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Abstract  

Cytochrome-c-oxidase (COX) subunit 4 (COX4) plays important roles in the function, 
assembly and regulation of COX (mitochondrial respiratory complex 4), the terminal 
electron acceptor of the oxidative phosphorylation (OXPHOS) system. The principal 
COX4 isoform, COX4-1, is expressed in all tissues, whereas COX4-2 is mainly expressed 
in the lungs, or under hypoxia and other stress conditions. We have previously described 
a patient with a COX4-1 defect with a relatively mild presentation compared to other 
primary COX deficiencies, and hypothesized that this could be the result of compensatory 
upregulation of COX4-2. To this end, COX4-1 was downregulated by shRNAs in human 
foreskin fibroblasts (HFF), and compared to patient's cells. COX4-1, COX4-2 and HIF-1α 
were detected by immunocytochemistry. The mRNA transcripts of both COX4 isoforms 
and HIF-1 target genes were carried out by RT-qPCR. COX activity and OXPHOS 
function were measured by enzymatic and oxygen consumption assays, respectively. 
Pathways were analyzed by CEL-Seq2 and by RT-qPCR.  
We demonstrate elevated COX4-2 levels in the COX4-1-deficient cells with a concomitant 
HIF-1α stabilization, nuclear localization and upregulated hypoxia and glycolysis 
pathways. We suggest that COX4-2 and HIF-1α has the are upregulated, also in normoxia 
as a compensatory mechanism in COX4-1 deficiency. 
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1. Introduction: 
 
The mammalian cytochrome c oxidase (COX, mitochondrial respiratory chain complex 

IV) is a dimeric multi-subunit complex which is comprised of fourteen mitochondrial and 
nuclear-encoded subunits. COX is considered the rate-limiting complex of the oxidative 
phosphorylation system (OXPHOS). The two unique regulatory mechanisms (compared 
to the other OXPHOS complexes) are; the expression of isoforms and the binding of 
specific regulatory factors to nuclear-encoded subunits [ 2 Arnold. Mitochondrion. 2012]. 
One important regulatory mechanism involves the COX4 isoforms and feedback inhibition 
by ATP. COX4 is the largest nuclear encoded subunit and plays important roles in COX 
function, assembly and regulation. It is allosterically inhibited at high ATP/ADP ratios, and 
by phosphorylation, allowing fine tuning of the mitochondrial respiratory capacity. COX4 
isoform 1 (COX4-1), which is the main subunit 4 of COX, is ubiquitously expressed in 
mammalian tissues under normoxic conditions. COX4 isoform 2 (COX4-2) the less 
common isoform, is primarily expressed in the lung and in lower levels in the placenta, 
heart, brain and pancreas. COX4-2 is preferentially expressed under hypoxia and 
oxidative stress and it is suggested that the isoform switch results in a more efficient COX 
activity. [2 Arnold, 3 Timon].  

In 2017, we reported a novel form of COX deficiency caused by a K101N variant in 
COX4I1 gene encoding COX4-1 in a patient presented with Fanconi anemia-like features, 
short stature and mild dysmorphism, while all known Fanconi Anemia (FA) gene 
sequences were intact. We proved the pathogenicity of the homozygous K101N variant by 
demonstrating 25% residual COX activity in patients’ fibroblasts homogenate, almost 
undetectable COX4-1 protein in mitochondria, and by performing complementation studies 
with the wild-type gene [4Abu-Libdeh, 2017].  Additionally, we verified chromosomal 
instability by Phospho-Histone H2A.X (γH2AX) staining [5 Douiev 2018]. Recently, an 
additional pathogenic COX4I1 variant (P152T), associated with a much more severe 
phenotype resembling Leigh syndrome with developmental regression abnormal MRI and 
16% residual COX activity in muscle, was reported by Pilali et al. [6 Pilali].   

Notably, the phenotype in our patient was different and relatively mild compared to the 
COX4-1 P152T patient and other patients with isolated COX deficiencies, and nuclear-
encoded mitochondrial diseases in general [7 RAK, 8 shoubridge,9Hock 2020].  
Accordingly, we hypothesized that a compensatory isoform switching to COX4-2 is able 
to, at least partially, compensate for the deficient COX4-1. In this work, we demonstrate 
elevated COX4-2 in the K101N patient's fibroblasts as well as in a human foreskin 
fibroblasts cell line (HFF) with stable COX4-1 knockdown. This upregulation is linked to 
HIF-1α stabilization, nuclear localization and upregulation of both hypoxia and glycolysis 
pathways.       
 
 
2. Materials and Methods: 

 
2.1. Tissue cultures 

Previously established skin primary fibroblasts cultures from the patient (Informed 
consent was obtained IRB #0485-09) [4Abu-Libdeh 2017] controls and human foreskin 
fibroblasts (HFF-1 ATCC) were maintained in high-glucose DMEM supplemented with 
15% fetal bovine serum, L-glutamine, pyruvate and 50µg/mL uridine (Biological Industries, 
Beit Ha'emek, Israel). For immunocytochemistry, cells were seeded on u-slide 8 well-
ibiTreat sterile tissue culture slides (NBT; New Biotechnology Ltd., Jerusalem, Israel). For 
western blot or RNA analysis, cells were seeded, cells were grown in tissue culture bottles. 
For positive hypoxia controls in (Immunostaining and western blot) cells were pre-
incubated with 500µL CoCl2 supplemented within a new fresh media, for 6 or 24 hours, at 
37°C, 5% CO2 [10 Shteyer2009]. All cells were incubated at 37 °C in a humidified 5% 
CO2 atmosphere.  
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2.2. RNA interference  
For the downregulation of COX4I1, we employed the MISSION® shRNA plasmid DNA 

vector system. The system included five plasmids each is targeted against different site of 
COX4I1. In addition, we used a non-mammalian shRNA Control Plasmid DNA target as a 
control vector (Sigma-Aldrich). We introduced each of the DNA plasmids into HEK293FT 
cells by co-transfection with pLP1, pLP2, and pLP/VSVG plasmids using lipofectamine 
(ViraPower; Invitrogen, California, USA). Human foreskin fibroblasts were infected with 
viral supernatant containing polybrene. Stably transfected cells were selected with 
puromycin (2µg/mL) for three-weeks. Preliminary results showed that shRNA 
#TRCN0000232554 (COX4-1 shRNA) was the most suitable.  
 
2.3.  Quantitative reverse transcription polymerase chain reaction (RT-qPCR) 

Total RNA was isolated from patient, HFF-shRNA, HFF-CV and healthy control primary 
fibroblasts with Tri-Reagent (Telron, Isarel) and cDNA from poly(A)+mRNA was generated 
using Improm II, Promega, Madison, WI, USA.  Real time, quantitative PCR for the 
quantification of COX4I1, COX4I2, PDK1, SLC2A1, HK1, HK2, GUSB and GAPDH 
transcripts - was performed using Fast SYBR GreenMaster Mix and the ABI 
PRISM7900HT sequence detection system (Applied Biosystems, Foster City, CA, USA). 
The following primer sequences were used fo qPCR:   

 

 
2.4. COX enzymatic activity  

COX activity in cells disrupted by sonication and solubilization with 0.5mg/mL -dodecyl-
β-D-maltoside (Calbiochem, San-Diego, CA, US) on ice, was determined by 
spectrophotometry monitoring the oxidation of 50µM reduced cytochrome c at 550nm in 
10mM potassium phosphate buffer, pH7.0 at 37°C on a Kontron UVICON xs double beam 
spectrophotometer (Secomam, France) 

 
2.5. Oxygen Consumption rate  

Oxygen consumption rate (OCR) was measured using Agilent Seahorse XF Cell Mito 
Stress Test Kit (#103015-100) (Seahorse Biosciences, North Billeric, MA, USA). 10,000 
cells/well were seeded on an XF96-well plate. Following 72 hr, the growth medium was 
changed to an unbuffered DMEM (Agilent Technologies, Inc. Wilmington, USA) 
supplemented with 10mM glucose 1mM pyruvate and 2mM glutamine and the plate was 
equilibrated at 37°C for 1 hr before the measurements. In the absence and in the presence 
of sequentially added 2.5 µM Oligomycin, 2 µM Carbonyl cyanide-4 (trifluoromethoxy) 
phenylhydrazone (FCCP), 0.5 µM Rotenone and Antimycin), according to the 
manufacturer's instructions. Oxygen consumption rate (OCR) and extra cellular 
acidification rate ECAR, were calculated relative to cell content per well, estimated by the 
methylene blue assay which is proportional to cell count, as we have previously described 
[ 11Golubitzky]. Briefly, cells were fixed with 0.5% glutaraldehyde for 10 min, rinsed with 
double-distilled water, stained with 1% methylene blue in 0.1M borate buffer pH 8.5 for 1 
hr, rinsed with water, and allowed to dry. The dye was extracted from the cells with 0.1N 
HCl at 37°C for 1 hr, then measured at A620 nm.  

  

Gene Forward primer Reverse primer 
COX4I1 (NM_001861.6) 5'-TTTCACCGCGCTCGTTAT-3' 5'-CTTCATGTCCAGCATCCTCTT-3' 
COX4I2 (NM_032609) 5'-GAAGACGAGGGATGCACAG-3' 5'-GGCTCTTCTGGCATGGG-3' 
PDK1 (NM_001278549.2) 5'- CAGGACACCATCCGTTCAAT-3' 5'- AGCTTTAGCATCCTCAGCAC-3' 
GLUT1 (NM_006516.4) 5'-GCTACAACACTGGAGTCATCAA-3' 5'-ACTGAGAGGGACCAGAGC-3' 

HK1 (NM_000188.3) 5'- CCCTAAATGCTGGGAAACAAAG-3' 5'- CCCTTCTTGGTGAAGTCGATTA-3' 
HK2 (NM_000189.5) 5'- CATCCTCCTCAAGTGGACAAA-3' 5'- ACCACATCCAGGTCAAACTC-3' 
GUSB (NM_000181.4) 5'-GAAAATATGTGGTTGGAGAGCTCATT-3' 5'-CCGAGTGAAGATCCCCTTTTTA-3' 
GAPDH (NM_001357943.2) 5'-CAAGAGCACAAGAGGAAGAGAG-3' 5'-CTACATGGCAACTGTGAGGAG-3' 
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2.6. Immunofluorescence staining 
The cells were seeded on u-slide 8 well-ibi-Treat sterile tissue culture slides. On the 

following day, the media was replaced by a fresh media in the presence or absence of 
cobalt. Following 6 hr of incubation, the cells were fixed with 4% paraformaldehyde for 15 
min at room temperature, and then permeabilized with either 0.3% (HIF-1 and COX4-2 
staining) or 0.2% (COX4 isoform staining) Triton X-100. After blocking with 1% BSA /PBS 
for 1 hr at room temperature, slides were incubated with primary antibody at 4℃ overnight. 
On following day, the cells were washed 3 times with PBS, and incubated with 
fluorescence-conjugated secondary antibodies for 1 hr at room temperature in dark. The 
following primary antibodies were used for immunofluorescence:  HIF-1α (1:500; 
GTX127309 GeneTex Inc, Irvine, CA USA,), COX4-1 (1:150; 6431 MitoSciences, USA A-
Molecular Probes, Eugene,Oregon,USA) and COX4-2 (1:150; H00084701-M01, 
Abnova,Taipei,Taiwan).Secondary antibodies:  anti-Rabbit Cy5 (711-175-152 ) and anti-
mouse DyLight 488 (115-485-062) (both from Jackson Immuno research, Laboratories, 
Baltimore Pike,PA,USA).The slides were subsequently washed 3 times with PBS and 
nuclei were stained with Hoechst 33342, NucBlue live cell stain (Molecular probes, Life 
technologies Eugene OR, USA). Mitochondria were visualized using MitoTracker Red CM-
H2XRos (MTR) (Molecular probes, Life technologies Eugene OR, USA). In brief, cells 
were incubated with 2µM MTR for 30 min, at 37°C, 5% CO2. Then, the cells were washed 
with PBS and incubated with a fresh high-glucose media for another 45 min (in the dark). 
The cells subsequently were fixed as mentioned above. The cells were examined by 
fluorescence confocal microscopy, X60 or X40 magnifications (Nikon A1R). Image 
analyses were performed by the quantification of fluorescence signals per nuclei (HIF-1α) 
or per cell (COX4 isoforms) using the Image J software http://imagej.nih.gov/ij (National 
Institute of Health, Bethesda, MD, USA)  

 
2.7. Western blot 

Western blot assay (WB) was performed using the BIO-RAD kit. The samples were 
prepared as follows: the cells were washed with ice-cold PBS, harvested on ice, and 
immedicately incubated in Laemmli sample buffer 95oC for 5 min.. Subsequently, the 
samples were subjected to SDS-PAGE (Mini-protean, any-kD precast gel), transferred to 
PVDF membrane, and blocked with Every Blot Blocking Buffer according to the 
manufacturer’s instructions (Bio-Rad, Hercules, CA, USA). The membrane was incubated 
with rabbit anti HIF-1α antibodies (GenTex, CA, USA; Cat#: GTX127309) (1:1000), 
overnight, at 4°C. The following day, membranes were washed with TBS-Tween and 
incubated with peroxidase-conjugated donkey anti rabbit (Jackson Immuno Research 
laboratories, West Grove, PA, USA; Cat#:111-035-144) for 1 hr, at RT. Membranes were 
visualized with enhanced Clarity Max ECL detection (Bio-Rad), and were detected with 
the Fusion Solo system (Vilber Lourmat). Thereafter the membranes were washed and 
then incubated with mouse monoclonal antibody against actin (1:500; Cat#: 691001, MP 
Biomedicals, Ohio, USA) for 2 hr, at RT, washed and incubated peroxidase-conjugated 
goat-anti mouse antibody (Cat#:115-035-062, Jackson Immuno Research laboratories, 
West Grove, PA, USA;) for 1 hr, at RT and visualized as above. Band intensities were 
measured by imageJ http://imagej.nih.gov/ij (National Institute of Health, Bethesda, MD, 
USA). 

 
2.8. Expression by Linear Amplification and Sequencing: CEL-Seq2  

Total RNA was isolated from COX4-1 shRNA transfected cells or control HFF. 
Qualification and quantification were measured using Tapestation. A HiSeq assay using 
CEL-Seq2 method [12 Hashimshony ] was performed at the Technion Genome Center, 
Haifa Israel. Briefly, 3′ cDNA was synthesized and barcoded, followed by RNA synthesis 
and amplification by in vitro transcription. 

Statistic and bioinformatic analysis of the CEL-Seq2 data was performed in 
collaboration with the Info-CORE Bioinformatics Unit (Hebrew University of Jerusalem 
and Hadassah Medical Center). Following demultiplexing, reads were quality filtered and 
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trimmed for adapters as well as for poly-A tails using Cutadapt [13 Marcel]. Then they 
were aligned to the human genome (GRCh38 with annotations from Ensembl release 
95) using Tophat v2.1.1 [25 Kim], and quantified with HTSeq [14 Anders]. 

Differential expression analysis was done with the DESeq2 package (v1.22.1) [27 
Love]. Genes with a sum of counts less than 10 over all samples were filtered out. 
Differential expression was calculated with default parameters except not using the 
independent Filtering algorithm. Significance threshold was set as FDR<0.1.  

Visualization was performed using Glimma (1.10.1) [28 Su]. Results were combined 
with gene details (such as symbol, known transcripts, etc.), taken from the results of a 
BioMart query (Ensembl, release 95), to produce the final Excel file. In order to identify 
biological functions that were expected to be influenced (either to increase/ decrease) 
given the observed gene expression changes (between HFF-shCOX4I1 and healthy 
control fibroblasts), we ran gene set enrichment analysis (GSEA, reference: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1239896/). GSEA uses whole differential 
expression data (cut-off independent) to determine whether a priori–defined sets of 
genes show statistically significant, concordant differences between two biological 
states. We used the hallmark gene set collection from the molecular signatures database 
(MsigDB). Expression Data results are in the process of uploading on the GEO (Gene 
expression Omnibus) website (https://www.ncbi.nlm.nih.gov/geo/).  

 
2.9. Statistical analysis 

Statistical analysis was done by two tailed-student's unpaired t-test using 
IBM SPSS statistics for Windows, version 24.0. software (IBM Corp. Armonk, NY, 
USA). p values < 0.05 were considered statistically significant. 

 
3. Results: 

 
3.1. COX4 isoform switch and altered energetic profile in COX4-1-deficient cells.  

  
In order to characterize COX4-1 deficiency in HFF-shCOX4I1 and in patient’s cells 

we initially quantified COX4I1 mRNA transcripts by RT-qPCR and detected a significant 
86% and 60% decrease relative to controls respectively. This verified our previous 
preliminary findings in the patient’s cells and the efficacy of the shRNA which 
downregulated, but not depleted COX4I1 expression. Reciprocally COX4I2 transcripts 
were elevated x1.72 times in the HFF-shCOX4I1 cells and even more so (x16 times) in 
patients’ cells (Fig. 1A,B). Enzymatic activity of COX was, as expected, significantly 
reduced, but not abolished, in both HFF-shCOX4I1 and the patients' cells (80-45% 
decrease respectively) (Fig. 1C,D), relative to corresponding controls. To address 
whether the isoform switch translates into a change in allosteric properties as was 
previously reported by Arnold and Kadenbach [15 ]we measured COX activity in isolated 
mitochondrial in the presence of 10mM ATP.  The COX activity (31 nmol/min/mg) in 
patients’ fibroblasts mitochondrial was not affected by ATP, while mitochondria that were 
isolated from control fibroblasts showed a significant 52% inhibition upon preincubation 
with ATP (115±39 nmol/min/mg and 55±13 nmol/min/mg, respectively). Regretfully, we 
could not repeat this experiment in the HFF-shCOX4I1 cells because of impaired cell 
growth (manuscript in preparation) which hindered mitochondrial isolation.  

We also monitored both the mitochondrial respiration (indicated as the oxygen 
consumption rate; OCR) and the glycolysis (estimated by the extracellular acidification 
rate (ECAR) of the surrounding media) (Fig.1E-J). Maximal OCR reflects the maximal 
respiratory capacity following the addition of the uncoupler FCCP. We calculated the 
ATP-linked respiration, by subtracting the OCR values obtained following the addition of 
oligomycin (an ATP synthase inhibitor) from the basal OCR (Fig.1G,H). The background, 
oxygen consumption, in the presence of the respiratory chain inhibitors rotenone and 
antimycin were subtracted from the OCR values and all values were normalized to cell 
content.  
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 When comparing HFF-shCOX4I1 cells and the patients’ cells relative to their 
corresponding controls we clearly detected different energetic profiles (Fig. 1I,H). Basal 
and maximal OCR and ATP dependent OCRs in the HFF-shCOX4I1 cells were 
decreased by 30%-40%, but to a lesser extent than expected from the COX4I1 
transcripts (Fig. 1A,B). The OCRs were even less affected in the patient’s cells (Fig. 
1E,F). Nevertheless, the energy maps, combining decreased basal OCR with increased 
ECAR, clearly showed a tendency of favoring glycolysis over OXPHOS in both the HFF-
shCOX4I1 and somewhat less pronounced in the patient’s cells (Fig. 1I-J).   

 
 

Figure 1. Decreased COX4I1 expression, COX activity and mitochondrial respiration with elevated 
glycolysis trend in COX4-1-deficient cells.  mRNA expression levels of COX4 isoforms were measured by 
RT-qPCR in the knockdown vs. control cell lines (COX4-1 knockdown was obtained using a stable expression 
of COX4I1-targeting or non-mammalian target shRNAs, respectively) (A) and in patients' and healthy controls 
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fibroblasts (B). The results revealed decreased levels of COX4I1 mRNA expression and a reciprocally elevated 
levels of COX4I2 mRNA expression in both COX4-1-deficient cells. Enzymatic activity of COX determined by 
spectrophotometry, shows decreased activity (C&D) both in shCOX4I1 and patients' cells, relative to 
corresponding control.  Oxygen consumption rate (OCR) and extracellular acidification rate; ECAR were 
measured in shCOX4I1 (E,G,I) and patient cells (F,H,J) and in corresponding controls, with subsequent 
addition of Oligomycin, FCCP and Antimycin/Rotenone. Basal, ATP-linked and maximal OCR were calculated 
(G,H) and OCR was plotted against ECAR to construct energy maps (I,J). All values were normalized to cell 
content measured by methylene blue (A620). OCR was reduced, relative to the corresponding controls. Both 
COX4-1-deficient cell lines showed a tendency towards glycolysis than the corresponding controls. Values are 
presented as normalized mean± SEM; *p<0.05; **p<0.01 compared to corresponding control. 

The relative mild decrease of both OCR and COX activity in the patients’ cells and the 
significant residual OCR and COX activity in the HFF-shCOX4I1 cells could possibly be 
explained by compensating upregulation of COX4I2 expression as we observed by RT-
qPCR. Therefore, for verification we analyzed the presence of the COX4-2 protein by 
immunofluorescence. As depicted in Figure 2 A-B, COX4-1-deficient cells indeed showed 
a significant reduction in the COX4-1 protein, while displaying significant reciprocal 
elevation in COX4-2 protein, in accord with our assumption. (Regretfully, in our hands, the 
anti-COX4-2 antibodies were not suitable for immunoblot in cell homogenates).  

 

 
Figure 2. Decreased COX4 -1 with a reciprocal elevation of COX4-2 in COX4-1-deficient cells. Knockdown 
(HFF-shCOX4I1), patients' and corresponding control cells were incubated with mitotracker red, fixed and stained 
separately with antibodies against COX4-1 and COX4-2. The results displayed in A&B demonstrate markedly 
decreased COX4-1 levels in both COX4-1-deficient cells (HFF-shCOX4I1 and patients' cells), while COX4-2 
staining is increased, relative to respective controls. Nuclei were visualized with Hoechst-33342 (A). The 
micrographs were quantified and depicted as histograms of signal intensity per cell ± SEM of at least 100 cells 
*0.05<p; **0.01<p (B).  
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3.2. Upregulation of glycolytic and hypoxia pathways in COX4-1-deficient cells 
COX4 isoform 2 is mainly expressed in the lungs, and at low levels in the placenta, 

heart, brain and pancreas. COX4 isoform 2 gene (COX4I2) is featured with an oxygen 
responsive element (ORE), which is HIF-1-independent. COX4-2 expression is 
controlled by, at least, two mechanisms. That is either through the regulation of HIF-1 or 
via its ORE where transcription is regulated by the interplay of three regulatory 
transcription factors: RBPJ, CXXC5 and CHCHD2 [16Aras 2014]. In order to identify the 
possible pathways that regulate the observed isoform switch, we performed CEL-Seq2 
analysis HFF-shCOX4I1 and compared the RNA expression pattern with the HFF control 
(with the same genetic background) from five RNA extractions performed on different 
occasions. The main significantly upregulated pathways were epithelial mesenchymal 
transition (EMT), glycolysis and hypoxia (Figure 3A), (A list of up regulated genes is 
available in the supplementary table). The upregulation of glycolysis was in accord with 
the previously mentioned energy map showing decreased OCR with elevated ECAR. 
However, the pathway that caught our attention was hypoxia and among the potential 
mediators of hypoxia-induced EMT is the hypoxia-inducible factor-1α (HIF-1α), which is a 
transcription factor [17Tam et al 2020] linked among many other functions, also to the 
upregulation of COX4-2 under hypoxia [18Fukuda]. In order to validate these results, and 
to confirm the involvement of the HIF-1α pathway we performed RT-qPCR validations, to 
detect and quantify the levels of several major HIF-1 target genes. As represented in 
Figure 3-C, we verified the upregulation of four HIF-1α target genes (including: PDK1, 
GLUT1, HK1 and HK2) observed in CEL-Seq2 (represented in the volcano plot: Figure 
3B) which were also up-regulated in both knock-down and in the patient's fibroblasts.  
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Figure 3. CEL-Seq2 analysis identified hypoxia as one of the top up-regulated pathways in COX4-
1-deficient cells.  Total RNA was isolated from both COX4-1-deficient cells (HFF-shCOX4I1 and patient) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 February 2021                   



and from both types of control cells (HFF-CV and healthy control fibroblasts). A HiSeq assay was 
performed at the Technion Genome Center using the CEL-Seq2 method. Differential expression analysis 
was done with the DESeq2 package. Significance threshold was set as FDR<0.1. In order to identify 
biological functions that were expected to be influenced (either to increase/ decrease) given the observed 
gene expression changes (between HFF-shCOX4I1 and the healthy control fibroblasts), Pathway 
Analysis was subsequently performed. Up-regulation of hypoxia (left) and glycolysis (right) detected by 
GSEA (reference). NES: normalized enrichment signal; FDR: false discovery rate (A). In the volcano plot, 
each dot represents a gene (B). The x-axis indicates the log2 (Fold Change) of the expression of HFF-
shCOX4I1 relative to healthy control fibroblasts, and the y-axis reflects –log10 of the FDR adjusted p-
value of this comparison. The colored dots pass the threshold for FDR. Selected HIF-1 target genes in 
the volcano plot (PDK1, GLUT1, HK1 and HK2) were validated by RT-qPCR. Values of RT-qPCR 
validation are presented as the log2 (Fold Change) in ± SD of three biological duplicates (C).  
 

3.3. HIF-1α is elevated and translocated to the nucleus in COX4-1-deficient cells  
To gain further insight into the HIF-1α pathway in COX4-1 deficiency we set out to 

detect the HIF-1α protein in our model system. 
Notably HIF-1α is stabilized under hypoxic conditions, that stabilization enabling it to 

be translocated to the nucleus, where it functions as a transcriptional activator. Previous 
studies by Fukuda et al. [18 Fukuda] and others showed that reduced levels of oxygen 
lead to the elevation of COX4-2 expression. Moreover, they claimed that COX4-2, but 
not COX4-1, mRNA expression levels were elevated when the cells were treated with 
the hypoxia inducer, cobalt chloride [18 Fukuda, 19 Hervouet]. In order to understand 
whether HIF-1 plays a role in the COX4 isoform switch in COX4-1 deficient cells grown 
under normoxic conditions, we initially analyzed the presence of HIF-1α in whole-cell 
extracts by immunoblot analysis (Western blot) showing that indeed the level of HIF-1α 
in HFF-shCOX4I1 cell and patient’s cells lysates is markedly elevated (x3.5 and x30 
times, respectively) when normalized to beta-Actin, relative to controls (Fig. 4-A,B). To 
validate HIF-1α activation and band migration, we added cobalt 24hr before performing 
the assay. 

 

 
Figure 4. Increased levels HIF-1α in COX4-1-deficient cells. Western blot analysis was performed on 
cell extracts from both COX4-1-deficient cells (patient and HFF-shCOX4I1), from both corresponding 
controls. The extracted cells were probed with anti-HIF-1α and   anti-actin antibodies as loading control. 
As a positive control for HIF1-α, untreated (UT) human foreskin fibroblasts (HFF) were preincubated 
with Cobalt chloride to simulate hypoxia (A). The histogram represents the results normalized to actin 
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(B). The figure depicts one representative experiment out of three, showing an increased level of HIF-1α 
in COX4-1 deficient cells. 
 

 
In order to confirm the presence of HIF-1α and study its cellular localization we co-

immunostained HIF-1α with COX4-2 and counter stained with Hoechst-33342. As 
depicted in Figure 5, COX4-1-deficient cells displayed increased levels of HIF-1α 
localized in their nuclei, indicating that the elevated levels of HIF-1α, is most probably 
due to its stabilization. Notably all COX4-2 positive cells showed nuclear HIF-1α stain. 
The accumulation and translocation of HIF-1α to the nucleus indicate that HIF-1 is 
activated and thereby inducing the HIF-1 signaling pathway. These results affirm the 
CEL-Seq2 data analysis (Figure 3A), and verify the regulation of COX4-2 by HIF-1α.   

.  
Figure 5. HIF-1α nuclear accumulation is present in COX4-2-positive cells. COX4-1-deficient (HFF-
shCOX4I1 and patient) and control cells were stained with antibodies against HIF-1α (red) and COX4-2 
(green). Nuclei were visualized by Hoechst-3334. The results demonstrate increased nuclear localization 
of HIF-1α in COX4-1-deficient cells relative to controls. The observed accumulation of HIF-1α is correlated 
with COX4-2-positive cells (upper panel). The micrographs were quantified and depicted as histograms 
of HIF-1α (lower panel) relative signal intensity per nucleus ± SEM of at least 100 nuclei **p<0.01(B).  

 
Nevertheless, we were still puzzled by the fact that upregulation of COX4-2 and HIF-

1α occurs under normoxic conditions in our system. Thus, we aimed to strengthen our 
hypothesis that the upregulation of COX4-2 via HIF-1α occurs also in normoxia. To this 
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end, we compared the levels of double stained COX4-2 and HIF-1α in untreated cells and 
in cells treated with cobalt, in order to mimic hypoxia inducing a chemical upregulation of 
COX4-2. As depicted in Figure 6 A-B, 6 hr of pre-incubation with cobalt led to HIF-1α 
stabilization (accumulation of HIF-1α in the nuclei) in each type of cell line (both COX4-1-
deficient cells and corresponding controls). Interestingly, while a significant increase in the 
levels of COX4-2 was observed in the controls, COX4-1-deficient cells showed 
comparable levels of COX4-2, with and without cobalt With respect to nuclear 
accumulation of HIF-1α, a significant increase was evident upon cobalt treatment in all 
cells, also in COX4-1-deficient cells. Taking together, we suggest that the levels of COX4-
2 in COX4-1-deficient cells are already a priori elevated to a maximum at relatively low 
levels of HIF-1α (compared to cobalt) (Fig. 6B). 

 

 
 

Figure 6. Chemical activation of HIF-1α increase COX4-2 expression in control cells, whereas 
in COX4-1 deficient cells, the levels remain unchanged. COX4-1-deficient (HFF-shCOX4I1 and 
patient) and control cells have been either preincubated with or without cobalt for 6 hr prior performing 
co-staining of COX4-2 and HIF-1α (A). The stabilization of HIF-1α is demonstrated by its translocation 
to the nuclei of each treated cell. COX4-1-deficient cells did not show any difference in COX4-2 levels 
with and without cobalt treatment, while nuclear accumulation of HIF-1α was increased (A). The 
quantified results are depicted in the histogram (B). Values are normalized to the corresponding 
cobalt-treated control. mean± SEM of at least 70 cells; **p<0.002 compared to corresponding control. 
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4. Discussion 
 
In this work we show that COX4-1 deficiency due to K101N variant still retains a 

significant amount of OXPHOS capacity in patients’ fibroblasts. This was also confirmed 
in normal fibroblasts where COX4-1 was downregulated by shRNA. We chose 
downregulation in fibroblasts over knockdown knockout since it more accurately simulates 
the phenotype of the patient, which is much milder than other nuclear-encoded isolated 
COX deficiencies [6-9]. The only mild decrease in both the basal and ATP-linked OCR in 
COX4-1 knockdown cell line together with comparable levels of ATP-linked OCR in 
patients' and control fibroblasts, are in accord with our previous result, showing relatively 
normal ATP production by the luciferin-luciferase assay in the patient’ cells [20 Douiev]. 
These results suggest a cellular compensatory mechanism, in which in order to 
compensate COX4-1 deficiency, by upregulates the expression of COX4-2. Indeed, we 
detected an upregulation of the second isoform COX4-2, which likely is the cause of the 
observed partial rescued phenotype of COX4-1-deficient cells. Since we demonstrated 
similar results in both the patient's and the COX4-1 knockdown cells, we suggest that this 
phenomenon is not attributed solely to the K101N variant. Our results are in accord with 
previously published data obtained in various cell lines [17-19]. Recently, Reguera et al, 
studied each COX4 isoform separately by constructing HEK293-based cell lines with 
Cas9-mediated COX4 isoforms knockout, followed by stable knock-in of either isoform. In 
their study, the researchers confirmed different COX kinetics depending which isoform 
(either COX4-1 or COX4-2) is expressed [21 Reguera 2020]. We also confirmed this, as 
COX activity in patient’s fibroblast mitochondria was not inhibited by ATP, a feature of 
COX4-2. This in accord with published data showing that the allosteric ATP binding site in 
COX4-1 is dependent on phosphorylation of S58, while this regulatory residue does not 
exist in COX4-2 [22 Acin-Peres 2011]. Regretfully we could not perform more in-depth 
kinetic studies in the HFF-shCOX4I1 cells due impaired growth and chromosomal 
instability which was more pronounced than in the patient’ cells [20], hindering growth, and 
preventing mitochondrial isolation [manuscript in preparation]. Interestingly, in a reciprocal 
manner, we previously observed a compensatory upregulation of COX4-1 in COX 4-2 
deficiency [10 Steyer]  

In order to elucidate a possible pathway through which the upregulation of COX4-2 
occurs, we performed RNA-seq analysis (CEL-Seq2) and analyzed the differential gene 
expression between HFF-shCOX4I1 and control cells, with the same nuclear background. 
The data was then analyzed by GSEA (Gene Set Enrichment Analysis) in order to detect 
up and down regulated gene sets. Using this method, we showed that COX4-1 deficiency 
is accompanied by upregulation of the hypoxia and glycolysis pathways. In order to affirm 
these results, we analyzed HIF-1α abundance and localization and also verified the 
upregulation of several HIF-1 target genes. Interestingly, HIF-1α was present in the 
nucleus under normoxia and without any obvious oxidative stress (ROS were not relatively 
elevated in both patient’s cells [20] and in the knockdown cell lines (results not shown)). 
Notably, under hypoxia HIF-1α together with HIF-1β form a stabilized HIF-1 complex which 
acts a transcription factor of a variety of genes that contain the hypoxia response elements; 
including the COX4I2 gene [18 Fukuda. Cell (2007)].  There is an evidence that 
mitochondrial signals, other than hypoxia and ROS, such a redox status (NADH/NAD 
ratio), metabolites (TCA-intermediate oncometabolites- such as fumarate, succinate, and 
lactate) and other non-canonical mechanisms, can imitate and evoke hypoxia-like 
responses and modulate metabolism [reviewed in [23 McElroy and 24 Lomarin  ]. 
Interestingly, HIF-1α also induces genetic instability indicating that the regulation of DNA 
repair is an integral part of the hypoxic response [25 Koshij]. These evidences are in 
accordance with our previous publications regarding elevated levels of double-stranded 
breaks (DSBs) and genomic instability in COX4-1-deficient cells. [5,20]. Our results 
contribute to the elucidation of the role of COX4-1 in metabolism and to the current 
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understanding of the pathomechanism of COX deficiency due to nuclear-encoded subunits 
[26 Cutanova] 

To conclude, COX4-2 is upregulated and partially rescues COX4-1 deficiency through 
HIF-1α activation induced by a yet to be characterized, non-canonical pathway.    
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