values $N_{0}=0, N_{2}=1, N_{2}=1$. It can be extended to negative indices by defining

$$
N_{-n}=-N_{-(n-2)}+N_{-(n-3)}, \text { for } n=1,2,3, \ldots
$$

Lin also stated on the same page that "Theorem 1 solves Professor Cai's problem completely. It illustrates the connection between the Narayana sequence at the positive index and the negative index. By Theorem

1, we obtain the recurrence property of the sequence at the negative index, which deepens our knowledge of the nature of the sequence."

Now, we can propose an open problem as follows: Whether and how can the generalized Tribonacci sequence W_{n} at negative indices be expressed by the sequence itself at positive indices?

We present our main result as follows which completely solves the above problem for the generalized Tribonacci sequence W_{n}.

Theorem 2. For $n \in \mathbb{Z}$, we have

$$
W_{-n}=t^{-n}\left(W_{2 n}-H_{n} W_{n}+\frac{1}{2}\left(H_{n}^{2}-H_{2 n}\right) W_{0}\right)
$$

Note that H_{n} can be written in terms of W_{n} using Lemma 4 below. Next, we recall the definitions of generalized Tribonacci sequence W_{n} and its two special cases, namely (r, s, t) sequence G_{n} and (r, s, t) Lucas sequence H_{n}. The generalized (r, s, t) sequence (or generalized Tribonacci sequence or generalized 3 -step Fibonacci sequence) $\left\{W_{n}\left(W_{0}, W_{1}, W_{2} ; r, s, t\right)\right\}_{n \geq 0}$ (or shortly $\left\{W_{n}\right\}_{n \geq 0}$) is defined as follows:

$$
\begin{equation*}
W_{n}=r W_{n-1}+s W_{n-2}+t W_{n-3}, \quad W_{0}=a, W_{1}=b, W_{2}=c, \quad n \geq 3 \tag{1.1}
\end{equation*}
$$

where W_{0}, W_{1}, W_{2} are arbitrary complex (or real) numbers and r, s, t are real numbers. This sequence has been studied by many authors, see for example [3] and references therein. The sequence $\left\{W_{n}\right\}_{n \geq 0}$ can be extended to negative subscripts by defining

$$
W_{-n}=-\frac{s}{t} W_{-(n-1)}-\frac{r}{t} W_{-(n-2)}+\frac{1}{t} W_{-(n-3)}
$$

for $n=1,2,3, \ldots$ when $t \neq 0$. Therefore, recurrence (1.1) holds for all integer n.
In the following Table 1 we present some special cases of generalized Tribonacci sequence.
Table 1 A few special case of generalized Tribonacci sequences.

No	Sequences (Numbers)	Notation
1	Generalized Tribonacci	$\left\{V_{n}\right\}=\left\{W_{n}\left(W_{0}, W_{1}, W_{2} ; 1,1,1\right)\right\}$
2	Generalized Third Order Pell	$\left\{V_{n}\right\}=\left\{W_{n}\left(W_{0}, W_{1}, W_{2} ; 2,1,1\right)\right\}$
3	Generalized Padovan	$\left\{V_{n}\right\}=\left\{W_{n}\left(W_{0}, W_{1}, W_{2} ; 0,1,1\right)\right\}$
4	Generalized Pell-Padovan	$\left\{V_{n}\right\}=\left\{W_{n}\left(W_{0}, W_{1}, W_{2} ; 0,2,1\right)\right\}$
5	Generalized Jacobsthal-Padovan	$\left\{V_{n}\right\}=\left\{W_{n}\left(W_{0}, W_{1}, W_{2} ; 0,1,2\right)\right\}$
6	Generalized Narayana	$\left\{V_{n}\right\}=\left\{W_{n}\left(W_{0}, W_{1}, W_{2} ; 1,0,1\right)\right\}$
7	Generalized Third Order Jacobsthal	$\left\{V_{n}\right\}=\left\{W_{n}\left(W_{0}, W_{1}, W_{2} ; 1,1,2\right)\right\}$
8	Generalized 3-primes	$\left\{V_{n}\right\}=\left\{W_{n}\left(W_{0}, W_{1}, W_{2} ; 2,3,5\right)\right\}$
9	Generalized Reverse 3-primes	$\left\{V_{n}\right\}=\left\{W_{n}\left(W_{0}, W_{1}, W_{2} ; 5,3,2\right)\right\}$

In literature, for example, the following names and notations (see Table 2) are used for the special case of r, s, t and initial values.

Table 2 A few special case of generalized (r,s,t) (generalized Tribonacci) sequence

No	Sequences (Numbers)	Notation	OEIS [2]
1	Tribonacci	$\left\{T_{n}\right\}=\left\{W_{n}(0,1,1 ; 1,1,1)\right\}$	A000073, A057597
2	Tribonacci-Lucas	$\left\{K_{n}\right\}=\left\{W_{n}(3,1,3 ; 1,1,1)\right\}$	A001644, A073145
3	Tribonacci-Perrin	$\left\{M_{n}\right\}=\left\{W_{n}(3,0,2 ; 1,1,1)\right\}$	
4	modified Tribonacci	$\left\{U_{n}\right\}=\left\{W_{n}(1,1,1 ; 1,1,1)\right\}$	
5	modified Tribonacci-Lucas	$\left\{G_{n}\right\}=\left\{W_{n}(4,4,10 ; 1,1,1)\right\}$	
6	adjusted Tribonacci-Lucas	$\left\{H_{n}\right\}=\left\{W_{n}(4,2,0 ; 1,1,1)\right\}$	
7	third order Pell	$\left\{P_{n}^{(3)}\right\}=\left\{W_{n}(0,1,2 ; 2,1,1)\right\}$	A077939, A077978
8	third order Pell-Lucas	$\left\{Q_{n}^{(3)}\right\}=\left\{W_{n}(3,2,6 ; 2,1,1)\right\}$	A276225, A276228
9	third order modified Pell	$\left\{E_{n}^{(3)}\right\}=\left\{W_{n}(0,1,1 ; 2,1,1)\right\}$	A077997, A078049
10	third order Pell-Perrin	$\left\{R_{n}^{(3)}\right\}=\left\{W_{n}(3,0,2 ; 2,1,1)\right\}$	
11	Padovan (Cordonnier)	$\left\{P_{n}\right\}=\left\{W_{n}(1,1,1 ; 0,1,1)\right\}$	A000931
12	Perrin (Padovan-Lucas)	$\left\{E_{n}\right\}=\left\{W_{n}(3,0,2 ; 0,1,1)\right\}$	A001608, A078712
13	Padovan-Perrin	$\left\{S_{n}\right\}=\left\{W_{n}(0,0,1 ; 0,1,1)\right\}$	A000931, A176971
14	modified Padovan	$\left\{A_{n}\right\}=\left\{W_{n}(3,1,3 ; 0,1,1)\right\}$	
15	adjusted Padovan	$\left\{U_{n}\right\}=\left\{W_{n}(0,1,0 ; 0,1,1)\right\}$	
16	Pell-Padovan	$\left\{R_{n}\right\}=\left\{W_{n}(1,1,1 ; 0,2,1)\right\}$	A066983, A128587
17	Pell-Perrin	$\left\{C_{n}\right\}=\left\{W_{n}(3,0,2 ; 0,2,1)\right\}$	
18	third order Fibonacci-Pell	$\left\{G_{n}\right\}=\left\{W_{n}(1,0,2 ; 0,2,1)\right\}$	
19	third order Lucas-Pell	$\left\{B_{n}\right\}=\left\{W_{n}(3,0,4 ; 0,2,1)\right\}$	
20	adjusted Pell-Padovan	$\left\{M_{n}\right\}=\left\{W_{n}(0,1,0 ; 0,2,1)\right\}$	
21	Jacobsthal-Padovan	$\left\{Q_{n}\right\}=\left\{W_{n}(1,1,1 ; 0,1,2)\right\}$	A159284
22	Jacobsthal-Perrin (-Lucas)	$\left\{L_{n}\right\}=\left\{W_{n}(3,0,2 ; 0,1,2)\right\}$	A072328
23	adjusted Jacobsthal-Padovan	$\left\{K_{n}\right\}=\left\{W_{n}(0,1,0 ; 0,1,2)\right\}$	
24	modified Jacobsthal-Padovan	$\left\{M_{n}\right\}=\left\{W_{n}(3,1,3 ; 0,1,2)\right\}$	
25	Narayana	$\left\{N_{n}\right\}=\left\{W_{n}(0,1,1 ; 1,0,1)\right\}$	A078012
26	Narayana-Lucas	$\left\{U_{n}\right\}=\left\{W_{n}(3,1,1 ; 1,0,1)\right\}$	A001609
27	Narayana-Perrin	$\left\{H_{n}\right\}=\left\{W_{n}(3,0,2 ; 1,0,1)\right\}$	
28	third order Jacobsthal	$\left\{J_{n}^{(3)}\right\}=\left\{W_{n}(0,1,1 ; 1,1,2)\right\}$	A077947
29	third order Jacobsthal-Lucas	$\left\{j_{n}^{(3)}\right\}=\left\{W_{n}(2,1,5 ; 1,1,2)\right\}$	A 226308
30	modified third order Jacobsthal-Lucas	$\left\{K_{n}^{(3)}\right\}=\left\{W_{n}(3,1,3 ; 1,1,2)\right\}$	
31	third order Jacobsthal-Perrin	$\left\{Q_{n}^{(3)}\right\}=\left\{W_{n}(3,0,2 ; 1,1,2)\right\}$	
32	3 -primes	$\left\{G_{n}\right\}=\left\{W_{n}(0,1,2 ; 2,3,5)\right\}$	
33	Lucas 3-primes	$\left\{H_{n}\right\}=\left\{W_{n}(3,2,10 ; 2,3,5)\right\}$	
34	modified 3-primes	$\left\{E_{n}\right\}=\left\{W_{n}(0,1,1 ; 2,3,5)\right\}$	
35	reverse 3 -primes	$\left\{N_{n}\right\}=\left\{W_{n}(0,1,5 ; 5,3,2)\right\}$	
36	reverse Lucas 3-primes	$\left\{S_{n}\right\}=\left\{W_{n}(3,5,31 ; 5,3,2)\right\}$	
37	reverse modified 3-primes	$\left\{U_{n}\right\}=\left\{W_{n}(0,1,4 ; 5,3,2)\right\}$	

Here, OEIS stands for On-line Encyclopedia of Integer Sequences. For easy writing, from now on, we drop the superscripts from the sequences, for example we write J_{n} for $J_{n}^{(3)}$.

It is well known that the generalized (r, s, t) numbers (the generalized Tribonacci numbers) can be expressed, for all integers n, using Binet's formula

$$
\begin{equation*}
W_{n}=A_{1} \alpha^{n}+A_{2} \beta^{n}+A_{3} \gamma^{n} \tag{1.2}
\end{equation*}
$$

where

$$
A_{1}=\frac{W_{2}-(\beta+\gamma) W_{1}+\beta \gamma W_{0}}{(\alpha-\beta)(\alpha-\gamma)}, A_{2}=\frac{W_{2}-(\alpha+\gamma) W_{1}+\alpha \gamma W_{0}}{(\beta-\alpha)(\beta-\gamma)}, A_{3}=\frac{W_{2}-(\alpha+\beta) W_{1}+\alpha \beta W_{0}}{(\gamma-\alpha)(\gamma-\beta)} .
$$

and α, β, γ are the roots of characteristic equation of W_{n} which is given by

$$
\begin{equation*}
x^{3}-r x^{2}-s x-t=0 \tag{1.3}
\end{equation*}
$$

Note that we have the following identities

$$
\left\{\begin{array}{c}
\alpha+\beta+\gamma=r, \tag{1.4}\\
\alpha \beta+\alpha \gamma+\beta \gamma=-s, \\
\alpha \beta \gamma=t .
\end{array}\right.
$$

Note that the Binet form of a sequence satisfying (1.3) for non-negative integers is valid for all integers n. Now we define two special cases of the generalized (r, s, t) sequence $\left\{W_{n}\right\}$. (r, s, t) sequence $\left\{G_{n}\right\}_{n \geq 0}$ and Lucas (r, s, t) sequence $\left\{H_{n}\right\}_{n \geq 0}$ are defined, respectively, by the third-order recurrence relations

$$
\begin{aligned}
G_{n+3}=r G_{n+2}+s G_{n+1}+t G_{n}, & G_{0}=0, G_{1}=1, G_{2}=r, \\
H_{n+3} & =r H_{n+2}+s H_{n+1}+t H_{n},
\end{aligned} \quad H_{0}=3, H_{1}=r, H_{2}=2 s+r^{2}, ~ l
$$

The sequences $\left\{G_{n}\right\}_{n \geq 0}$ and $\left\{H_{n}\right\}_{n \geq 0}$ can be extended to negative subscripts by defining

$$
\begin{aligned}
G_{-n} & =-\frac{s}{t} G_{-(n-1)}-\frac{r}{t} G_{-(n-2)}+\frac{1}{t} G_{-(n-3)}, \\
H_{-n} & =-\frac{s}{t} H_{-(n-1)}-\frac{r}{t} H_{-(n-2)}+\frac{1}{t} H_{-(n-3)},
\end{aligned}
$$

for $n=1,2,3, \ldots$ respectively. Some special cases of (r, s, t) sequence $\left\{G_{n}(0,1, r ; r, s, t)\right\}_{n \geq 0}$ and Lucas (r, s, t) sequence $\left\{H_{n}\left(3, r, 2 s+r^{2} ; r, s, t\right)\right\}_{n \geq 0}$ are as follows:
(1) $G_{n}(0,1,1 ; 1,1,1)=T_{n}$, Tribonacci sequence,
(2) $H_{n}(3,1,3 ; 1,1,1)=K_{n}$, Tribonacci-Lucas sequence,
(3) $G_{n}(0,1,2 ; 2,1,1)=P_{n}$, third order Pell sequence,
(4) $H_{n}(3,2,6 ; 2,1,1)=Q_{n}$, third order Pell-Lucas sequence,
(5) $G_{n}(0,1,0 ; 0,1,1)=U_{n}$, adjusted Padovan sequence,
(6) $H_{n}(3,0,2 ; 0,1,1)=E_{n}$, Perrin (Padovan-Lucas) sequence,
(7) $G_{n}(0,1,0 ; 0,2,1)=M_{n}$, adjusted Pell-Padovan sequence
(8) $H_{n}(3,0,4 ; 0,2,1)=B_{n}$, third order Lucas-Pell sequence,
(9) $G_{n}(0,1,0 ; 0,1,2)=K_{n}$, adjusted Jacobsthal-Padovan sequence,
(10) $H_{n}(3,0,2 ; 0,1,2)=L_{n}$, Jacobsthal-Perrin (-Lucas) sequence,
(11) $G_{n}(0,1,1 ; 1,0,1)=N_{n}$, Narayana sequence,
(12) $H_{n}(3,1,1 ; 1,0,1)=U_{n}$, Narayana-Lucas sequence,
(13) $G_{n}(0,1,1 ; 1,1,2)=J_{n}$, third order Jacobsthal sequence,
(14) $H_{n}(3,1,3 ; 1,1,2)=j_{n}$, modified third order Jacobsthal-Lucas sequence,
(15) $G_{n}(0,1,2 ; 2,3,5)=G_{n}$, 3-primes sequence,
(16) $H_{n}(3,2,10 ; 2,3,5)=H_{n}$, Lucas 3-primes sequence.
(17) $G_{n}(0,1,5 ; 5,3,2)=N_{n}$, reverse 3-primes sequence,
(18) $H_{n}(3,5,31 ; 5,3,2)=S_{n}$, reverse Lucas 3-primes sequence.

For all integers $n,(r, s, t)$ and Lucas (r, s, t) numbers can be expressed using Binet's formulas as

$$
\begin{aligned}
G_{n} & =\frac{\alpha^{n+1}}{(\alpha-\beta)(\alpha-\gamma)}+\frac{\beta^{n+1}}{(\beta-\alpha)(\beta-\gamma)}+\frac{\gamma^{n+1}}{(\gamma-\alpha)(\gamma-\beta)} \\
H_{n} & =\alpha^{n}+\beta^{n}+\gamma^{n}
\end{aligned}
$$

respectively.

2. The Proof of Theorem 2

To prove Theorem 2, we need following lemma.

Lemma 3. For $n \in \mathbb{Z}$, denote

$$
S_{n}=\alpha^{n} \beta^{n}+\alpha^{n} \gamma^{n}+\beta^{n} \gamma^{n}
$$

where α, β and γ are as in defined in Formula (1.4). Then the followings hold:
(a): For $n \in \mathbb{Z}$, we have $S_{n}=t^{n} H_{-n}$ and $S_{-n}=t^{-n} H_{n}$.
(b): S_{n} has the recurrence relation so that

$$
S_{n}=-s S_{n-1}-r t S_{n-2}+t^{2} S_{n-3}
$$

with the initial conditions $S_{0}=3, S_{1}=-s, S_{2}=s^{2}-2 r$. The sequence at negative indices is given by

$$
S_{-n}=-\frac{-r t}{t^{2}} S_{-(n-1)}-\frac{-s}{t^{2}} S_{-(n-2)}+\frac{1}{t^{2}} S_{-(n-3)}, \text { for } n=1,2,3, \ldots
$$

(c): S_{n} has the identity so that

$$
S_{n}=\frac{1}{2}\left(H_{n}^{2}-H_{2 n}\right) .
$$

Proof.
(a): From the definition of S_{n} and H_{n}, we obtain

$$
t^{n} H_{-n}=\alpha^{-n} t^{n}+\beta^{-n} t^{n}+\gamma^{-n} t^{n}=\alpha^{n} \beta^{n}+\alpha^{n} \gamma^{n}+\beta^{n} \gamma^{n}=S_{n}
$$

i.e., $S_{n}=t^{n} H_{-n}$ and so $S_{-n}=t^{-n} H_{n}$.
(b): With Formula (1.4) or using the formula $S_{n}=(-u)^{n} H_{-n}$, we obtain initial values of S_{n} as

$$
\begin{aligned}
& S_{0}=t^{0} H_{0}=3 \\
& S_{1}=t^{1} H_{-1}=t \times\left(-\frac{s}{t}\right)=-s \\
& S_{2}=t^{2} H_{-2}=t^{2} \times \frac{1}{t^{2}}\left(s^{2}-2 r t\right)=s^{2}-2 r t
\end{aligned}
$$

or

$$
S_{2}=\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}=(\alpha \beta+\alpha \gamma+\beta \gamma)^{2}-2 \alpha \beta \gamma(\alpha+\beta+\gamma)=s^{2}-2 r t .
$$

For $n \geq 3$, we have

$$
\begin{aligned}
S_{1} S_{n-1}= & \left(\alpha^{n} \beta^{n}+\alpha^{n} \gamma^{n}+\beta^{n} \gamma^{n}\right)+\alpha \beta \gamma\left(\alpha^{n-2} \beta^{n-2}(\alpha+\beta)\right. \\
& \left.+\alpha^{n-2} \gamma^{n-2}(\alpha+\gamma)+\beta^{n-2} \gamma^{n-2}(\beta+\gamma)\right) \\
= & S_{n}+r t S_{n-2}-t^{2} S_{n-3}=(-s) S_{n-1} .
\end{aligned}
$$

(c): From the definition of S_{n} we get

$$
2 S_{n}=\left(\alpha^{n}+\beta^{n}+\gamma^{n}\right)^{2}-\left(\alpha^{2 n}+\beta^{2 n}+\gamma^{2 n}\right)=H_{n}^{2}-H_{2 n} .
$$

Now, we shall complete the proof of Theorem 2.
The Proof of Theorem 2: For $n \in \mathbb{Z}$, we have

$$
\begin{aligned}
W_{n} H_{n}= & \left(A_{1} \alpha^{n}+A_{2} \beta^{n}+A_{3} \gamma^{n}\right)\left(\alpha^{n}+\beta^{n}+\gamma^{n}\right) \\
= & W_{2 n}+\left(A_{1}+A_{2}+A_{3}\right) \alpha^{n} \beta^{n}+\left(A_{1}+A_{3}+A_{2}\right) \alpha^{n} \gamma^{n} \\
& +\left(A_{2}+A_{3}+A_{1}\right) \beta^{n} \gamma^{n}-\left(A_{3} \alpha^{n} \beta^{n}+A_{2} \alpha^{n} \gamma^{n}+A_{1} \beta^{n} \gamma^{n}\right) \\
= & W_{2 n}+\left(A_{1}+A_{2}+A_{3}\right)\left(\alpha^{n} \beta^{n}+\alpha^{n} \gamma^{n}+\beta^{n} \gamma^{n}\right)-\left(A_{3} \alpha^{n} \beta^{n}+A_{2} \alpha^{n} \gamma^{n}+A_{1} \beta^{n} \gamma^{n}\right) \\
= & W_{2 n}+W_{0} S_{n}-t^{n} W_{-n} .
\end{aligned}
$$

By Lemma 3 (c), it follows that

$$
W_{n} H_{n}=W_{2 n}+\frac{1}{2}\left(H_{n}^{2}-H_{2 n}\right) W_{0}-t^{n} W_{-n}
$$

and so

$$
W_{-n}=t^{-n}\left(W_{2 n}-H_{n} W_{n}+\frac{1}{2}\left(H_{n}^{2}-H_{2 n}\right) W_{0}\right) .
$$

Now, we present a few basic relation between $\left\{H_{n}\right\}$ and $\left\{W_{n}\right\}$ which can be used to write H_{n} in terms of W_{n}.

Lemma 4. The following equality is true:
$\left(W_{2}^{3}+(t+r s) W_{1}^{3}+t^{2} W_{0}^{3}+\left(r^{2}-s\right) W_{1}^{2} W_{2}-2 r W_{1} W_{2}^{2}-s W_{0} W_{2}^{2}+r t W_{0}^{2} W_{2}+\left(s^{2}+r t\right) W_{0} W_{1}^{2}+2 s t W_{0}^{2} W_{1}+\right.$ $\left.(r s-3 t) W_{0} W_{1} W_{2}\right) H_{n}=\left(3 W_{2}^{2}+\left(r^{2}-s\right) W_{1}^{2}+r t W_{0}^{2}-4 r W_{1} W_{2}-2 s W_{0} W_{2}+(r s-3 t) W_{0} W_{1}\right) W_{n+2}+\left(-2 r W_{2}^{2}+\right.$ $\left.3 t W_{1}^{2}-2 s W_{1} W_{2}-3 t W_{0} W_{2}+3 r s W_{1}^{2}+2 s t W_{0}^{2}+2 r^{2} W_{1} W_{2}+2 s^{2} W_{0} W_{1}+r s W_{0} W_{2}+2 r t W_{0} W_{1}\right) W_{n+1}+\left(-s W_{2}^{2}+\right.$ $\left.\left(s^{2}+r t\right) W_{1}^{2}+3 t^{2} W_{0}^{2}+(r s-3 t) W_{1} W_{2}+2 r t W_{0} W_{2}+4 s t W_{0} W_{1}\right) W_{n}$.

Proof. It is given in Soykan [3].

Next, we present a remark which presents how H_{n} can be written in terms of W_{n}.

REmaRk 5. To express W_{-n} by the sequence itself at positive indices we need that H_{n} can be written in terms of W_{n}. For this, writing

$$
H_{n}=a \times W_{n+2}+b \times W_{n+1}+c \times W_{n}
$$

and solving the system of equations

$$
\begin{aligned}
& H_{0}=a \times W_{2}+b \times W_{1}+c \times W_{0} \\
& H_{1}=a \times W_{3}+b \times W_{2}+c \times W_{1} \\
& H_{2}=a \times W_{4}+b \times W_{3}+c \times W_{2}
\end{aligned}
$$

or

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{lll}
W_{2} & W_{1} & W_{0} \\
W_{3} & W_{2} & W_{1} \\
W_{4} & W_{3} & W_{2}
\end{array}\right)^{-1}\left(\begin{array}{c}
H_{0} \\
H_{1} \\
H_{2}
\end{array}\right)
$$

we find that H_{n} can be written in terms of W_{n} and we can replace this H_{n} in Theorem 2.

Using Theorem 2 and Lemma 4 or Remark 5, we have the following corollary.

Corollary 6. For $n \in \mathbb{Z}$, we have
(a): $G_{-n}=\frac{1}{t^{n+1}}\left(\left(2 r t-s^{2}\right) G_{n}^{2}+t G_{2 n}+s G_{n+2} G_{n}-(3 t+r s) G_{n+1} G_{n}\right)$.
(b): $H_{-n}=\frac{1}{2 t^{n}}\left(H_{n}^{2}-H_{2 n}\right)$.

Note that if we take $r=1, s=0, t=1$ and $G_{n}=N_{n}$ in the above Corollary, we obtain Lin's Theorem 1 . Using Theorem 2 and Lemma 4 or Remark 5 (or using the last corollary for special cases), we can give some formulas for the special cases of generalized Tribonacci sequence (generalized (r,s,t)-sequence) as follows.

We have the following corollary which gives the connection between the special cases of generalized Tribonacci sequence at the positive index and the negative index.

Corollary 7. For $n \in \mathbb{Z}$, we have the following recurrence relations:
(a): Tribonacci sequence:

$$
T_{-n}=T_{n}^{2}+T_{2 n}+T_{n+2} T_{n}-4 T_{n+1} T_{n}
$$

(b): Tribonacci-Lucas sequence:

$$
K_{-n}=\frac{1}{2}\left(K_{n}^{2}-K_{2 n}\right) .
$$

(c): Tribonacci-Perrin sequence:

$$
M_{-n}=\frac{1}{3362}\left(243 M_{n+2}^{2}+12 M_{n+1}^{2}+805 M_{n}^{2}-1107 M_{2 n+2}+246 M_{2 n+1}-943 M_{2 n}-108 M_{n+2} M_{n+1}+\right.
$$

$$
\left.1152 M_{n+2} M_{n}-256 M_{n+1} M_{n}\right)
$$

(d): modified Tribonacci sequence:

$$
U_{-n}=\frac{1}{2}\left(U_{n+2}^{2}+4 U_{n+1}^{2}+U_{2 n+2}-2 U_{2 n+1}-4 U_{n+2} U_{n+1}-2 U_{n+2} U_{n}+4 U_{n+1} U_{n}\right)
$$

(e): modified Tribonacci-Lucas sequence:

$$
G_{-n}=\frac{1}{2}\left(G_{n+2}^{2}+4 G_{n+1}^{2}-2 G_{2 n+2}+4 G_{2 n+1}-4 G_{n+2} G_{n+1}+G_{n+2} G_{n}-2 G_{n+1} G_{n}\right)
$$

(f): adjusted Tribonacci-Lucas sequence:

$$
H_{-n}=\frac{1}{2}\left(H_{n+1}^{2}-2 H_{2 n+1}+H_{n+1} H_{n}\right)
$$

The following corollary illustrates the connection between the special cases of generalized third-order Pell sequence at the positive index and the negative index.

Corollary 8. For $n \in \mathbb{Z}$, we have the following recurrence relations:
(a): third order Pell sequence:

$$
P_{-n}=3 P_{n}^{2}+P_{2 n}+P_{n+2} P_{n}-5 P_{n+1} P_{n} .
$$

(b): third order Pell-Lucas sequence:

$$
Q_{-n}=\frac{1}{2}\left(Q_{n}^{2}-Q_{2 n}\right)
$$

(c): third order modified Pell sequence:

$$
E_{-n}=\frac{1}{3}\left(-E_{n}^{2}+3 E_{2 n}-11 E_{n+1} E_{n}+2 E_{n+2} E_{n}\right) .
$$

(d): third order Pell-Perrin sequence:

$$
\begin{aligned}
& \quad R_{-n}=\frac{1}{6962}\left(972 R_{n+2}^{2}+48 R_{n+1}^{2}+1081 R_{n}^{2}-3186 R_{2 n+2}+708 R_{2 n+1}-1357 R_{2 n}-432 R_{n+2} R_{n+1}+\right. \\
& \left.2952 R_{n+2} R_{n}-656 R_{n+1} R_{n}\right)
\end{aligned}
$$

The following corollary presents the connection between the special cases of generalized Padovan sequence at the positive index and the negative index.

Corollary 9. For $n \in \mathbb{Z}$, we have the following recurrence relations:
(a): Padovan (Cordonnier) sequence:

$$
P_{-n}=\frac{1}{2}\left(9 P_{n+2}^{2}+4 P_{n+1}^{2}+8 P_{n}^{2}+3 P_{2 n+2}-2 P_{2 n+1}-2 P_{2 n}-12 P_{n+2} P_{n+1}-18 P_{n+2} P_{n}+12 P_{n+1} P_{n}\right) .
$$

(b): Perrin (Padovan-Lucas) sequence:

$$
E_{-n}=\frac{1}{2}\left(E_{n}^{2}-E_{2 n}\right)
$$

(c): Padovan-Perrin sequence:

$$
S_{-n}=S_{n}^{2}+S_{2 n}-3 S_{n+2} S_{n}
$$

(d): modified Padovan sequence:

$$
A_{-n}=\frac{1}{722}\left(3 A_{n+2}^{2}+108 A_{n+1}^{2}+616 A_{n}^{2}+57 A_{2 n+2}+342 A_{2 n+1}-532 A_{2 n}+36 A_{n+2} A_{n+1}-\right.
$$

$$
\left.94 A_{n+2} A_{n}-564 A_{n+1} A_{n}\right)
$$

(e): adjusted Padovan sequence:

$$
U_{-n}=-U_{n}^{2}+U_{2 n}+U_{n+2} U_{n}-3 U_{n+1} U_{n}
$$

We have the following corollary which gives the connection between the special cases of generalized Pell-Padovan sequence at the positive index and the negative index.

Corollary 10. For $n \in \mathbb{Z}$, we have the following recurrence relations:
(a): Pell-Padovan sequence:

$$
R_{-n}=\frac{1}{8}\left(16 R_{n+1}^{2}+9 R_{n+2}^{2}+5 R_{n}^{2}+6 R_{2 n+2}-8 R_{2 n+1}-2 R_{2 n}-24 R_{n+2} R_{n+1}-18 R_{n+2} R_{n}+\right.
$$

$$
\left.24 R_{n+1} R_{n}\right)
$$

(b): Pell-Perrin sequence:

$$
C_{-n}=\frac{1}{242}\left(432 C_{n+2}^{2}+972 C_{n+1}^{2}+665 C_{n}^{2}+396 C_{2 n+2}-594 C_{2 n+1}-385 C_{2 n}-1296 C_{n+2} C_{n+1}-\right.
$$

$$
\left.1104 C_{n+2} C_{n}+1656 C_{n+1} C_{n}\right)
$$

(c): third order Fibonacci-Pell sequence:

$$
G_{-n}=\frac{1}{2}\left(16 G_{n+2}^{2}+4 G_{n+1}^{2}+35 G_{n}^{2}-4 G_{2 n+2}+2 G_{2 n+1}+7 G_{2 n}-16 G_{n+2} G_{n+1}-48 G_{n+2} G_{n}+\right.
$$

$\left.24 G_{n+1} G_{n}\right)$.
(d): third order Lucas-Pell sequence:

$$
B_{-n}=\frac{1}{2}\left(B_{n}^{2}-B_{2 n}\right)
$$

(e): adjusted Pell-Padovan sequence:

$$
M_{-n}=-4 M_{n}^{2}+M_{2 n}+2 M_{n+2} M_{n}-3 M_{n+1} M_{n}
$$

The following corollary illustrates the connection between the special cases of generalized generalized Jacobsthal-Padovan sequence at the positive index and the negative index.

Corollary 11. For $n \in \mathbb{Z}$, we have the following recurrence relations:
(a): Jacobsthal-Padovan sequence:

$$
Q_{-n}=\frac{1}{2^{n+3}}\left(9 Q_{n+2}^{2}+4 Q_{n+1}^{2}+21 Q_{n}^{2}+6 Q_{2 n+2}-4 Q_{2 n+1}-6 Q_{2 n}-12 Q_{n+2} Q_{n+1}-30 Q_{n+2} Q_{n}+\right.
$$ $\left.20 Q_{n+1} Q_{n}\right)$.

(b): Jacobsthal-Perrin (-Lucas) sequence:

$$
L_{-n}=\frac{1}{2^{n+1}}\left(L_{n}^{2}-L_{2 n}\right)
$$

(c): adjusted Jacobsthal-Padovan sequence:

$$
K_{-n}=\frac{1}{2^{n+1}}\left(-K_{n}^{2}+2 K_{2 n}+K_{n+2} K_{n}-6 K_{n+1} K_{n}\right)
$$

(d): modified Jacobsthal-Padovan sequence:

$$
\begin{aligned}
& \quad M_{-n}=\frac{1}{529 \times 2^{n+3}}\left(108 M_{n+1}^{2}+75 M_{n+2}^{2}+3551 M_{n}^{2}+690 M_{2 n+2}+828 M_{2 n+1}-3082 M_{2 n}+180 M_{n+2} M_{n+1}-\right. \\
& \left.1130 M_{n+2} M_{n}-1356 M_{n+1} M_{n}\right) .
\end{aligned}
$$

The following corollary presents the connection between the special cases of generalized Narayana sequence at the positive index and the negative index.

Corollary 12. For $n \in \mathbb{Z}$, we have the following recurrence relations:
(a): Narayana sequence:

$$
N_{-n}=2 N_{n}^{2}+N_{2 n}-3 N_{n+1} N_{n} .
$$

(b): Narayana-Lucas sequence:

$$
U_{-n}=\frac{1}{2}\left(U_{n}^{2}-U_{2 n}\right) .
$$

(c): Narayana-Perrin sequence:

$$
\begin{aligned}
& \quad H_{-n}=\frac{1}{5618}\left(2028 H_{n+1}^{2}+1323 H_{n+2}^{2}+429 H_{n}^{2}-3339 H_{2 n+2}+4134 H_{2 n+1}-583 H_{2 n}-3276 H_{n+2} H_{n+1}+\right. \\
& \left.2688 H_{n+2} H_{n}-3328 H_{n+1} H_{n}\right) .
\end{aligned}
$$

We have the following corollary which gives the connection between the special cases of generalized third-order Jacobsthal sequence at the positive index and the negative index.

Corollary 13. For $n \in \mathbb{Z}$, we have the following recurrence relations:
(a): third order Jacobsthal sequence:

$$
J_{-n}=\frac{1}{2^{n+1}}\left(3 J_{n}^{2}+2 J_{2 n}+J_{n+2} J_{n}-7 J_{n+1} J_{n}\right) .
$$

(b): third order Jacobsthal-Lucas sequence:

$$
\begin{aligned}
& \quad j_{-n}=\frac{1}{9 \times 2^{n+6}}\left(121 j_{n+2}^{2}+441 j_{n+1}^{2}-95 j_{n}^{2}-264 j_{2 n+2}+504 j_{2 n+1}+120 j_{2 n}-462 j_{n+2} j_{n+1}+\right. \\
& \left.154 j_{n+2} j_{n}-294 j_{n+1} j_{n}\right) .
\end{aligned}
$$

(c): modified third order Jacobsthal-Lucas sequence:

$$
K_{-n}=\frac{1}{2^{n+1}}\left(K_{n}^{2}-K_{2 n}\right) .
$$

(d): third order Jacobsthal-Perrin sequence:

$$
Q_{-n}=\frac{1}{1225 \times 2^{n+3}}\left(243 Q_{n+2}^{2}+3 Q_{n+1}^{2}+3328 Q_{n}^{2}-1890 Q_{2 n+2}+210 Q_{2 n+1}-3640 Q_{2 n}-54 Q_{n+2} Q_{n+1}+\right.
$$

$$
\left.2196 Q_{n+2} Q_{n}-244 Q_{n+1} Q_{n}\right)
$$

The following corollary illustrates the connection between the special cases of generalized generalized 3 -primes sequence at the positive index and the negative index.

Corollary 14. For $n \in \mathbb{Z}$, we have the following recurrence relations:
(a): 3-primes sequence:

$$
G_{-n}=\frac{1}{5^{n+1}}\left(11 G_{n}^{2}+5 G_{2 n}+3 G_{n+2} G_{n}-21 G_{n+1} G_{n}\right) .
$$

(b): Lucas 3-primes sequence:

$$
H_{-n}=\frac{1}{2 \times 5^{n}}\left(H_{n}^{2}-H_{2 n}\right) .
$$

(c): modified 3-primes sequence:

$$
E_{-n}=\frac{1}{9 \times 5^{n}}\left(-7 E_{n}^{2}+9 E_{2 n}+4 E_{n+2} E_{n}-31 E_{n+1} E_{n}\right) .
$$

The following corollary presents the connection between the special cases of generalized reverse 3-primes sequence at the positive index and the negative index.

Corollary 15. For $n \in \mathbb{Z}$, we have the following recurrence relations:
(a): reverse 3-primes sequence:

$$
N_{-n}=\frac{1}{2^{n+1}}\left(11 N_{n}^{2}+2 N_{2 n}+3 N_{n+2} N_{n}-21 N_{n+1} N_{n}\right)
$$

(b): reverse Lucas 3-primes sequence:

$$
S_{-n}=\frac{1}{2^{n+1}}\left(S_{n}^{2}-S_{2 n}\right)
$$

(c): reverse modified 3-primes sequence:

$$
U_{-n}=\frac{1}{9 \times 2^{n}}\left(-7 U_{n}^{2}+9 U_{2 n}+10 U_{n+2} U_{n}-67 U_{n+1} U_{n}\right)
$$

References

[1] Lin, X., On the Recurrence Properties of Narayana's Cows Sequence, Symmetry, 13, $149,2021$. https://doi.org/10.3390/sym13010149
[2] Sloane, N.J.A., The on-line encyclopedia of integer sequences, http://oeis.org/
[3] Soykan Y., A Study On Generalized (r,s,t)-Numbers, MathLAB Journal, 7, 101-129, 2020.

