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Abstract

Cytochrome-c-oxidase (COX) subunit 4 (COX4) plays important roles in the function,
assembly and regulation of COX (mitochondrial respiratory complex 4), the terminal
electron acceptor of the oxidative phosphorylation (OXPHOS) system. The principal
COX4 isoform, COX4-1, is expressed in all tissues, whereas COX4-2 is mainly expressed
in the lungs, or under hypoxia and other stress conditions. We have previously described
a patient with a COX4-1 defect with a relatively mild presentation compared to other
primary COX deficiencies, and hypothesized that this could be the result of compensatory
upregulation of COX4-2. To this end, COX4-1 was downregulated by shRNAs in human
foreskin fibroblasts (HFF), and compared to patient's cells. COX4-1, COX4-2 and HIF-1a
were detected by immunocytochemistry. The mRNA transcripts of both COX4 isoforms
and HIF-1 target genes were carried out by RT-gPCR. COX activity and OXPHOS
function were measured by enzymatic and oxygen consumption assays, respectively.
Pathways were analyzed by CEL-Seg2 and by RT-qPCR.
We demonstrate elevated COX4-2 levels in the COX4-1-deficient cells with a concomitant
HIF-1a stabilization, nuclear localization and upregulated hypoxia and glycolysis
pathways. We suggest that COX4-2 and HIF-1a has the are upregulated, also in normoxia
as a compensatory mechanism in COX4-1 deficiency.
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1. Introduction:

The mammalian cytochrome c¢ oxidase (COX, mitochondrial respiratory chain complex
IV) is a dimeric multi-subunit complex which is comprised of fourteen mitochondrial and
nuclear-encoded subunits. COX is considered the rate-limiting complex of the oxidative
phosphorylation system (OXPHOS). The two unique regulatory mechanisms (compared
to the other OXPHOS complexes) are; the expression of isoforms and the binding of
specific regulatory factors to nuclear-encoded subunits [ 2 Arnold. Mitochondrion. 2012].
One important regulatory mechanism involves the COX4 isoforms and feedback inhibition
by ATP. COX4 is the largest nuclear encoded subunit and plays important roles in COX
function, assembly and regulation. It is allosterically inhibited at high ATP/ADP ratios, and
by phosphorylation, allowing fine tuning of the mitochondrial respiratory capacity. COX4
isoform 1 (COX4-1), which is the main subunit 4 of COX, is ubiquitously expressed in
mammalian tissues under normoxic conditions. COX4 isoform 2 (COX4-2) the less
common isoform, is primarily expressed in the lung and in lower levels in the placenta,
heart, brain and pancreas. COX4-2 is preferentially expressed under hypoxia and
oxidative stress and it is suggested that the isoform switch results in a more efficient COX
activity. [2 Arnold, 3 Timon].

In 2017, we reported a novel form of COX deficiency caused by a K101N variant in
COX411 gene encoding COX4-1 in a patient presented with Fanconi anemia-like features,
short stature and mild dysmorphism, while all known Fanconi Anemia (FA) gene
sequences were intact. We proved the pathogenicity of the homozygous K101N variant by
demonstrating 25% residual COX activity in patients’ fibroblasts homogenate, almost
undetectable COX4-1 protein in mitochondria, and by performing complementation studies
with the wild-type gene [4Abu-Libdeh, 2017]. Additionally, we verified chromosomal
instability by Phospho-Histone H2A.X (yH2AX) staining [5 Douiev 2018]. Recently, an
additional pathogenic COX4/1 variant (P152T), associated with a much more severe
phenotype resembling Leigh syndrome with developmental regression abnormal MRI and
16% residual COX activity in muscle, was reported by Pilali et al. [6 Pilali].

Notably, the phenotype in our patient was different and relatively mild compared to the
COX4-1 P152T patient and other patients with isolated COX deficiencies, and nuclear-
encoded mitochondrial diseases in general [7 RAK, 8 shoubridge,9Hock 2020].
Accordingly, we hypothesized that a compensatory isoform switching to COX4-2 is able
to, at least partially, compensate for the deficient COX4-1. In this work, we demonstrate
elevated COX4-2 in the K101N patient's fibroblasts as well as in a human foreskin
fibroblasts cell line (HFF) with stable COX4-1 knockdown. This upregulation is linked to
HIF-1a stabilization, nuclear localization and upregulation of both hypoxia and glycolysis
pathways.

2. Materials and Methods:

2.1. Tissue cultures

Previously established skin primary fibroblasts cultures from the patient (Informed
consent was obtained IRB #0485-09) [4Abu-Libdeh 2017] controls and human foreskin
fibroblasts (HFF-1 ATCC) were maintained in high-glucose DMEM supplemented with
15% fetal bovine serum, L-glutamine, pyruvate and 50pg/mL uridine (Biological Industries,
Beit Ha'emek, Israel). For immunocytochemistry, cells were seeded on u-slide 8 well-
ibiTreat sterile tissue culture slides (NBT; New Biotechnology Ltd., Jerusalem, Israel). For
western blot or RNA analysis, cells were seeded, cells were grown in tissue culture bottles.
For positive hypoxia controls in (Immunostaining and western blot) cells were pre-
incubated with 500uL CoCl2 supplemented within a new fresh media, for 6 or 24 hours, at
37°C, 5% CO2[10 Shteyer2009]. All cells were incubated at 37 °C in a humidified 5%
CO; atmosphere.
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2.2. RNA interference

For the downregulation of COX4/1, we employed the MISSION® shRNA plasmid DNA
vector system. The system included five plasmids each is targeted against different site of
COX4/1. In addition, we used a non-mammalian shRNA Control Plasmid DNA target as a
control vector (Sigma-Aldrich). We introduced each of the DNA plasmids into HEK293FT
cells by co-transfection with pLP1, pLP2, and pLP/VSVG plasmids using lipofectamine
(ViraPower; Invitrogen, California, USA). Human foreskin fibroblasts were infected with
viral supernatant containing polybrene. Stably transfected cells were selected with
puromycin (2ug/mL) for three-weeks. Preliminary results showed that shRNA
#TRCNO0000232554 (COX4-1 shRNA) was the most suitable.

2.3. Quantitative reverse transcription polymerase chain reaction (RT-qPCR)

Total RNA was isolated from patient, HFF-shRNA, HFF-CV and healthy control primary
fibroblasts with Tri-Reagent (Telron, Isarel) and cDNA from poly(A)+mRNA was generated
using Improm Il, Promega, Madison, WI, USA. Real time, quantitative PCR for the
quantification of COX411, COX4l12, PDK1, SLC2A1, HK1, HK2, GUSB and GAPDH
transcripts - was performed using Fast SYBR GreenMaster Mix and the ABI
PRISM7900HT sequence detection system (Applied Biosystems, Foster City, CA, USA).
The following primer sequences were used fo gPCR:

Gene Forward primer Reverse primer

COX411 (NM_001861.6) '“TTTCACCGCGCTCGTTAT-3' '-CTTCATGTCCAGCATCCTCTT-3'
COX412 (NM_032609) '-GAAGACGAGGGATGCACAG-3' '-GGCTCTTCTGGCATGGG-3'

PDK1 (NM_001278549.2) '- CAGGACACCATCCGTTCAAT-3' '- AGCTTTAGCATCCTCAGCAC-3'
GLUT1 (NM_006516.4) '-GCTACAACACTGGAGTCATCAA-3' '“ACTGAGAGGGACCAGAGC-3'

HK1 (NM_000188.3) '- CCCTAAATGCTGGGAAACAAAG-3' '- CCCTTCTTGGTGAAGTCGATTA-3'
HK2 (NM_000189.5) '- CATCCTCCTCAAGTGGACAAA-3' '- ACCACATCCAGGTCAAACTC-3'
GUSB (NM_000181.4) -GAAAATATGTGGTTGGAGAGCTCATT-3' '-CCGAGTGAAGATCCCCTTTTTA-3'
GAPDH (NM_001357943.2) '-CAAGAGCACAAGAGGAAGAGAG-3' '-CTACATGGCAACTGTGAGGAG-3'

5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5

2.4. COX enzymatic activity

COX activity in cells disrupted by sonication and solubilization with 0.5mg/mL -dodecyl-
B-D-maltoside (Calbiochem, San-Diego, CA, US) on ice, was determined by
spectrophotometry monitoring the oxidation of 50uM reduced cytochrome ¢ at 550nm in
10mM potassium phosphate buffer, pH7.0 at 37°C on a Kontron UVICON xs double beam
spectrophotometer (Secomam, France)

2.5. Oxygen Consumption rate

Oxygen consumption rate (OCR) was measured using Agilent Seahorse XF Cell Mito
Stress Test Kit (#103015-100) (Seahorse Biosciences, North Billeric, MA, USA). 10,000
cells/well were seeded on an XF96-well plate. Following 72 hr, the growth medium was
changed to an unbuffered DMEM (Agilent Technologies, Inc. Wilmington, USA)
supplemented with 10mM glucose 1mM pyruvate and 2mM glutamine and the plate was
equilibrated at 37°C for 1 hr before the measurements. In the absence and in the presence
of sequentially added 2.5 yM Oligomycin, 2 yM Carbonyl cyanide-4 (trifluoromethoxy)
phenylhydrazone (FCCP), 0.5 pM Rotenone and Antimycin), according to the
manufacturer's instructions. Oxygen consumption rate (OCR) and extra cellular
acidification rate ECAR, were calculated relative to cell content per well, estimated by the
methylene blue assay which is proportional to cell count, as we have previously described
[ 11Golubitzky]. Briefly, cells were fixed with 0.5% glutaraldehyde for 10 min, rinsed with
double-distilled water, stained with 1% methylene blue in 0.1M borate buffer pH 8.5 for 1
hr, rinsed with water, and allowed to dry. The dye was extracted from the cells with 0.1N
HCl at 37°C for 1 hr, then measured at A620 nm.
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2.6. Immunofluorescence staining

The cells were seeded on u-slide 8 well-ibi-Treat sterile tissue culture slides. On the
following day, the media was replaced by a fresh media in the presence or absence of
cobalt. Following 6 hr of incubation, the cells were fixed with 4% paraformaldehyde for 15
min at room temperature, and then permeabilized with either 0.3% (HIF-1 and COX4-2
staining) or 0.2% (COX4 isoform staining) Triton X-100. After blocking with 1% BSA /PBS
for 1 hr at room temperature, slides were incubated with primary antibody at 4°C overnight.
On following day, the cells were washed 3 times with PBS, and incubated with
fluorescence-conjugated secondary antibodies for 1 hr at room temperature in dark. The
following primary antibodies were used for immunofluorescence: HIF-1a (1:500;
GTX127309 GeneTex Inc, Irvine, CA USA,), COX4-1 (1:150; 6431 MitoSciences, USA A-
Molecular Probes, Eugene,Oregon,USA) and COX4-2 (1:150; H00084701-MO01,
Abnova,Taipei,Taiwan).Secondary antibodies: anti-Rabbit Cy5 (711-175-152 ) and anti-
mouse DyLight 488 (115-485-062) (both from Jackson Immuno research, Laboratories,
Baltimore Pike,PA,USA).The slides were subsequently washed 3 times with PBS and
nuclei were stained with Hoechst 33342, NucBlue live cell stain (Molecular probes, Life
technologies Eugene OR, USA). Mitochondria were visualized using MitoTracker Red CM-
H2XRos (MTR) (Molecular probes, Life technologies Eugene OR, USA). In brief, cells
were incubated with 2uM MTR for 30 min, at 37°C, 5% CO.. Then, the cells were washed
with PBS and incubated with a fresh high-glucose media for another 45 min (in the dark).
The cells subsequently were fixed as mentioned above. The cells were examined by
fluorescence confocal microscopy, X60 or X40 magnifications (Nikon A1R). Image
analyses were performed by the quantification of fluorescence signals per nuclei (HIF-1a)
or per cell (COX4 isoforms) using the Image J software http://imagej.nih.gov/ij (National
Institute of Health, Bethesda, MD, USA)

2.7. Western blot

Western blot assay (WB) was performed using the BIO-RAD kit. The samples were
prepared as follows: the cells were washed with ice-cold PBS, harvested on ice, and
immedicately incubated in Laemmli sample buffer 95°C for 5 min.. Subsequently, the
samples were subjected to SDS-PAGE (Mini-protean, any-kD precast gel), transferred to
PVDF membrane, and blocked with Every Blot Blocking Buffer according to the
manufacturer’s instructions (Bio-Rad, Hercules, CA, USA). The membrane was incubated
with rabbit anti HIF-1a antibodies (GenTex, CA, USA; Cat#: GTX127309) (1:1000),
overnight, at 4°C. The following day, membranes were washed with TBS-Tween and
incubated with peroxidase-conjugated donkey anti rabbit (Jackson Immuno Research
laboratories, West Grove, PA, USA; Cat#:111-035-144) for 1 hr, at RT. Membranes were
visualized with enhanced Clarity Max ECL detection (Bio-Rad), and were detected with
the Fusion Solo system (Vilber Lourmat). Thereafter the membranes were washed and
then incubated with mouse monoclonal antibody against actin (1:500; Cat#: 691001, MP
Biomedicals, Ohio, USA) for 2 hr, at RT, washed and incubated peroxidase-conjugated
goat-anti mouse antibody (Cat#:115-035-062, Jackson Immuno Research laboratories,
West Grove, PA, USA;) for 1 hr, at RT and visualized as above. Band intensities were
measured by imageJ http://imagej.nih.gov/ij (National Institute of Health, Bethesda, MD,
USA).

2.8. Expression by Linear Amplification and Sequencing: CEL-Seq2

Total RNA was isolated from COX4-1 shRNA transfected cells or control HFF.
Qualification and quantification were measured using Tapestation. A HiSeq assay using
CEL-Seq2 method [12 Hashimshony ] was performed at the Technion Genome Center,
Haifa Israel. Briefly, 3' cDNA was synthesized and barcoded, followed by RNA synthesis
and amplification by in vitro transcription.

Statistic and bioinformatic analysis of the CEL-Seq2 data was performed in
collaboration with the Info-CORE Bioinformatics Unit (Hebrew University of Jerusalem
and Hadassah Medical Center). Following demultiplexing, reads were quality filtered and
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trimmed for adapters as well as for poly-A tails using Cutadapt [13 Marcel]. Then they
were aligned to the human genome (GRCh38 with annotations from Ensembl release
95) using Tophat v2.1.1 [25 Kim], and quantified with HTSeq [14 Anders].

Differential expression analysis was done with the DESeq2 package (v1.22.1) [27
Love]. Genes with a sum of counts less than 10 over all samples were filtered out.
Differential expression was calculated with default parameters except not using the
independent Filtering algorithm. Significance threshold was set as FDR<0.1.

Visualization was performed using Glimma (1.10.1) [28 Su]. Results were combined
with gene details (such as symbol, known transcripts, etc.), taken from the results of a
BioMart query (Ensembl, release 95), to produce the final Excel file. In order to identify
biological functions that were expected to be influenced (either to increase/ decrease)
given the observed gene expression changes (between HFF-shCOX411 and healthy
control fibroblasts), we ran gene set enrichment analysis (GSEA, reference:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1239896/). GSEA uses whole differential
expression data (cut-off independent) to determine whether a priori-defined sets of
genes show statistically significant, concordant differences between two biological
states. We used the hallmark gene set collection from the molecular signatures database
(MsigDB). Expression Data results are in the process of uploading on the GEO (Gene
expression Omnibus) website (https://www.ncbi.nlm.nih.gov/geo/).

2.9. Statistical analysis

Statistical analysis was done by two tailed-student's unpaired t-test using
IBM SPSS statistics for Windows, version 24.0. software (IBM Corp. Armonk, NY,
USA). p values < 0.05 were considered statistically significant.

3. Results:
3.1. COX4 isoform switch and altered energetic profile in COX4-1-deficient cells.

In order to characterize COX4-1 deficiency in HFF-shCOX4I1 and in patient’s cells
we initially quantified COX4/1 mRNA transcripts by RT-gPCR and detected a significant
86% and 60% decrease relative to controls respectively. This verified our previous
preliminary findings in the patient’s cells and the efficacy of the shRNA which
downregulated, but not depleted COX4/1 expression. Reciprocally COX4I2 transcripts
were elevated x1.72 times in the HFF-shCOX4I1 cells and even more so (x16 times) in
patients’ cells (Fig. 1A,B). Enzymatic activity of COX was, as expected, significantly
reduced, but not abolished, in both HFF-shCOX4l1 and the patients' cells (80-45%
decrease respectively) (Fig. 1C,D), relative to corresponding controls. To address
whether the isoform switch translates into a change in allosteric properties as was
previously reported by Arnold and Kadenbach [15 Jwe measured COX activity in isolated
mitochondrial in the presence of 10mM ATP. The COX activity (31 nmol/min/mg) in
patients’ fibroblasts mitochondrial was not affected by ATP, while mitochondria that were
isolated from control fibroblasts showed a significant 52% inhibition upon preincubation
with ATP (115£39 nmol/min/mg and 55+13 nmol/min/mg, respectively). Regretfully, we
could not repeat this experiment in the HFF-shCOX411 cells because of impaired cell
growth (manuscript in preparation) which hindered mitochondrial isolation.

We also monitored both the mitochondrial respiration (indicated as the oxygen
consumption rate; OCR) and the glycolysis (estimated by the extracellular acidification
rate (ECAR) of the surrounding media) (Fig.1E-J). Maximal OCR reflects the maximal
respiratory capacity following the addition of the uncoupler FCCP. We calculated the
ATP-linked respiration, by subtracting the OCR values obtained following the addition of
oligomycin (an ATP synthase inhibitor) from the basal OCR (Fig.1G,H). The background,
oxygen consumption, in the presence of the respiratory chain inhibitors rotenone and
antimycin were subtracted from the OCR values and all values were normalized to cell
content.
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When comparing HFF-shCOX411 cells and the patients’ cells relative to their
corresponding controls we clearly detected different energetic profiles (Fig. 11,H). Basal
and maximal OCR and ATP dependent OCRs in the HFF-shCOX411 cells were
decreased by 30%-40%, but to a lesser extent than expected from the COX4/1
transcripts (Fig. 1A,B). The OCRs were even less affected in the patient’s cells (Fig.
1E,F). Nevertheless, the energy maps, combining decreased basal OCR with increased
ECAR, clearly showed a tendency of favoring glycolysis over OXPHOS in both the HFF-
shCOX411 and somewhat less pronounced in the patient’s cells (Fig. 1I-J).
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Figure 1. Decreased COX4I1 expression, COX activity and mitochondrial respiration with elevated
glycolysis trend in COX4-1-deficient cells. mMRNA expression levels of COX4 isoforms were measured by
RT-gPCR in the knockdown vs. control cell lines (COX4-1 knockdown was obtained using a stable expression
of COX4l11-targeting or non-mammalian target shRNAs, respectively) (A) and in patients' and healthy controls
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fibroblasts (B). The results revealed decreased levels of COX411 mRNA expression and a reciprocally elevated
levels of COX412 mRNA expression in both COX4-1-deficient cells. Enzymatic activity of COX determined by
spectrophotometry, shows decreased activity (C&D) both in shCOX4l1 and patients' cells, relative to
corresponding control. Oxygen consumption rate (OCR) and extracellular acidification rate; ECAR were
measured in shCOX4I1 (E,G,l) and patient cells (F,H,J) and in corresponding controls, with subsequent
addition of Oligomycin, FCCP and Antimycin/Rotenone. Basal, ATP-linked and maximal OCR were calculated
(G,H) and OCR was plotted against ECAR to construct energy maps (l,J). All values were normalized to cell
content measured by methylene blue (A620). OCR was reduced, relative to the corresponding controls. Both
COX4-1-deficient cell lines showed a tendency towards glycolysis than the corresponding controls. Values are
presented as normalized meant SEM; *p<0.05; **p<0.01 compared to corresponding control.

The relative mild decrease of both OCR and COX activity in the patients’ cells and the
significant residual OCR and COX activity in the HFF-shCOX4l11 cells could possibly be
explained by compensating upregulation of COX4/2 expression as we observed by RT-
gPCR. Therefore, for verification we analyzed the presence of the COX4-2 protein by
immunofluorescence. As depicted in Figure 2 A-B, COX4-1-deficient cells indeed showed
a significant reduction in the COX4-1 protein, while displaying significant reciprocal
elevation in COX4-2 protein, in accord with our assumption. (Regretfully, in our hands, the
anti-COX4-2 antibodies were not suitable for immunoblot in cell homogenates).
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Figure 2. Decreased COX4-1 with a reciprocal elevation of COX4-2 in COX4-1-deficient cells. Knockdown
(HFF-shCOX411), patients' and corresponding control cells were incubated with mitotracker red, fixed and stained
separately with antibodies against COX4-1 and COX4-2. The results displayed in A&B demonstrate markedly
decreased COX4-1 levels in both COX4-1-deficient cells (HFF-shCOX411 and patients' cells), while COX4-2
staining is increased, relative to respective controls. Nuclei were visualized with Hoechst-33342 (A). The
micrographs were quantified and depicted as histograms of signal intensity per cell + SEM of at least 100 cells
*0.05<p; **0.01<p (B).
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3.2. Upregulation of glycolytic and hypoxia pathways in COX4-1-deficient cells
COX4 isoform 2 is mainly expressed in the lungs, and at low levels in the placenta,
heart, brain and pancreas. COX4 isoform 2 gene (COX4/2) is featured with an oxygen
responsive element (ORE), which is HIF-1-independent. COX4-2 expression is
controlled by, at least, two mechanisms. That is either through the regulation of HIF-1 or
via its ORE where transcription is regulated by the interplay of three regulatory
transcription factors: RBPJ, CXXC5 and CHCHD2 [16Aras 2014]. In order to identify the
possible pathways that regulate the observed isoform switch, we performed CEL-Seq2
analysis HFF-shCOX411 and compared the RNA expression pattern with the HFF control
(with the same genetic background) from five RNA extractions performed on different
occasions. The main significantly upregulated pathways were epithelial mesenchymal
transition (EMT), glycolysis and hypoxia (Figure 3A), (A list of up regulated genes is
available in the supplementary table). The upregulation of glycolysis was in accord with
the previously mentioned energy map showing decreased OCR with elevated ECAR.
However, the pathway that caught our attention was hypoxia and among the potential
mediators of hypoxia-induced EMT is the hypoxia-inducible factor-1a (HIF-1a), which is a
transcription factor [17Tam et al 2020] linked among many other functions, also to the
upregulation of COX4-2 under hypoxia [18Fukudal]. In order to validate these results, and
to confirm the involvement of the HIF-1a pathway we performed RT-qPCR validations, to
detect and quantify the levels of several major HIF-1 target genes. As represented in
Figure 3-C, we verified the upregulation of four HIF-1a target genes (including: PDK1,
GLUT1, HK1 and HK2) observed in CEL-Seq2 (represented in the volcano plot: Figure
3B) which were also up-regulated in both knock-down and in the patient's fibroblasts.
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Figure 3. CEL-Seq2 analysis identified hypoxia as one of the top up-regulated pathways in COX4-
1-deficient cells. Total RNA was isolated from both COX4-1-deficient cells (HFF-shCOX411 and patient)
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and from both types of control cells (HFF-CV and healthy control fibroblasts). A HiSeq assay was
performed at the Technion Genome Center using the CEL-Seq2 method. Differential expression analysis
was done with the DESeq2 package. Significance threshold was set as FDR<0.1. In order to identify
biological functions that were expected to be influenced (either to increase/ decrease) given the observed
gene expression changes (between HFF-shCOX411 and the healthy control fibroblasts), Pathway
Analysis was subsequently performed. Up-regulation of hypoxia (left) and glycolysis (right) detected by
GSEA (reference). NES: normalized enrichment signal; FDR: false discovery rate (A). In the volcano plot,
each dot represents a gene (B). The x-axis indicates the log2 (Fold Change) of the expression of HFF-
shCOX4I1 relative to healthy control fibroblasts, and the y-axis reflects —log10 of the FDR adjusted p-
value of this comparison. The colored dots pass the threshold for FDR. Selected HIF-1 target genes in
the volcano plot (PDK1, GLUT1, HK1 and HK2) were validated by RT-gPCR. Values of RT-gPCR
validation are presented as the log2 (Fold Change) in + SD of three biological duplicates (C).

3.3. HIF-1a is elevated and translocated to the nucleus in COX4-1-deficient cells

To gain further insight into the HIF-1a pathway in COX4-1 deficiency we set out to
detect the HIF-1a protein in our model system.

Notably HIF-1a is stabilized under hypoxic conditions, that stabilization enabling it to
be translocated to the nucleus, where it functions as a transcriptional activator. Previous
studies by Fukuda et al. [18 Fukuda] and others showed that reduced levels of oxygen
lead to the elevation of COX4-2 expression. Moreover, they claimed that COX4-2, but
not COX4-1, mRNA expression levels were elevated when the cells were treated with
the hypoxia inducer, cobalt chloride [18 Fukuda, 19 Hervouet]. In order to understand
whether HIF-1 plays a role in the COX4 isoform switch in COX4-1 deficient cells grown
under normoxic conditions, we initially analyzed the presence of HIF-1a in whole-cell
extracts by immunoblot analysis (Western blot) showing that indeed the level of HIF-1a
in HFF-shCOX4I1 cell and patient’s cells lysates is markedly elevated (x3.5 and x30
times, respectively) when normalized to beta-Actin, relative to controls (Fig. 4-A,B). To
validate HIF-1a activation and band migration, we added cobalt 24hr before performing
the assay.
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Figure 4. Increased levels HIF-1a in COX4-1-deficient cells. Western blot analysis was performed on
cell extracts from both COX4-1-deficient cells (patient and HFF-shCOX4I1), from both corresponding
controls. The extracted cells were probed with anti-HIF-1a and anti-actin antibodies as loading control.
As a positive control for HIF1-a, untreated (UT) human foreskin fibroblasts (HFF) were preincubated
with Cobalt chloride to simulate hypoxia (A). The histogram represents the results normalized to actin
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(B). The figure depicts one representative experiment out of three, showing an increased level of HIF-1a
in COX4-1 deficient cells.

In order to confirm the presence of HIF-1a and study its cellular localization we co-
immunostained HIF-1a with COX4-2 and counter stained with Hoechst-33342. As
depicted in Figure 5, COX4-1-deficient cells displayed increased levels of HIF-1a
localized in their nuclei, indicating that the elevated levels of HIF-1a, is most probably
due to its stabilization. Notably all COX4-2 positive cells showed nuclear HIF-1a stain.
The accumulation and translocation of HIF-1a to the nucleus indicate that HIF-1 is
activated and thereby inducing the HIF-1 signaling pathway. These results affirm the
CEL-Seq2 data analysis (Figure 3A), and verify the regulation of COX4-2 by HIF-1a.
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HFF-shCOX4I1 fibroblasts fibroblasts
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Figure 5. HIF-1a nuclear accumulation is present in COX4-2-positive cells. COX4-1-deficient (HFF-
shCOX4I1 and patient) and control cells were stained with antibodies against HIF-1a (red) and COX4-2
(green). Nuclei were visualized by Hoechst-3334. The results demonstrate increased nuclear localization
of HIF-1a in COX4-1-deficient cells relative to controls. The observed accumulation of HIF-1a is correlated
with COX4-2-positive cells (upper panel). The micrographs were quantified and depicted as histograms
of HIF-1a (lower panel) relative signal intensity per nucleus + SEM of at least 100 nuclei **p<0.01(B).

Nevertheless, we were still puzzled by the fact that upregulation of COX4-2 and HIF-
1a occurs under normoxic conditions in our system. Thus, we aimed to strengthen our
hypothesis that the upregulation of COX4-2 via HIF-1a occurs also in normoxia. To this
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end, we compared the levels of double stained COX4-2 and HIF-1a in untreated cells and
in cells treated with cobalt, in order to mimic hypoxia inducing a chemical upregulation of
COX4-2. As depicted in Figure 6 A-B, 6 hr of pre-incubation with cobalt led to HIF-1a
stabilization (accumulation of HIF-1a in the nuclei) in each type of cell line (both COX4-1-
deficient cells and corresponding controls). Interestingly, while a significant increase in the
levels of COX4-2 was observed in the controls, COX4-1-deficient cells showed
comparable levels of COX4-2, with and without cobalt With respect to nuclear
accumulation of HIF-1a, a significant increase was evident upon cobalt treatment in all
cells, also in COX4-1-deficient cells. Taking together, we suggest that the levels of COX4-
2 in COX4-1-deficient cells are already a priori elevated to a maximum at relatively low
levels of HIF-1a (compared to cobalt) (Fig. 6B).

A Untreated 500uM cobalt

Merged

HFF-
shCOXaIL HFF-CV

Control
fibroblasts

Patient
fibroblasts

Control Patient Patient

COX4-2 HIF-1

Figure 6. Chemical activation of HIF-1a increase COX4-2 expression in control cells, whereas
in COX4-1 deficient cells, the levels remain unchanged. COX4-1-deficient (HFF-shCOX4l1 and
patient) and control cells have been either preincubated with or without cobalt for 6 hr prior performing
co-staining of COX4-2 and HIF-1a (A). The stabilization of HIF-1a is demonstrated by its translocation
to the nuclei of each treated cell. COX4-1-deficient cells did not show any difference in COX4-2 levels
with and without cobalt treatment, while nuclear accumulation of HIF-1a was increased (A). The
quantified results are depicted in the histogram (B). Values are normalized to the corresponding
cobalt-treated control. meant SEM of at least 70 cells; **p<0.002 compared to corresponding control.
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4. Discussion

In this work we show that COX4-1 deficiency due to K101N variant still retains a
significant amount of OXPHOS capacity in patients’ fibroblasts. This was also confirmed
in normal fibroblasts where COX4-1 was downregulated by shRNA. We chose
downregulation in fibroblasts over knockdown knockout since it more accurately simulates
the phenotype of the patient, which is much milder than other nuclear-encoded isolated
COX deficiencies [6-9]. The only mild decrease in both the basal and ATP-linked OCR in
COX4-1 knockdown cell line together with comparable levels of ATP-linked OCR in
patients' and control fibroblasts, are in accord with our previous result, showing relatively
normal ATP production by the luciferin-luciferase assay in the patient’ cells [20 Douiev].
These results suggest a cellular compensatory mechanism, in which in order to
compensate COX4-1 deficiency, by upregulates the expression of COX4-2. Indeed, we
detected an upregulation of the second isoform COX4-2, which likely is the cause of the
observed partial rescued phenotype of COX4-1-deficient cells. Since we demonstrated
similar results in both the patient's and the COX4-1 knockdown cells, we suggest that this
phenomenon is not attributed solely to the K101N variant. Our results are in accord with
previously published data obtained in various cell lines [17-19]. Recently, Reguera et al,
studied each COX4 isoform separately by constructing HEK293-based cell lines with
Cas9-mediated COX4 isoforms knockout, followed by stable knock-in of either isoform. In
their study, the researchers confirmed different COX kinetics depending which isoform
(either COX4-1 or COX4-2) is expressed [21 Reguera 2020]. We also confirmed this, as
COX activity in patient’s fibroblast mitochondria was not inhibited by ATP, a feature of
COX4-2. This in accord with published data showing that the allosteric ATP binding site in
COX4-1 is dependent on phosphorylation of S58, while this regulatory residue does not
exist in COX4-2 [22 Acin-Peres 2011]. Regretfully we could not perform more in-depth
kinetic studies in the HFF-shCOX4I1 cells due impaired growth and chromosomal
instability which was more pronounced than in the patient’ cells [20], hindering growth, and
preventing mitochondrial isolation [manuscript in preparation]. Interestingly, in a reciprocal
manner, we previously observed a compensatory upregulation of COX4-1 in COX 4-2
deficiency [10 Steyer]

In order to elucidate a possible pathway through which the upregulation of COX4-2
occurs, we performed RNA-seq analysis (CEL-Seq2) and analyzed the differential gene
expression between HFF-shCOX411 and control cells, with the same nuclear background.
The data was then analyzed by GSEA (Gene Set Enrichment Analysis) in order to detect
up and down regulated gene sets. Using this method, we showed that COX4-1 deficiency
is accompanied by upregulation of the hypoxia and glycolysis pathways. In order to affirm
these results, we analyzed HIF-1a abundance and localization and also verified the
upregulation of several HIF-1 target genes. Interestingly, HIF-1a was present in the
nucleus under normoxia and without any obvious oxidative stress (ROS were not relatively
elevated in both patient’s cells [20] and in the knockdown cell lines (results not shown)).
Notably, under hypoxia HIF-1a together with HIF-1p form a stabilized HIF-1 complex which
acts a transcription factor of a variety of genes that contain the hypoxia response elements;
including the COX4/2 gene [18 Fukuda. Cell (2007)]. There is an evidence that
mitochondrial signals, other than hypoxia and ROS, such a redox status (NADH/NAD
ratio), metabolites (TCA-intermediate oncometabolites- such as fumarate, succinate, and
lactate) and other non-canonical mechanisms, can imitate and evoke hypoxia-like
responses and modulate metabolism [reviewed in [23 McElroy and 24 Lomarin 1.
Interestingly, HIF-1a also induces genetic instability indicating that the regulation of DNA
repair is an integral part of the hypoxic response [25 Koshij]. These evidences are in
accordance with our previous publications regarding elevated levels of double-stranded
breaks (DSBs) and genomic instability in COX4-1-deficient cells. [5,20]. Our results
contribute to the elucidation of the role of COX4-1 in metabolism and to the current
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understanding of the pathomechanism of COX deficiency due to nuclear-encoded subunits
[26 Cutanova]

To conclude, COX4-2 is upregulated and partially rescues COX4-1 deficiency through
HIF-1a activation induced by a yet to be characterized, non-canonical pathway.
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