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Abstract: The copper mining industry is increasingly using artificial intelligence methods to im-

prove cop-per production processes. Recent studies reveal the use of algorithms such as Artificial 

Neural Network, Support Vector Machine, and Random Forest, among others, to develop models 

for predicting product quality. Other studies compare the predictive models developed with these 

machine learning algorithms in the mining industry, as a whole. However, not many copper mining 

studies published compare the results of machine learning techniques for copper recovery predic-

tion. This study makes a detailed comparison between three models for predicting copper recovery 

by leaching, using four datasets resulting from mining operations in northern Chile. The algorithms 

used for developing the models were Random Forest, Support Vector Machine, and Artificial Neu-

ral Network. To validate these models, four indicators or values of merit were used: accuracy (acc), 

precision (p), recall (r), and Matthew’s correlation coefficient (mcc). This paper describes dataset 

preparation and the refinement of the threshold values used for the predictive variable most influ-

ential on the class (the copper recovery). Results show both a precision over 98.50% and also the 

model with the best behavior between the predicted and the real. Finally, the models obtained show 

the following mean values: acc=94.32, p=88.47, r=99.59, and mcc=2.31. These values are highly com-

petitive as compared with those obtained in similar studies using other approaches in the context. 

Keywords: Data analysis; Artificial Intelligence; Machine Learning; Knowledge Engineering; Com-

puters and information processing, Data analysis; Data Processing. 

 

1. Introduction 

At present, the copper mining industry in Chile and the world is undergoing big 

changes owing to the use of modern techniques such as predictive models based on Arti-

ficial Intelligence [1, 2, 3]. An example of them is the use of data mining methods to study 

or predict copper recovery or mineral prospective [4]. These methods relate to data-driv-

ing techniques used in several engineering areas, showing good results in most cases [5]. 

Techniques such as machine-learning algorithms have been recently used in the cop-

per production industry to, for instance, reduce the cost of leaching methods aiming to 

improve both processes and results [6, 7]. A proper amount of data related to processes 

and results are necessary for these algorithms to work, but not all machine-learning algo-

rithms work properly in domains as the copper production industry, neither provide 

good results in all domains, nor work on datasets, mainly concerning suitability of data 

and accuracy rates [8, 9]. 

In the copper industry, there are well-known methods used for producing metallic 

copper via hydrometallurgy: dynamic heap leaching, solvent extraction, and electro-win-

ning. The ultimate goal of these processes is to produce the most amount of copper, saving 

resources and being the least aggressive for the environment.  
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Recent studies such as [10] report predictive copper recovery models with 95% accu-

racy, utilizing artificial neural networks and parameters widely used in industry, such as 

“Monoclass granulometry”, “Irrigation rates”, “Total acid added”, “Pile high”, “Total 

copper grade”, “CO3 grade”, “Leaching ratio”, “Operation day”, and “Soluble copper 

grade stacked”. 

Recently, a big number of studies on data-driven approaches have been published. 

They deal with the use of predictive model techniques for metallic copper recovery pro-

cesses. For example, [3] report artificial intelligence methods used for developing predic-

tive copper recovery models. For this kind of works, Gradient Boosted Trees (GBT), Ran-

dom Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) 

being some of the most frequently used. Research on predictive copper models or copper 

recovery models considers this issue from different perspectives, recent works report 

models using different data mining techniques [1, 4, 10, 11]. 

Some studies comparing the results of predictive models used in mining are found 

in the literature. For example, [12] compare ANN, wavelet neural network (WNN), and 

SVM to classify the mapping of potential copper points in an Iranian copper mine, the best 

result being obtained with ANN. Other recent studies compare predictive model perfor-

mance in other industries [13]. For example, [14] compare the use of ANN, SVM, and RF 

in the formation of geological reservoirs, while [15] compare ANN and RF in rock drilling 

and blasting in a mining company. In this study, the authors conclude that the ANN-

based model shows the best performance. 

In [10] results from the generation of predictive models for copper recovery by leach-

ing is reported. In this study a Lineal model, a Quadratic model, a Cubic model, and an 

ANN model were developed and the results of the prediction for all of them were com-

pared. The best predictive values were obtained with ANN (97% model accuracy).  

More recently, in [3] results from the generation of predictive models for copper re-

covery by leaching, using a different dataset respect to [10] is reported. In this study, a 

predictive model for copper recovery using RF was developed and validated with data 

collected at the plant and in a controlled environment at the lab. The resulting model 

shows the relevance of the predictive variables over the class (copper recovery), showing 

95% accuracy.  

A comparison between the models already developed must be made to evaluate the 

data mining methods most appropriate and generate another model. The literature re-

ports comparisons between models developed with Bayesian networks and ANN, for ex-

ample: [9, 14], but in other industrial contexts. However, the literature does not show 

studies on this comparison for copper extraction by leaching. This study aims to compare 

the performance of three supervised machine learning algorithms used to develop predic-

tive models of copper recovery by leaching. Here, an assessment using cross-validation 

accuracy among three algorithms is presented: Artificial Neural Networks (ANN), Sup-

port Vector Machines (SVM), and Random Forest (RF). It aims to compare the results and 

determine the one contributing with the most knowledge to the leaching process; what 

can be learned, discover, and predict with each model; and determine the quality 

measures of each model to compare their performance, all this follow previous works as 

[3, 16]. 

The document is organized as follows: Section 2 describes the 1-year copper leaching 

process studied, by comparing three models to predict copper heap leaching results. Sec-

tion 2 also compares traditional and machine-learning methods to predict copper recovery 

by leaching. Section 3 describes artificial intelligence methods used for developing pre-

dictive models, particularly, machine learning; the methodology used and its stages; and 

the experimental and design of the models devised. Section 4 describes the implementa-

tion of the models and their validation using performance measures and cross-validation. 

Section 5 deals with the analysis and discussion of results, along with future research lines. 

Finally, acknowledgments and bibliography are included. 

2. Materials and Methods 
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As described in [10], SCM Franke mining company uses three processes well-known 

in the copper mining industry, one of them being of interest in this study, that is, leaching 

in dynamic cells. In heap leach piles, high mineral variability and irrigation conditions 

used in the leaching process increases the system entropy, a condition that causes excess 

uncertainty (close to ±20 [%]) with respects to the copper recovery resulting at the end of 

the operational cycle.  

This usually involves poor planning of the irrigation module start-up, agglomerate 

and irrigation conditions, drainage distribution, inventories of poor solutions, PLS flow 

to SX plant, and copper deposited and extracted at the electrowinning (EW) plant, the 

leaching process being similar in most mining companies. Principal steps on the mining 

leaching process are represented in Figure 1. The ore is obtained from the open pit mine 

by extracting copper oxides mostly composed of atacamite. Then, it is sent to the primary 

crushing section by means of belts.  

The ore mixture obtained from the primary crushing is classified according to gran-

ulometry and then, sent to either a stockpile, or a secondary or tertiary crusher. If the 

material meets the granulometry of the company, it is sent to stockpile 1 (defined as coarse 

stockpile) and later to the secondary crusher. 

 

 

Figure 1. Main steps in the leaching process. 

The grain classification is checked again, and the ore is sent to the tertiary crusher, if 

necessary. Finally, it goes to stockpile 2 (fines), where it is stored to finally enter the ag-

glomeration process. This process takes place in two agglomeration tanks with the same 

dimensions. Here, the ore gets in contact with a sulfuric acid solution and water. The ob-

jective of this process is to form uniform agglomerates of a proper size with the fine ma-

terial. In addition, it contributes to copper sulfation due to its contact with acid solutions.  

At the end of this process, the material is sent to the dry area. Here, stock-piling ends. 

A radial stockpiler forms a dynamic stockpile used for leaching. It has a maximum of 12 

slots, each of them formed by eight modules. Each module has certain dimensions and 

operates with 10.000-15.000 [t] of agglomerate. 

The process to produce copper ends with the drainage of the solution going to PLS. 

The copper in the PLS solution has an average concentration which is assessed at different 

times during the stockpile operation.  

These measurements allow determining the quality of the leached copper and also 

help to validate both the planning process of the leaching stockpile life cycle and also how 

well each part of the process is designed for the stockpile to operate. At this moment, two 

partial results are obtained: PLS and ILS solutions. The PLS solution is used in the solvent 

extraction stage, while the ILS solution is used for leaching new modules. Stockpile ex-

ploitation is conducted during a period of time called exploitation cycle. These may last 

30-45 days in which the tasks described above take place. The goal in these processes is to 
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achieve the highest copper production by saving resources with the lowest possible envi-

ronmental impact. 

In this regard, during the leaching stockpile exploitation, the company collected cop-

per recovery data and also data in a controlled environment with stockpile material, alt-

hough piled in columns and processed at the lab. In this study and similar to [3, 10], the 

dataset directly obtained from the stockpile is called operational data, while those ob-

tained from the columns at the lab are called column data. Further details about the da-

tasets, how they were obtained, and the pre-process to be used in the models are described 

in the next section. 

2.1. Traditional and Machine Learning processes to predict Copper Recovery by Leaching 

One of the most common difficulties companies face when using the leaching tech-

nique to recover copper is the lack of historical data for planning the stockpile exploitation 

and forecasting or planning the operation [3]. Some of the simplest prediction techniques 

consists in generating or using random variables utilizing iterative simulation and then, 

conduct goodness-of-fit tests [6].  

However, these techniques usually result in high interdependence indexes, possible 

errors, and subjective interpretation of significance [17] and, therefore, other statistical and 

mathematical techniques such as time series regression models are used [18]. This kind of 

techniques have been used in copper mining industry for several decades, but the optimi-

zation of results at the domain is possible using machine learning techniques as show 

previous works as [3, 10, 15, 18]. 

For example, [19] developed a detailed and accurate simulation model capturing fac-

tors that affect air due to copper production and the handling of materials used in the 

productive activity of an Australian mine. This study was later used in [20] to develop a 

certain type of statistical model to support the decision to close a mine owing to air quality 

control.  

An example of the use of mathematical and statistical techniques to predict copper 

recovery by leaching is given in [10], where the authors use Minitab ® software to create 

three statistical models: Linear, quadratic, and cubic fit. A regression of the best subsets 

was conducted for each model, obtaining an R2= 92.3% fit for the cubic fit model.On the 

other hand, machine learning methods are used in studies such as those above, which are 

further described in the section below. 

Machine learning algorithms  

Furthermore, there are many cases and discussions on how supervised learning 

methods (e.g., single-layer neural networks) and deep learning methods (e.g., convolu-

tional neural networks) may be used in different kind of analysis [21, 22] and using dif-

ferent structures of data [23, 24]. Next, a brief description of the supervised machine learn-

ing algorithms used in this work is made. 

2.2. Artificial Neural Network 

Artificial Neural Networks (ANNs) imitate the biological neural network function of 

the human brain. They can approach every continuous function showing structural for-

mation and complexity. In petrophysics, they are widely used for calculating petrophysi-

cal properties, generating synthetic records, and classifying rock facies [25]. 

The basic elements of a neural network include layers, neurons, and activation func-

tions. The neural network structure is simplified by using a feedback-based neural net-

work with a hidden layer.  

The neurons in two adjacent layers are connected by a weighted linear combination 

and an activation function to introduce non-linearity. The most common activation func-

tions are sigmoid, ReLU, and TanH.  

Owing to the dataset size herein, the activation function is limited to a sigmoid func-

tion for the hidden layer and a SoftMax function for the output layer. However, ReLU and 
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TanH are preferred for deep neural networks because they do not have the vanishing gra-

dient problem [26]. The value of each hidden layer is calculated as: 

y = 𝜎 (∑ 𝑤𝑖

𝑛

𝑖=1

𝑥𝑖) (1) 

Where xi are input records, ωi is the corresponding weight to xi, and σ is the sigmoid 

function defined as: 

𝜎(𝑥) =  1
1 + 𝑒−𝑥⁄  (2) 

For each xi, the cost and gradient functions are calculated using backpropagation and 

the weights are optimized with a conjugated gradient solver. 

2.3. Support Vector Machine 

Support Vector Machine (SVM) are classifiers that define a decision limit optimally 

separating two classes. In linear cases, the decision limit becomes a hyperplane. The con-

struction of the hyperplane separating two classes is based on a sample subset near the 

decision limit (support vectors). In the linear case, two classes are defined by limits, that 

is, w · x-b ≥ 1 and w · x-b ≤ -1. A margin is defined as the distance between these two 

hyperplanes, 2 / |w|.  

SVM training maximizes the margin between the training points of two different 

classes. A restriction-delimiting parameter C is used to control penalization when training 

instances are classified incorrectly. For a high value of C, SVMs tend to generate a smaller 

margin at the risk of overfit. A small value of C results in more erroneous classifications 

at the expense of training precision [2, 12]. 

In [14] the authors describe the use of SVM regression to estimate TOC from string 

records and compare it with the traditional method ΔlogR. An SVM advantage is that a 

kernel trick is easy to use for mapping low-dimension data and linear decision limits in a 

high dimensional space to solve non-linear classification problems. Some of the indicators 

most used are [27]: 

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝 (𝑥𝑇𝑥′ + 𝑐)𝑑 (3) 

Gaussian radial basis function (RBF) is defined as show in (4). For the RBF and to 

reduce the number of hyperparameters, only Gauss kernel functions are considered. The 

kernel is controlled by kernel scale y. A one-to-one classification is implemented in the 

process to improve the multiclass classification results because the computing cost does 

not significantly increase with the number of classes. 

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝 (−𝑦‖𝑥 − 𝑥‖) (4) 

2.4. Random Forest 

Random Forest (RF) is a supervised learning algorithm derived from decision trees 

(DT), which is frequently used for developing a predictive model [28, 29]. As described in 

[3, 28, 30], DT is basically a hierarchical set of nodes (beginning with a root-node), where 

each node contains a decision based on the comparison between an attribute and a thresh-

old value. DT-based learning starts with the observation of an object represented by the 

branches of a tree and ends with certain conclusions related to the target value of an OB-

JECT (represented by tree values). 

The RF supervised learning algorithm uses supervised learning methodology over a 

labelled dataset (training set) to make predictions and produce a model. The resulting 

model can be later used to classify non-labelled data, along with establishing data param-

eter and threshold values, working on a training dataset.  

The method combines the idea of bagging with the random selection of characteris-

tics so as to construct decision trees with controlled variance [28, 31]. One of RF main 

benefits as a model is that it can be used for determining the importance of the variables 

in a regression or classification problem intuitively [31].  
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This importance is calculated with a metric, according to the impurity decrease in 

each node used for data partitioning. In the case of classification, the class determined 

corresponds to the mode of the classes provided by each tree. 

3. Materials and Methods 

3.1. Data-driving techniques in the copper industry and the Methodology 

Currently, there are some cases in which data-driving algorithms are used by the 

industry of copper production by leaching to analyze data and provide results, such as 

models for predicting the quality of the copper recovered [3]. Based on data availability, 

data-driving techniques such as machine-learning algorithms: ANN, SVM, and RF are 

implemented as copper recovery classifiers. The definitions of these algorithms and their 

main characteristics applicable in this context are described below. 

On the field of copper recovery by leaching, there are a lot of parameters that have 

an influence on the resulting recovery; some of them can be controlled but other cannot 

be directly controlled [3]. This section describes the experimentation parameters and the 

sizes of the used datasets. The methodology used in this study is detailed graphically in 

Figure 2. Each stage of the methodology is described below: 

1. Data preparing. For this first step data from copper heap (called plant) and data 

from laboratory (called lab) were used, both data sets were acquired in accord-

ance with an experimental design, described below. The datasets contain the fea-

tures of both process (the leaching process on plant and the leaching process on 

lab). In both cases, data were prepared according to the results of the predictive 

variable measurements on heap and lab. In this stage, .csv archives were used 

with data collected at the plant and the lab. The class ‘copper recovery’, and as-

sociated variables are detailed in Table 1.  

2. Labels generation. The second stage consisted in generating labels for the de-

pendent variable Y (copper recovery - see Table 1) in both datasets, according to 

the threshold values of the other predictive variables. This process was made 

aiming to prepare the entry data of data mining algorithms. This resulted in da-

tasets with labels for the dependent variable Y. 

3. Models generation. The third stage consists in training for developing predictive 

models, using some parts of the datasets for training and the remaining ones for 

validation; the details are in Section 4.  

4. Validation and analysis of results. The fourth stage deals with the validation and 

interpretation of results. In this stage, comparative statistical tests using classifier 

performance measures were utilized to determine the quality of the models de-

veloped. The models that resulted from these tasks were analyzed and interpre-

tated, according to expert knowledge and experience in the field of copper min-

ing exploitation by leaching.  

5. Prediction. Using the validated models, predictions of copper recovery by leach-

ing were made, and these were compared using the techniques described in the 

previous step. 

The steps of the methodology, from data preparing to validation and analysis of re-

sults are summarized in Figure 2. 

 

Figure 2. Workflow for Copper recovery prediction using both datasets (Heap and Lab). 
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3.2. Data preparation and Experimental Design 

For this study the experimental design is based on the previous models described on 

[3, 10], in the same way, the data used as input for the modes were provided by SCM 

Franke copper mine, this mine is located in Atacama Region, Chile. More details about 

this company and their mining processes can be found in [3, 10]. One of the main goals on 

the leaching process is to obtain the greatest copper production by saving resources and 

being the least possible aggressive to the environment.  

As have been described in [3], the copper leaching process involves tasks as irrigation 

beginning and maintenance, agglomerate condition evaluation, drainage distribution, 

pool solution inventory, PLS flow evaluation. Figure 1 illustrate these processes. In later 

stages the process of distribution and deposition of the material leached at the plant (har-

vest) are made. At SCM Franke mine the leaching cycles are planned to last 65-100 days.  

Two kinds of resulting data related to material leached were considered for this work, the 

first one is related to a dynamic plant and the second one is related to pilot plant (or piling 

plant). For each of them, a dataset composed by records used in [10] (2017) and a dataset 

composed by records used in [3] (2020) were considered.  

In order to facilitate the interpretation and relationship with the input data, the following 

notation was used: A1 and B1 identify the datasets that were collected for the word re-

ported in [10] (2017) and A2 and B2 identify the datasets that were used in the word re-

ported in [3] (2020), the labels A1 and A2 identify the operational data and the labels B1 

and B2 identify the laboratory-piling data (pilot data). 

Operational data correspond to data that were collected during periods called leaching 

cycles beginning after soil piling and the starting of the irrigation process, since day 1 to 

the last day of production. Similarly, laboratory data correspond to production who was 

conducted in two agglomerate tanks of the same dimensions with a material whose gran-

ulometry was less than 13 mm in diameter (more details in [3]).  

In this work a total of 20,000 records from operational plant and 15,000 records from piling 

were analyzed. Using these data, the following datasets were prepared: 4,916 operational 

records corresponding to 30 leaching cycles during an average of 67 days were cleaned 

and prepared, and they are A1, 3,772 operational records corresponding to 33 leaching 

cycles during an average of 61 days were cleaned and prepared, and they are A2. Also, 

3,863 piling records, corresponding to 65 leaching cycles during an average of 61 days 

were cleaned and prepared, and they are B1, and finally 3,030 piling records, correspond-

ing to 63 leaching cycles during an average of 63 days were cleaned and prepared, and 

they are B2. 

To develop the predictive models the variables shown in table 1 were used. Each 

algorithm has its own characteristics and procedure. Therefore, the predictive variables 

had to be adjusted. Table 1 shows the initial discretization of the variables needed to use 

the algorithms. 

Table 1. Entry parameters to the statistical model. 

Var Description Low Normal High 

X1 mono class granulometry  (mm) [11.5-12) [12-13) [13-15) 

X2 irrigation rates  (lhr/m2) [6-8) [8-11) [11-14) 

X3 total acid added  (g/l) [0.5-20) [20-50) [50-75) 

X4 stocked high  (m) [1-3) [3-4) [4-5) 

X5 total copper grade  (%) [0.4-0.7) [0.7-1.2) [1.2-2.1) 

X6 CO3 grade  (%) [0.5-4) [4-6) [6-10) 

X7 leaching ratio  (m3/TMS) [0.012-5) [5-10) [10-15) 

X8 operation  (days) [1-50) [50-100) [100-168] 

X9 soluble copper grade stacked  (%) [55-65) [65-80) [80-98] 

X10 Number of stockpiles - - - 
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Y Copper recovery  (%) [10-65) [65-80) (80-98] 

 

To generate the models, the free educational version of Rapidminer 9.7® was used.  

This software tool allows developing models with desired characteristics and available 

datasets.  

Before to use the algorithm RF, labels for variable Y from the continuous values de-

scribed on Table 1 were created. Initially three ranges for Y were used, these ranges were 

principally based on the threshold values of variable X7 indicated on Table 1, but consid-

ering the earlies results when the preliminary modes with RF were new umbral values for 

X7 were found, these three ranges were discarded, and two new ranges were used in ac-

cordance with the new threshold values (details are in Section 4.1). These values were: “1” 

for optimal values of Y, when X7<= 4.2 and, “0” for less-favorable values of Y when X7>4.2. 

For SVM, the same two ranges for Y were used in order to create two classes. The SVM 

algorithm takes each dataset and makes a prediction for each entry, about which of the 

two classes created previously. To meet the above mentioned, it was necessary to make a 

class separation over the dependent variable (Y). This separation was made considering 

the characteristics of variable X7. 

Variable X7 is a consumption and inventory indicator of the sulfuric acid used in the 

leaching irrigation process (variable X2) and allows establishing the indicators of the pro-

cess cost. The relationship between variable X7 and operational costs is as follows: the 

smaller the variable X7, the smaller the operational costs. However, if variable X7 de-

creases, it affects copper recovery (dependent variable).  

The relationship between variables X and Y is neither bidirectional, nor linear, i.e., an 

increase in the value of variable X7 does not necessarily result in copper recovery (Y). 

However, a value greater than 4 does not give evidence of a significant slope in copper 

recovery increase. But a value 4.2 for variable X7 is considered as a threshold value to 

separate recovery and generate recovery ranges giving rise to the labels described below: 

‘low’ for a recovery below 45% and X7 in the interval (0.0012- 4.2), and ‘high’ for a recov-

ery over 45% and X7 in the interval [4.2-15). 

In order to argue the previously said, two histograms of dependent variable values 

(Y) and X7 values are shown in Figure 3. Figure 3 (a) shows examples of copper recovery, 

while Figure 3 (b) shows examples of variable X7 levels throughout the different leaching 

cycles. As shown in Figure 3(a), the leaching cycles range from 60 to 100 days, while from 

day 15 to 35 the slopes of the recovery curves tend to be horizontal. This may involve that 

the relationship between the irrigation ratio and recovery is not so convenient.  

This is particularly observed in the curve exceeding the threshold value of 60% re-

covery, but with an X7 final value of X7=14.95, which results in a high leaching cycle cost. 

The above, together with expert knowledge supports the decision to fix value 4.2 as the 

optimal threshold for X7. 

 

Figure 3. Examples of 2 copper recovery cycles (cicle-1 and cicle-2) and their relationship with 

variable X7. Part (a) shows levels of leaching ratio for cicle-1 and cicle-2, while part (b) shows the 

different values of the variable Y (the class) influenced by X7 throughout each leaching cycle.  

3.3. Validation using Performance Measures 
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Once the models are developed, they must be validated through different techniques. 

Often, the models are not validated with the same data used for training the classifier. As 

reported by [33], the k-fold cross-validation method is a good alternative for validating 

methods as those developed in this study. In k-fold cross-validation, the (simple) original 

training set is partitioned into k disjoint sets, one subset being retained for validation and 

the remaining groups (k-1) randomly selected to be used in training, while the only re-

maining group of samples is used for creating the cross-validation error function. This 

function is minimized by changing the values in each training of the automatic learning 

algorithm [9, 14]. 

There are several statistical tests using classifier performance measures, which work 

over the same dataset. Also, there are several alternative performance measures to com-

pare the goodness of classifiers. Here, performance measures that may be applied in the 

three classification algorithms used were selected [3, 9].  

In order to carry out the validation, and based on the data obtained in the experi-

ments, we will obtain a confusion matrix. This matrix will facilitate the analysis needed to 

determine where classification errors occur. The confusion matrix is a table that shows the 

distribution of errors in the different categories. The values of merit necessary to evaluate 

the performance of the classifier to be implemented, will be calculated using this matrix. 

The confusion matrix is a 2x2 matrix with numerical values a, b, c, and d, which are the 

result of the classified cases, where a is the sum of the true positive cases, b is the true 

negatives, c represents the false positives, and d corresponds to the false negatives [22]. 

Next, the measures of merit of each classifier from previous studies were used in 

similar way to [3, 9, 10, 30]. The measures of merit used in this study help to determine 

the quality of the predictive models developed and are based on data from the confusion 

matrix and the result of training with each classification algorithm. These values of merit 

are the following: 

1. accuracy (acc): corresponding to the ratio of correctly classified examples from all the 

examples in the dataset [39]. This indicator can be calculated with the confusion ma-

trix data, according to (4), assuming that the dataset is not empty. 

acc = (𝑎 + 𝑑)/(𝑎 + 𝑏 + 𝑐 + 𝑑) (4) 

2. Precision (p): is the proportion of true positives (a) among the elements predicted as 

positive. Conceptually, precision refers to the dispersion of the set of values obtained 

from the repeated measurements of a quantity. Specifically, a high precision value 

(p) implies a low dispersion in measurements. This indicator can be calculated ac-

cording to (5), assuming a+b≠0. 

 p = (𝑎/𝑎 +   𝑏) ∗  100 (5) 

3. Recall (r): is the proportion of true positives predicted among all elements classified as 

positive, that is, the fraction of relevant instances classified. Recall can be calculated 

according to (6), assuming a+c≠0. 

 r = (𝑎 + 𝑑)/(𝑎 + 𝑐) (6) 

4. Matthew’s correlation coefficient (mcc): is an indicator relating the predicted versus the 

real, creating a balance between the classes, considering the instances correctly and 

incorrectly classified into classes quite different in size and with a significant number 

of observations [35]. The mcc value can be calculated according to (7), assuming that 

the destination dividend () is not zero. 

mcc = ((𝑎 + 𝑏) − (𝑐 + 𝑑))/  (7) 

     where 

 =√((𝑎 + 𝑑) ∗ (𝑎 + 𝑐) ∗ (𝑏 + 𝑑) ∗ (𝑏 + 𝑐) (8) 
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In each of these models, the values of merit of Eq. (4) to (7) were calculated, being 

useful for comparing the goodness of the models developed. These calculations, interpre-

tations, and comparisons are described in the next section.  

4. Results and Discussion 

This section describes the results obtained. As mentioned above, in order to facilitate 

their interpretation and relationship with initial data, the following notation was used: 

dataset A1 is the stockpile dataset used in [10] and dataset A2 the stockpile dataset used 

in [3]. Analogously, dataset B1 is the pilot dataset used in [10] and dataset B2 the pilot 

dataset used in [3]. 

Table 2 shows the RF total classification and the datasets for each copper recovery 

label (‘low’, ‘medium’, ‘high’), corresponding to datasets A1 and A2, and table 3 shows 

the corresponding information for datasets B1 and B2. In table 2, the results show that 

classification precision is always over 95%, and on the other hand, table 3 shows that clas-

sification precision is over 99% for the 3 ranges. Additionally, for both tables the difference 

between the real and predicted is lower than 30% for all class classes.  

This may be interpreted as a good approximation of the RF-generated models to what 

is actually observed in each dataset. It also shows that the classification precision is always 

over 97%, while the real and predicted is below 30% for all the class cases.  

Figure 4 shows the real vs. the predicted in each dataset, according to the classifica-

tion labels. The abovementioned is related to the interpretability of results from the RF-

generated models.  

Figure 5 shows no significant changes between the values of merit in any of the four 

scenarios. These data, together with the interpretation of trees described in Figure 6, show 

that separating the datasets is not significant, concerning the three values of the labels in 

the class. Rather, considering the threshold value X7=4.1, it is possible to optimize the 

separation into two groups in the class as follows: ‘low’ in the class variable for values 

X7<4.1 and ‘high’. 

Figure 6 (a) shows a result for dataset B1, clearly illustrating that ‘medium’ and ‘high’ 

groups may be regrouped into one group under threshold X7>=4.097, while Figure 6 (b) 

shows a result for dataset A2, illustrating that ‘medium’ and ‘high’ groups may be re-

grouped into one group under threshold X7>=4.108. 

For RF training, the value of parameter ‘tree number’ was set at 50, while for param-

eter ‘criterion’, the gain ratio value was selected at a maximal depth of 10 for each model.  

The resulting values of parameter ‘classification error’ for each training were as fol-

lows: 0.0014 for training with dataset A1; 0.0169 for training with dataset A2; 0.0403 for 

training with dataset B1; and 0.0715 for training with dataset B2. 

The value of parameter ‘classification error’ increases from training with the first da-

taset to the last one, but no relationship was found between this result and the possible 

interpretations of the model results. 

For SVM training, the value of C was set at 0.0. For training with ANN and each 

dataset, an operator called feed-forward neural network from Rapidminer© was used, 

with training cycles = 200 and a value of learning rate = 0.01. Table 4 shows the values of 

merit for the classifications of these algorithms. These values were obtained from the clas-

sification values in the confusion matrixes shown in tables 5-7. 

4.1. Discussion 

In this study, a total of twelve predictive modes were generated, in detail: four pre-

dictive models using RF, four with SVM and four using ANN. For these optimizations 

80% data were used for cross-validation and 20% for validation, in similar way to [3]. 

Added, four measures of merit including acc, p, r and mcc were used or each algorithm 

to evaluate the quality of all these machine learning methods (RF, SVM and ANN).  
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Table 2. Confusion matrix; accuracy and classification error values for datasets A1 and A2. 

 Dataset A1 

accuracy: 99.97% +/- 0.09% classification 

error: 0.03% +/- 0.09% (micro average: 

0.05%) 

 Dataset A2 

accuracy: 99.94% +/- 0.12% classification er-

ror: 0.07% +/- 0.11% (micro average: 0.06%) 

 

 
true  

low 

true  

me-

dium 

true  

high 

class  

precision 

 
true 

low 

true  

me-

dium 

true  

high 

class  

precision 

pred. 

low 
2896 0 0 100.00%  2893 0 0 100.00% 

pred. 

medium 
1 567 0 99.82%  0 371 0 100.00% 

pred. 

high 
0 1 19 95.00%  0 1 175 99.43% 

class  

recall 
99.97% 99.82% 100.00%   100.00% 99.73% 100.00%  

 

Table 3. Confusion matrix; accuracy and classification error values for datasets B1 and B2 

 Dataset B1 

accuracy: 99.93% +/- 0.16% classification 

error: 0.07% +/- 0.16% (micro average: 

0.07%) 

 Dataset B2 

accuracy: 99.93% +/- 0.14% classification er-

ror: 0.07% +/- 0.14% (micro average: 0.07%) 

 true 

low 

true 

me-

dium 

true  

high 

class 

precision 

 true 

low 

true 

me-

dium 

true 

high 

class pre-

cision 

pred.  

low 

1734 1 0 99.94%  1720 0 0 100.00% 

pred.  

medium 

1 511 0 99.80%  0 439 1 99.77% 

pred.  

high 

0 0 456 100.00%  0 1 870 99.89% 

class  

recall 

99.94% 99.80% 100.00%   100.00% 99.77% 99.89%  

 

 

First, using the datasets as input, RF algorithm and three labels for the variable Y, 

predictive models for Y were generated. Tables 2 shows the classification results using A1 

and A2 with 99.95% as final accuracy, similar results using B1 and B2 are show in Table 3, 

where the final accuracy is 99.93%. For both the records labeled as “medium” and “low” 

for X7 can be regrouped in “low” because not exceeding the threshold value 4.2 for values 

of Y in the range 60-80% of recovery.  

Meanwhile, figure 4 shows the real vs. the predicted in each dataset, according to the 

classification labels, this information together with the interpretation of trees described in 

Figure 5, show that separating the datasets is not significant, concerning the three values 

of the labels in the class, because Figure 5(a) shows that the limited value between “high” 

and “medium” is 4.097 and part (b) shows that the limited value is 4.1. Rather, considering 

the threshold value X7=4.2, it is possible to optimize the separation into two groups in the 

class as follows: “low” in the class variable for values X7<4.2 and “high” for all other cases. 
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Figure 4. Real vs. predicted values with RF classifier for each dataset, using labels “low”, “me-

dium”, and “high” for the dependent variables. 

 

 

(a) 

 

(b) 

 

Figure 5. Two tree structures developed with RF, using two different datasets. Figure 5(a) was 

generated using as input the dataset A1 and side (B) was generated with the dataset B2. 

Table 4 shows the values of merit for validating the quality of the model classification 

results. This table shows the classification precision (class_precision) in all models is over 

98.50%, while an ideal classification precision is 100%. The mean value of acc = 0.943 indi-

cating that almost all the samples in the datasets were correctly classified, while the worst 

absolute value in all the models was for dataset B1. 

The partial result shows in table 4, related to dataset B1, might be indicating that the 

data source must be checked to identify its cause. The low value of the variable of merit 

associated with each case of acc for each dataset may be due to high dispersion of the 

samples in dataset B1. The low value of p in the results of dataset B2 may be associated 

with high data dispersion in the data from the pilot dataset. 

 

Table 4. Values of merit for predictive models developed with algorithms FR, SVM, and ANN. 

 Dataset 
class_  

precision 
acc p r mcc 

RF A1 99.700 0.9491 99.7558 1.0000 0.0563 
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A2 100.000 0.9945 99.4548 1.0000 0.0529 

B1 100.000 0.8214 83.1261 1.0000 0.0026 

B2 99.850 0.9993 71.3012 1.0000 0.0016 

SVM 

A1 98.635 0.9491 99.7558 0.9955 0.0571 

A2 98.717 0.9945 99.4548 0.9878 0.0537 

B1 98.607 0.8314 83.1361 0.9877 0.0025 

B2 99.381 0.9993 71.3712 0.9878 0.0015 

ANN 

A1 99.381 0.9491 99.8350 1.0000 0.0042 

A2 99.921 0.9946 99.6177 0.9984 0.0437 

B1 99.381 0.8312 83.5156 0.9954 0.0018 

B2 99.381 0.9958 71.4451 0.9981 0.0011 

 

 

For table 4, the result of the variable of merit mcc is also remarkable. Since all the 

values are low, the model prediction is quite close to real. Considering this result, it is then 

possible to interpret that the datasets and the preparation of the predictive variables and 

labels are correct.  

As is known RF, SVM and ANN are probabilistic models that provide fa powerful 

formalism for representation, reasoning and learning under uncertainty [36]. Considering 

the results given in table 4, ANNs show the best capability to reasoning over the datasets, 

since the best mcc values correspond to these models, while mcc values for RF and SVM 

models are quite similar and close, this means that RF and SVM have similar behaviors 

over the data used in this work. 

Notably, the worst values for acc were with dataset B1, while the worst values for p 

were with dataset B2, in relation to the parameter r, no significant differences have been 

observed among the models. On the other hand, the well-classified figures (in the models' 

confusion matrix tables) are above 95.98% as shown in tables 5, 6 and 7.  

Table 5 shows the classification obtained with RF for all datasets with labels “high” 

and “low” for the class Y. In particular it should be noted that the final accuracy is over 

99,55%. The best classification obtained has been for the label “low”, with a total of 100% 

of precision for the 99,97% of the total of the cases for this classification. 

Similarly, Table 6 shows the classification obtained with SVM. The final accuracy is 

over 98,65% this value is lower than the value obtained by using FR. In this case the best 

classification obtained has been for the label “low”, with a total of 98,69% of precision for 

the 99,12% of the total of the cases for this classification. 

In the same way, Table 7 shows the classification obtained with ANN. For this case 

the final accuracy is over 99,51% this value is also above that the value obtained by using 

SVM. Similarly, the best classification obtained has been for the label “low”, with a total 

of 99,41% of precision for the 99,57% of the total of the cases for this classification. 

 

Table 5. RF Confusion matrix for datasets A1, A2, B1, and B2.  

 Dataset A1  Dataset A2 

 true low true high class precision  true low true high class precision 

pred. low 3265 0 100.00%  3466 0 100.00% 

pred. high 1 275 99.43%  0 1023 100.00% 

class recall 99.97% 100.00%   100.00% 100.00%  

 Dataset B1  Dataset B2 

 true low true high class precision  true low true high class precision 

pred. low 2248 0 100.00%  2159 1 99.95% 

pred. high 0 456 100.00%  1 869 99.89% 

class recall 100.00% 100.00%   99.95% 99.89%  
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Table 6. SVM Confusion matrix for datasets A1, A2, B1, and B2. 

 Dataset A1  Dataset A2 

 true low true high class precision  true low true high class precision 

pred. low 3660 26 99.45%  3074 50 98.40% 

pred. high 5 224 97.82%  12 894 99.00% 

class recall 99.89% 90.60%   99.61% 95.98%  

 Dataset B1  Dataset B2 

 true low true high class precision  true low true high class precision 

pred. low 3203 48 98.52%  2074 50 98.40% 

pred. high 8 604 98.69%  12 894 99.00% 

class recall 99.75% 92.64%   99.61% 95.98%  

 

Table 7. ANN Confusion matrix for datasets A1, A2, B1, and B2. 

 Dataset A1  Dataset A2 

 true low true high class precision  true low true high class precision 

pred. low 3662 2 99.96%  4951 2 99.84% 

pred. high 3 248 98.80%  0 1092 100.00% 

class recall 99.94% 99.20%   100% 98.42%  

 Dataset B1  Dataset B2 

 true low true high class precision  true low true high class precision 

pred. low 3207 19 99.41%  2771  9 99.61% 

pred. high 4 633 99.37%  16 1231 99.51% 

class recall 99.88% 97.09%   99.81% 99.03%  

 

All these tables (5, 6 and 7) are showing that the classification precision for all gener-

ated models is over 90.00%, while the gap between the real and predicted is below 10% 

for all the class cases.  

An additional prelaminar conclusion based on the analysis of the obtained merit val-

ues seem to be mostly balanced, without classes bringing down the performance in a sig-

nificative way. This is a very important feature for models when imbalanced data is used 

as input, as indicate in [37]. 

In general, and as a result of the above analysis, it is possible to conclude that the 

classifications obtained when SVM and ANN were used are very closer to the real number 

of records of the datasets, but the classifications obtained using the RF algorithm are more 

exactly because the predicted values are very close to 100%. Figure 6 illustrates the con-

trast describe above.  
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Figure 6. Comparative of real vs predicted values for each dataset and considering the labels ‘low’ 

and ‘high’ for each dataset.  

 

Conclusions 

This study compares three supervised machine learning algorithms for classifying 

copper recovery quality prediction in a leaching process, using real data collected in a 

copper mine of the north of Chile. In summary, the three artificial intelligence methods – 

RF, SVM, and ANN – may be used to develop predictive models for copper recovery, 

identifying and validating the most influential predictive variables of class Y (copper re-

covery). This study uses datasets prepared and tested in previous studies to develop pre-

dictive models detailed in [3, 10]. One of the main contributions of this study is the use of 

four datasets: two related to real operational data and two related to laboratory-piling 

(pilot), used by developing predictive models with RF, SVM, and ANN.  

Resulting models were validated using the cross-validation method, utilized in train-

ing an 80-20 k-folder cross-validation. This allowed developing validated and reliable 

models with a minimal error value in trainings. This resulted in an average accuracy over 

95% in all the predictive copper recovery models, using the four datasets prepared for this 

study, and an average precision over 98% in all the classifier trainings. Also, measures of 

merit (acc, p, r, mcc) for each classifier were used, in order to determine the quality of the 

predictive models developed. The models obtained show the following mean values: 

acc=94.32, p=88.47, r=99.59, and mcc=2.31. These values are highly competitive as com-

pared with those obtained in similar studies using other approaches in the context. 

For this work some interesting results respect to RF, SVM, and ANN have been 

achieved, for example, the parameter optimization with SVM models is noticeable for 

handling no-linear data, and this method was useful to draw decision boundaries between 

data points from different classes and separate them with maximum margin. RF method 

was also useful for identifying the threshold values of the predictive variables that influ-

ence class values in the prediction. Another interesting conclusion is related to the close-

ness of predictions to real results. Particularly in this case, the best method was ANN, 

confirming its potentiality for developing machine learning models accurate for copper 

mining exploitation. The above is not detrimental to the results of the other methods used 

(RF and SVM) since the results obtained with the last two are also quite good and accurate.  
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Filially, as has been said throughout this document, the use of artificial intelligence 

methods, in particular of three machine learning algorithms in conjunction with real data 

is not very common in the copper industry. Thus, we believe the comparative study 

among these machine learning methods builds an excellent platform for future studies in 

this area. 
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