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ABSTRACT 
 
The majority of urban inhabitants in low- and middle-income country (LMIC) cities live in deprived 
urban areas. However, statistics and data (e.g., local monitoring of Sustainable Development Goals - 
SDGs) are hindered by the unavailability of spatial data at metropolitan, city and sub-city scales. 
Deprivation is a complex and multidimensional concept, which has been captured in existing 
literature with a strong focus on household-level deprivation while giving limited attention to area-
level deprivation. Within this scoping review, we build on existing literature on household- as well as 
area-level deprivation frameworks to arrive at a combined understanding of how urban deprivation 
is defined with a focus on LMIC cities. The scoping review was enriched with local stakeholder 
workshops in LMIC cities to arrive at our framework of Domains of Deprivations, splitting deprivation 
into three different scales and nine domains. The Domains of Deprivation framework provides a 
clear guidance for collecting data on various aspects of deprivation, while providing the flexibility to 
decide at city level which indicators are most relevant to explain individual domains. The framework 
provides a conceptual and operational base for the Integrated Deprived Area Mapping System 
(IDEAMAPS) Project for the creation of a data ecosystem, which facilitates the production of routine, 
accurate maps of deprived “slum” areas at scale across cities in LMICs. The Domains of Deprivation 
Framework is designed to support diverse health, poverty, and development initiatives globally to 
characterize and address deprivation in LMIC cities. 
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INTRODUCTION 
  
Today more than half of the world’s population (55%) live in urban areas – a share projected to 
reach 68% by 2050 (UNDESA, 2018). The rate and scale of growth presents daunting challenges, 
especially in low and middle-income countries (LMICs) where urgent and significant investments are 
required in transportation, housing, sanitation, energy, education, and health as well as social and 
physical infrastructure (Azcona et al., 2020; UN-Habitat, 2020b). Ninety percent of global population 
growth in the next 30 years will occur in African and Asian cities; for example, Lagos (Nigeria), Delhi 
(India), and Dhaka (Bangladesh) are each expected to increase by an average of 650,000 to 870,000 
people per year through 2035 (UNDESA, 2018). Increasing urbanization exacerbates growth of 
slums, informal settlements, and other deprived areas (hereafter called deprived areas). Despite this 
staggering reality, no operational dataset is available that provides statistical and spatial information 
about the location and diversity of deprived areas across the Globe. This calls for the development of 
a data system that not only characterizes deprivation, but also helps a diverse range of stakeholders 
respond to it. 
  
In response, the IDEAMAPS Network is developing a data ecosystem that provides open-access 
information on the location and diversity of deprived areas across and within LMIC cities (Thomson 
et al., 2020). IDEAMAPS is piloting the production of routine, accurate maps of deprived areas across 
cities in LMICs by combining different mapping traditions, including machine learning with Earth 
Observations (EO), census and survey aggregation, and community mapping. This is facilitated by a 
data ecosystem designed for users in local governments, community based organizations, NGOs, 
universities, and elsewhere to exchange and integrate geographic data. For the development of such 
a data ecosystem, it is fundamental to conceptualize key domains of deprivations to guide which 
data are used to label deprived areas and improve them. To avoid a common trap of using data 
simply because it has been used before (precedent) or it is available (convenience) (Radford and 
Joseph, 2020), the IDEAMAPS framework maintains a focus on data user applications, data 
requirements, and conceptualizations of deprivation.  
 
Although ‘deprivation’ may refer to the lack of basic necessities at an individual-, household- or area-
level, the focus here is on area-level deprivation including the accumulation of individual- and 
household-deprivations in an area, as well as exposure to unhealthy living conditions, or living in a 
marginalized or neglected area. We focus this review on academic and grey literature which 
conceptualize deprivation beyond economic poverty, specifically in cities. This was an explicit choice, 
as urban (and peri-urban) deprivation requires a different framework as compared to rural 
deprivation, though both are equally important for global poverty reduction. Given that deprivation 
frameworks from high-income countries (HICs) have strongly influenced the development of 
frameworks in LMICs, it was necessary to include global conceptualizations of deprivation in this 
review.  
 
With the aforementioned aims and scope in mind, the research questions addressed in this review 
include:  

- How is urban deprivation conceptualized within the academic and grey literature focusing 
on cities/urban areas globally?  

- How are these conceptualizations translated into domains of deprivation?  
- If, and how, are these domains associated with indicators that measure aspects of 

deprivation within cities?  
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Brief overview of the deprivation literature 
  
Initial published conceptualizations of deprivation were mainly focused on HICs with attention on 
deprivation at the individual- and household-level. Over the last half century, these frameworks have 
expanded to include theories and frameworks of deprivation within LMICs, and more recently 
understandings of deprivation have shifted to thematic and geographic concerns, for example, the 
nature of deprivation within cities and urban areas (Figure 1). 
 

 
Figure 1. Evolution of frameworks related to multiple deprivations in LMIC urban settings 

  
 
Multiple-deprivation indices in HICs 
  
UK indices of multiple deprivation (IMDs) were seminal to how deprivation has been conceptualized 
and quantified in both HICs and LMICs. These indices shifted from measuring deprivation broadly 
from national census and survey data, to disaggregating census data to local administrative units, 
exposing area-level patterns in household indicators. In time, area-level indicators were introduced 
to indices such as levels of outdoor air pollution or numbers of road-traffic accidents. Today the 
English IMD, for example, reflects seven domains of deprivation related to income, employment, 
education and skills, health and disability, crimes, barriers to housing, and services and living 
environment, and is as measured by 39 census and other government indicators in areas of 
approximately 1500 people, or 600 households (Dymond-Green, 2020; OCSI, 2021). 
  
Other similar UK indices measured household deprivation within small areas but with fewer 
indicators and/or domains. Sally Holtermann (1975), for example, used eighteen variables 
representing housing conditions, unemployment, and occupational social class, to investigate 
geographic variations in deprivation in the UK. In the 1980s, the Townsend Deprivation Index 
(Townsend et al., 1988), Jarman Underprivileged Area Score (Jarman, 1984), and Carstairs Index 
(Carstairs & Morris, 1991) were all developed around four census indicators of car ownership, home 
ownership, overcrowding, and unemployment, but differed in their methodological application. 
Other HICs have developed and used similar multidimensional indicators of deprivation over the 
decades, including the U.S. Area Deprivation Index (Singh, 2003), 2006 Canadian Marginalization 
Index (Matheson et al., 2012), and Accessibility/Remoteness Index of Australia (ARIA) (Hugo Centre 
for Population and Housing, 2020). 
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Multiple-Deprivation Indices in LMICs 
  
During the 1990s, quantitative measures of multiple deprivation were applied and tailored to LMIC 
settings and were shaped by thought leaders such as Amartya Sen (e.g., 1992, 2009; Dreze and Sen, 
1990). Sen’s Capability approach conceptualizes development as the removal of ‘unfreedoms’ to 
enable each person to fulfill their potential or ‘capabilities’ (1999). For a girl living in India, for 
example, regulations to prevent child marriage may help to remove her ‘unfreedom’ of curtailed 
education, as girls often leave school when married early. Sen did not specify these ‘unfreedoms’ as 
domains or indicators, but others attempted to do so to operationalize his ideas. Martha Nussbaum, 
for example, developed a capability model that could be used to envisage social justice for women 
(2000, 2011).  
  
Concurrently, improvements in the quantification of deprivation occurred as donor countries and 
agencies supported LMIC governments to invest in routine national household survey programs 
(Fabic et al., 2012). A proliferation in household-level data on population health and wellbeing in 
LMICs fed into monitoring of Global goals such as the 2000-2015 Millennium Development Goals 
(MDGs), and the current UN Sustainable Development Goals (SDGs) (Alkire 2014). As the SDGs were 
kicking off, Sabine Alkire (2015) pioneered the Multidimensional Poverty Index (MPI) with a broad 
range of indicators, and the MPI has gone on to influence poverty and deprivation studies in LMICs 
including articles reviewed below (e.g., Altamirano et al., 2016; Zakaria et al., 2017). For decades, 
household-level surveys have been the main source of data to measure deprivation and poverty in 
LMICs because administrative systems have often lacked investment (Setel et al., 2007), and spatial 
data about infrastructure and environmental characteristics in LMICs have been missing, fragmented 
across organizations, incomplete, or cost prohibitive (Dotse-Gborgbortsi et al., 2018; Mahabir et al., 
2016). Surveys, however, are rarely designed to be representative of small areas, and surveys that 
include spatial locations randomly geo-displace them to protect respondent anonymity, severely 
limiting analysts’ ability to link data about individuals and households with other datasets at fine 
geographic scale (Perez-Heydrich et al., 2016). 
  
Given that household census and survey data have been essentially the only comparable data across 
countries for decades, both the MDGs (7.10) and SDGs (11.1.1) use household-level data to measure 
the population living in slums, informal settlements, and other deprived areas, an area-level 
phenomenon. Both MDG7 and SDG11 measure “slum households” as lacking any of the following 
assets: improved water, improved sanitation, durable building material, sufficient living space, or 
secure tenure, and then aggregate “slum households” within urban areas (UN-Habitat et al., 2002). 
In practice, tenure status is rarely measured in censuses or surveys, leaving four household assets to 
define the complex concept of “slums” across diverse, dynamic cities (e.g., Fink et al., 2014). Not 
only is the exclusion of tenure status problematic, this approach implicitly - and incorrectly - assumes 
that “slum households” are concentrated in slum areas. In one survey covering eight Indian cities 
where slum areas were mapped and field-verified, more than half of “slum households” were 
located in non-slum areas (Thomson et al., 2020). Another limitation of census and survey data is 
that they generally only differentiate urban and rural areas, which means that the needs of the 
urban poorest become masked in urban averages (Elsey et al., 2016). The creators of the “slum 
household” definition acknowledged its limitations as a household-based measure and advocated 
for it to be replaced with an area-level measure by drawing slum/non-slum boundaries into official 
census maps based on local context, as is already done for urban/rural boundaries (UN-Habitat et al., 
2002).  
 
One further shortcoming of urban indices, as well as surveys and censuses, is that they are not, as 
yet, adequately mainstreaming gender issues. Mainstreaming gender is carried out via an initial 
gender analysis of needs and experiences followed by indicator formulation that can lead to the 
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monitoring of, and progress towards, gender equality and women’s empowerment. A first step as 
mandated at the 1975 Beijing Conference for Women was the collection of sex-disaggregated data, 
but decades on from this, sex-disaggregated data remains patchy particularly in relation to urban 
issues. Although the engendering of data and indicators is slowly changing - with the SDGs paying 
closer attention to this, and UN Women among other organizations championing the need for 
gendered measurement - much remains to be done to ensure this becomes a reality. As such, we 
seek to understand if, at a minimum, sex-disaggregation is included in urban indices and we isolate 
patterns in terms of which gender issues are counted.  
  
Multiple Deprivation Measures in LMIC cities 
  
In the early 2000s, geographers and physical data scientists began developing their own concepts of 
urban deprivation as newly available Earth Observation (EO) and spatial data became available. The 
explosion in new technologies, computing power, and spatially detailed data cannot be understated: 
in the last 20 years, free very high-resolution satellite imagery and sensor data, ubiquitous use of 
mobile phones and GPS devices, the introduction of Volunteered Geographic Information (VGI) such 
as OpenStreetMap, and new platforms to easily share open spatial data all became realities (Lang et 
al., 2020; Ramadan 2017; Yan et al., 2020). The conceptualization of deprivation by physical data 
scientists, however, has predominantly focused on the form and morphology (physical arrangement) 
of features such as buildings and roads (Duque et al., 2017; Leonita et al., 2018; Taubenböck et al., 
2018; Wang et al., 2019; Wurm & Taubenböck, 2018). Divyani Kohli and colleagues, for example, 
published a seminal “ontology of slums” that defined whether an area was a slum based on 
characteristics at three scales; specifically, of building and road “objects”, shape and building density 
of the “settlement”, and its location and characteristics relative to other features in the “environs” 
such as proximity to power lines (Kohli et al., 2012). This framework, and others like it (e.g., Kuffer et 
al., 2014; Mahabir et al., 2018) tended to exclude issues such as education, employment, or social 
capital because these factors cannot be directly measured via EO data. 
  
A literature review by Monika Kuffer and colleagues (2016) summarized the first 15-years of “slum” 
mapping with EO data and concluded that contextual knowledge on the diversity of deprived areas 
across the globe is still limited among physical data scientists, and a more systematic exploration of 
deprived area characteristics is required for innovation in this field. A challenge for physical data 
scientists when operationalizing deprivation frameworks by social scientists is the lack of detailed 
spatial data about the domains and indicators included; while a challenge for social scientists to 
contribute to spatial modelling of slums and informal settlements is complexity of methods, data 
sources, and terminology used (Thomson et al., 2020). 
  
Several attempts have been made to bridge understanding among social and physical data scientists, 
including at the 2002 meeting led by social scientists and practitioners from UN-Habitat, the UN 
Statistics Division, and Cities Alliance, which resulted in the “slum household” definition widely used 
today and discussed above (UN-Habitat et al., 2002). A similar group of experts were convened by 
Alex Ezeh and Richard Lilford in 2017 in Bellagio, Italy (UN-Habitat, 2017) following their publications 
on the importance of geography to the health and wellbeing of individuals in LMIC slums (Ezah et al., 
2017; Lilford et al., 2017). This group drafted a framework for measuring deprived areas, reflecting 
social and physical science perspectives in five domains: Social/environmental risk, Lack of 
facilities/infrastructure, Unplanned urbanization, Contamination, and Lack of Tenure (Thomson et 
al., 2019). This conceptualization informed other frameworks (e.g., Lilford et al., 2019), and was a 
catalyst in forming the IDEAMAPS Network (Thomson et al., 2020). 
  
As LMIC cities face unprecedented scenarios of urbanization, the framing of deprivation through 
quantitative measures has crucially shaped how authorities view and respond to slums, informal 
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settlements, and other deprived areas. Negative perceptions of deprived areas lend to resettlement 
and eviction policies; while positive measures lend to engagement of community leaders, in-situ 
housing and infrastructure upgrading, and improved connectivity between deprived areas and other 
parts of the city (Plummer, 2000). One of those to view the potential of urban areas has been 
Caroline Moser, an urban social anthropologist, and she has been instrumental in framing and 
measuring assets that households can draw on to improve wellbeing, and offer to their community 
and city (Moser, 1998, 2007; Moser & Dani, 2008). 
  
State of the field 
  
The most established poverty and deprivation frameworks are rooted in a period when government 
census, survey, and administrative data (mainly HICs) were chief sources of information about 
poverty, and measurement of area-level deprivation depended on aggregation of household data to 
either small neighborhood-sized areas (HICs) or across all urban areas in a country (LMIC). The 
emergence of crowd-sourced and publicly available spatial data has resulted in a parallel stream of 
thinking about the measurement of poverty among geospatial experts. Establishment of the 
IDEAMAPS Network is just a recent milestone among several recent attempts to bridge disciplinary 
silos to measure the multiple dimensions of deprivation faced by the poorest in LMIC cities using a 
multitude of datasets produced by diverse stakeholders. 
 
 
METHODOLOGY 
 
Literature review  
 
We performed a scoping review on the extent and nature of urban deprivation literature in both the 
social and physical sciences to define an integrated framework of deprivation for cities. Academic 
articles (empirical and applied research), as well as international and national reports, were 
examined. We began with a systematic keyword search within Scopus, covering the dates 1 January 
2000 through 20 June 2020, using the following expression: [urban OR city OR cities] AND [indicator* 
OR index OR indic* OR domain* OR asset*] AND [poverty OR deprived* OR slum OR informal OR 
vulnerability* OR inequit* OR livelihood] AND [framework OR concept OR model*]. The review had a 
global geographic coverage, and included articles with national-to-local focus; however, articles that 
focused exclusively on rural deprivation were excluded. All articles published in a language that our 
author team could read - Romance, Slavic, and Germanic languages - were included. Scopus search 
results included English, French, Spanish, German and Portuguese language articles, all of which 
were included, and Chinese language articles, which were excluded. The search did not result in any 
African language publications. This resulted in 2,447 publications from Scopus. We then used 
“snowballing” to identify 28 additional scientific and grey literature publications which were 
referenced in these Scopus articles. A total of 2,475 publication titles and abstracts were screened, 
and 350 publications were reviewed for a proposed and/or applied deprivation framework. After 
reviewing full texts, 116 publications were retained for analysis (Figure 2).  
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Figure 2. Diagram of systematic literature review criteria 

 
 
Coding of articles 
 
First, we used a list of questions to extract standardized information from each of the 116 articles 
into Excel about the coverage, sources, and approaches used to define and/or apply each 
deprivation framework. The questions coded for each article were: 
 

1. Geography:  
a. What is the finest geographic scale used for analyzing the indicators of deprivation (e.g. 

census enumeration area, neighborhood)?  
b. Which countries or regions are covered by the included papers? 

2. Data source: 
a. Are the data used for the development of the indicator(s) open?  
b. If applied, e.g. to a case study/geographic area, are data from community engagements 

used?  
c. In general, what type of data are used? 
d. If applied, are Earth Observation data (e.g., satellite images) used?  

3. Approach: 
a. Is the result also providing a composite output (e.g., in form of an index)?  
b. Is the publication only a (theoretical) framework or is it applied? 

4. Mapping: 
a. If applied, is the output mapped at the level of settlement (i.e., community, 

neighborhood, census enumeration area)?  
b. If applied, is the output mapped at the level of administrative boundaries (i.e., ward)? 
c. What is the scale of data collected (i.e., household, census block, etc.)? 
d. What are the methods used in publications? 

5. Influence:  We classified publication influence as the average number of citations (based on 
Google Scholar) adjusting for year of publication: 𝑁𝑢𝑚𝑏𝑒𝑟 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠 /( 2020 −
𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑎𝑟) 
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Coding of indicators, and development and validation of framework 
 
Next we coded each indicator and domain mentioned in the 116 articles using a coding framework. 
Our first iteration of the coding framework was based around the five Bellagio workshop domains: 
social/environmental risk, lack of facilities/infrastructure, unplanned urbanization, contamination, 
and lack of tenure (Figure 3) (Thomson et al., 2019). We chose this framework as a starting point 
because it had been developed by a mix of social and physical scientists, explicitly acknowledged the 
difference between household-level and area-level data, and was designed to define LMIC urban 
deprivation. Through three iterations of this process, we decided to split two domains, and add two 
domains (Figure 3).  
 
Second, we (a) documented each indicator as defined by the original author(s), (b) recorded any 
domain label assigned by the author(s) according to their framework, and (c) coded whether the 
indicator was either disaggregated by sex, or sex-specific. This resulted in 1,897 indicators from the 
116 papers.  
 
Third, we iteratively developed and applied our coding framework of domains and indicator groups 
(i.e., specific indicator topics). This process followed recommended qualitative analysis techniques 
for multi-disciplinary research (Gale et al., 2013), and splitting indicators among co-authors to apply 
the framework, spot-checking each other’s work and discussing our coding decisions, adjusting the 
coding framework (e.g., to reflect concepts or measures that had been missed), and then repeating 
the entire process until we all agreed on the coding framework and code assignments to each of the 
1,897 indicators.  
 
Fourth, we arranged the domains and indicator groups from our coding framework into a visual 
Domains of Deprivation Framework. We found inspiration from existing framework figures in the 
literature (Appendix A), specifically those that reflected the spatial hierarchy of deprivation and/or 
data used to measure deprivation (e.g., Kohli et al., 2012; Taubenböck et al., 2018).  
 
Fifth, we presented and sought feedback on a first draft of our Domains of Deprivation Framework 
at a workshop in Accra, Ghana in October 2020. Twenty workshop participants were purposefully 
invited to represent community, local assembly, local government, civil society, private sector, and 
national government perspectives. In breakout groups, participants spent one hour discussing and 
providing suggestions to improve the framework layout and content, and reported back in plenary.  
 
We received resounding feedback that governance should be considered a distinct domain in the 
Domains of Deprivation Framework. Although governance had only been named explicitly as a 
domain in one article that we reviewed (Asadi-Lari et al., 2013), several others included governance-
related indicators as part of other domains (Borzooie et al., 2019; Jarman, 2001; Pairan et al., 2018; 
Sphere, 2018), and together these corroborated the argument for governance to be measured as a 
distinct issue. Workshop participants also highlighted the need for safety indicators and specifically 
mentioned street lighting, the need for functioning drainage systems in addition to water and 
sewage systems, and measurement of ecological diversity. Based on workshop feedback, we revised 
our coding framework a final time (Figure 4), reapplied it to the indicators, and revised our Domains 
of Deprivation Framework (presented below). 
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Figure 3. Diagram of design process for the Domains of Deprivation 

 
 

 
Figure 4. Final Coding Framework 
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RESULTS 
 
The results section is split in four sections. First, we provide an overview of the findings to key 
questions of the literature review. Second, we analyze the frequency of domains and indicator 
groups in the literature to allow for an overall grouping of indicators. Third, we provide an overview 
of the most influential frameworks to better understand the importance of different domains. 
Finally, based on the findings of section one to three, we present the resulting IDEAMAPS Domains 
of Deprivation Framework. 
 
Findings to key questions of the literature review  
 
This section summarizes characteristics of the literature we reviewed in terms of framework 
geographics, data sources, approaches, and mapping characteristics. 
 
Geography 
 
A large number of the frameworks were developed for use in the UK and countries historically linked 
to the UK including the US, India, South Africa, and Australia (Figure 5). Over 50% of the articles were 
developed in, or applied to, LMICs (Table 3). The regional splits of these studies shows that Europe 
as well as Eastern and Central Asia received the bulk of attention (28.2% and 21.4%, respectively) 
with Africa, the Middle East and Latin America lagging behind in terms of number of studies (Table 
3). Few frameworks have been developed for application in a Global or Global South context.  
 

 
*Regions % Citations 

Central & South 
America 

7.8      (Feres & Mancero, 2001; D’Ambrosio& Rodrigues, 2008; Del Carmen Rojas et 

al., 2008; Alves, 2013; Hacker et al., 2013; Caicedo & Jones, 2014; Altamirano et 

al., 2016; Seguel & Villaroel, 2018; Builes-Jaramillo & Lotero, 2020) 

Eastern & 
Southern Asia 

20.7      (Fukuda et al., 2007; Baud et al., 2008; Ling, 2009; Baud et al., 2009; 
Tipayamongkholgul, Podang & Siri, 2013; Chen & Wang, 2015; Mahadevan & 

Hoang, 2016; Webster et al., 2016; Chowdhury & Mukhopadhaya, 2016; Akter 

& Rahman, 2017; Ge et al., 2017; Manap et al., 2017; Wan and Su, 2017; Wu & 

Qi, 2017; Zakaria et al., 2017; Mitra & Nagar, 2018; Saif-Ur-Rahman et al., 2018; 

Bag & Seth, 2018; Yuan et al., 2018; Ajami et al., 2019; Pairan et al., 2019; Chen 
et al., 2019; Gao & Sun, 2020; Ensor et al., 2020) 
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Europe & Central 
Asia 

28.4      Jarman, 1983, 2001; Kearns, Gibb & Mackay, 2000; Bradshaw & Finch, 2003; 
Harris & Longley, 2004; Jordan et al., 2004; Scottish Executive, 2004, 2006; 
Niggebrugge et al., 2005; Noble et al., 2006; Eskandrani, 2007; Eroǧlu, 2007; 
Havard et al., 2008; European Commision, 2010; Marí-Dell’Olmo et al., 2011; 
Martínez & Lechuga, 2012; Payne & Abel, 2012; Bayram et al., 2012; Coromaldi 
& Zoli, 2012; Bocquier et al., 2013; Alguacil & Camacho, 2014; DCLG, 2015; 
Guillaume et al., 2016; Jacobsen, 2016; Arribas-Bel, Patino & Duque, 2017; 
Swiader et al., 2017; Cornado et al., 2017; Ministerio de Fomento, 2018; 
Venerandi et al., 2018; Abarca-Alvarez et al., 2019; Mclennan et al., 2019; Page 
et al., 2019; Panori et al., 2019 

Middle East & 
North Africa 

5.2      Abu-kharmeh, 2009; Asadi-Lari et al., 2013; Najjary et al., 2016; Bérenger, 2017; 
Borzooie et al., 2019; Zandi et al., 2019 

North America 11.2      Messer et al., 2006; Bell et al., 2007; Johnson, 2007; Casas et al.,2009; 
CONEVAL, 2010; Krishnan, 2015; Wang & Fox, 2017; Fuentes et al., 2018; 
Jenerette, 2018; Reckien, 2018; Medina Perez et al., 2019; Roy et al, 2020 

Oceania 4.3 Baum, 2006; Saunders et al., 2008; Pawson et al., 2012; Hulse et al., 2014; 
Exeter et al., 2017 

Sub-Saharan 
Africa 

11.2      Duclos et al., 2006; Barnes et al., 2007; Oldewage-Theron & Slabbert, 2008; 
Günther & Harttgen, 2009; Noble et al., 2010; Noble & Wright, 2013; Ajakaiye et 
al., 2014; Yakubu et al., 2014; Steinert et al., 2016; Deinne & Ajayi, 2019; Han et 
al., 2019; Beck et al., 2020 

Global 7.8      Moser, 1998; Davis, 2003; UN-Habitat, 2003; Ompad et al., 2007; Nations, 2009; 
WHO, 2012; Anindito et al., 2018; Sphere, 2018; Oxford Poverty & Human 
Development Initiative, 2020 

Global South 3.4 Alkire & Santos, 2010; Kohli et al., 2012; Taubenböck et al., 2018; Wilkinson et 
al., 2020 

Figure 5. Country or region* of deprivation framework origin for 116 reviewed publications 
 
Data source 
 
From the articles we reviewed, 48.3% utilized or made available open source data, and only 7.8% of 
the studies definitely did not. There were, however, 44.0% of the articles in which it was hard to 
discern if the data was openly available (Table 3). Out of the 116 articles reviewed, 85.3% applied 
concepts and/or measurements of deprivation to specific case studies (Table 3), for example, to a 
specific geographic context (e.g., Baud et al. 2008) or sector such as health or environment (e.g., 
Caicedo et al., 2014, Mishra et al., 2018). The majority of frameworks were based on a single country 
(84.5%), reflecting the importance of geographic context when measuring and addressing 
deprivation (Table 3). Of those studies which applied a framework to measure deprivation, census 
data were used in 61.6% of articles, and survey data in 58.6% (Table 3).  
 
Furthermore, 47.5% authors consulted with stakeholders such as local communities, or those 
involved with government (Table 3). This is a promising result in terms of the conceptualization of 
deprivation because stakeholders within the community are more likely to have insight regarding 
what constitutes deprivation in that context. Only 8.1% of the articles which applied a framework 
used EO data (Table 3). Many of these studies measured deprivation as a one-dimension concept of 
unplanned urbanization based on a physical classification of buildings, roads, and other features 
(Arribas-Bel et al., 2017). There are also authors who attempted to expand the number of domains 
and datasets to cover access to services, transportation infrastructure, and environmental risk by 
incorporating spatial data from volunteered geographic databases and bespoke geo-located 
household surveys (Hacker et al., 2013; Ajami et al., 2019; Roy et al., 2020). 
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Table 3. Summary of literature review results 

Indicator Percent 

Finest Geographic Scale (N=116) 
National 
Sub-national 
Not applicable 

 
48.3      
47.4      

4.3 

Coverage, extent (N=116) 
Single country 
Multiple countries 

 
84.5      
15.5      

Coverage, World Bank 2020 designation (N=116) 
Low Income Country      
Lower-Middle Income Country      
Upper-Middle Income Country      
High Income Country 
Not applicable (Global coverage) 

 
1.7 

15.5 
34.5 
41.4 

6.9 

Indicator data are open/available (N=116) 
Yes 
No 
Unclear 

 
48.3      

7.8      
44.0      

Composite Index (N=116) 
Yes 
No 
Unclear 

 
68.1      
30.2      

1.7 

Framework is presented with applied example (N=116) 
Yes 
No 

 
85.3      
14.7      

If applied example, data from stakeholder engagements used (N=99)  
Yes 
No 

 
47.5      
52.5      

If applied example, census data used (N=99)  
Yes 
No 

 
61.6      
38.4      

If applied example, survey data used (N=99)  
Yes 
No 

 
58.6      
41.4      

If applied example, EO data used (N=99)  
Yes 
No 

 
8.1      

91.9      

If applied example, local (settlement-level) map presented (N=99)  
Yes 
No 

 
14.1      
85.9      
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Approach 
 
A majority of the articles that applied a framework (68.1%) produced a multiple deprivation index 
based on a summative (composite) approach where indicators were weighted, based on equal or 
expert weighting systems (Baud et al., 2008; Baud et al., 2009; Exeter et al., 2016; Mclennan et al., 
2019). To reduce the high dimensionality (large number) of indicators that reflect deprivation and to 
deal with high correlation between indicators, several studies used dimension reduction strategies, 
such as factor analysis or principal component analysis as well as data-driven methods that allow the 
generation of clusters (Marí-Dell’Olmo et al., 2011; Krishnan, 2015; Roy et al., 2020) (Figure 6). In 
recent years, advancements in methods such as artificial intelligence (AI) have enabled additional 
analyses of multiple deprivation (Ajami et al., 2019), as well as the development of deprivation 
measures in relation to fuzziness of concepts (Gao & Sun, 2020). Developments such as these are 
designed to address limitations of simple summative indices that obfuscate the complexity of 
deprivation. 
 

 
Figure 6. Approaches used in studies to calculate a multiple deprivation index (N=116) 

 
 
Mapping 
 
Few articles (14.1%) that applied a deprivation framework mapped deprived areas at fine-scale such 
as settlement or census enumeration area (Table 3). This was unsurprising given the emphasis of 
frameworks on census and survey data, as census data are generally not released at the 
enumeration area level to ensure privacy, and survey data are rarely representative below the 
second administrative unit (e.g. district). Mapping of settlement-level deprivation tended to occur in 
studies that used EO data (Harris & Longley, 2004; Taubenböck et al., 2018; Ajami et al., 2019). 
 
Frequency of Domains and Indicator Groups in the Literature 

 
Existing deprivation frameworks overwhelmingly emphasize indicators of household-level SES 
(58.7%) and Housing (15.1%) deprivation, which can be easily measured in census and survey data 
(Table 4). The next three most commonly measured domains in the literature were Facilities & 
Services (7.1%), Social Hazards & Assets (6.0%), and Unplanned Urbanization (5.9%) which are 
generally measured with volunteered geographic information (VGI) such as OpenStreetMap, EO 
data, or one-off household surveys on such topics as community social capital and safety (Table 4). If 
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our Domains of Deprivation Framework is meaningful, and Physical Hazards & Assets (0.8%), 
Contamination (2.1%), Infrastructure (2.9%), and city Governance (1.5%) are important domains for 
indicators to measure area deprivation (Table 4), then this review highlights major gaps in the 
literature to measure, and therefore, label and address these challenges and assets. 
 

Table 4. Frequency of indicators by domain 

Scale Domain of Deprivation Indicator 

Frequency Percent 

Household-level SES 1,114 58.7 

Housing 286 15.1 

Within area-level Social hazards & assets 113 6.0 

Physical hazards & assets 15 0.8 

Unplanned urbanization 111 5.9 

Contamination 39 2.1 

Area connect-level Infrastructure 55 2.9 

Facilities & services 135 7.1 

Governance 29 1.5 

 Total 1,897 100.0 

 
Within the nine Domains of Deprivation, a few key indicators tended to be measured. In the most 
commonly measured domain, SES, household demographics, and individual education, employment, 
income, and health status were commonly used to define SES, while sense of freedom or fulfillment 
were rarely measured (Figure 7). In the less common domain of Facilities & Services, distance to (or 
number of nearby) health facilities was most commonly measured, whereas distance to (or number 
of nearby) schools was rarely used as a measure (Figure 7). In the uncommon domain of 
Contamination, air and noise pollution were most often measured, but water pollution and garbage 
accumulation were rarely measured (Figure 7). 
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Figure 7. Percentage of Indicators group contributions within the major domains. 
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Out of the 1,897 indicators, only 51 (2.7%) had a sex disaggregated component (Table 5). Sex 
indicators tended to focus on whether the house was led by a female, or disaggregated education 
and employment by male/female (Table 5).  
 

Table 5. Sex disaggregated indicators 

Domain - Indicator group Frequency Percent 

SES - Household demographics  16 0.8 

SES - Employment and occupation  10 0.5 

SES - Health, nutrition and disability status 10 0.5 

SES - Education/literacy training 6 0.3 

SES - Income, expenditures (except housing), debt, credit and savings  4 0.2 

SES - Public/social services recipient 4 0.2 

SES - General 1 0.1 

All gender indicators 51 2.7 

Total number of indicators  1,897 100 

 
 
Most influential frameworks 
 
We measured the influence of deprivation frameworks in terms of citations per year. Nearly all of 
the most influential frameworks in this review were developed by academics or international 
organizations, though this was likely a function of our search in the scientific literature (Figure 8). 
Deprivation frameworks designed for HIC contexts were more represented than frameworks 
designed for LMIC contexts, or frameworks designed for use at a global scale (Figure 8). Along the 
vertical axis of Figure 8 are the data sources mentioned to apply the framework (e.g., census, EO). 
Influential articles that recommend use of EO data to measure deprivation have only emerged in the 
last decade (Figure 8). The most influential framework was developed by David McLennan and 
colleagues (2019), with 206 citations per year, as indicated by the darkest blue shade (Figure 8). This 
is “The English Indices of Deprivation 2019,” and is a composite of 35 mostly household-level 
indicators organized in seven domains (McLennan et al., 2019). The second most influential 
framework was developed by Sabina Alkire and Maria Emma Santos (2010) at the World Bank, with 
133 citations per year. This publication defines and applies a Multidimensional Poverty Index (MPI) 
to 104 LMICs, and is composed of entirely household-level indicators in three domains (Alkire & 
Santos, 2010). The third most influential article was by Caroline O.N. Moser (1998) at the World 
Bank, with 115 citations per year. This framework was developed to assess vulnerability globally 
based on physical, financial, and human capital (including social and natural capital), but is not linked 
with specific datasets or applied (Moser, 1998). The remaining articles were cited less than 60 times 
per year; the authors organization, coverage, data sources, and mapping, are represented in the 
timeline below (Figure 8).  
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Figure 8. Timeline of the most representative frameworks. 

 
 
IDEAMAPS Domains of Deprivation Framework 
 
The most cited articles guided our design of the IDEMAPS Domains of Deprivation Framework, and 
our coding framework was used to define the framework’s 67 indicator groups in nine domains 
across three scales of measurement: household, within area, and “connecting” (across areas) (Figure 
9).  
 
Household-level domains of deprivation reflect indicators measured at the individual - or household-
level, often by census or survey. The first domain, Socio-Economic Status (SES), is measured with 
indicators that reflect individual education rates, health status, employment, and household 
ownership of assets. A separate Housing domain is defined to reflect characteristics of living 
structures such as the quality of building materials, whether it is owned or rented, the type of water 
and sanitation facilities, and whether the occupants have tenure rights to the land and/or structure.  
      
Within Area domains encompass four deprivations found within settlements: Social Hazards and 
Assets, Physical Hazards and Assets, Unplanned Urbanization, and Contamination. Social Hazards 
include risks such as crime and lack of livelihood opportunities, while Social Assets include strong 
social identity or community cohesion. Physical hazards include high likelihood of flooding, 
landslides, and other natural threats such as earthquakes, while Physical Assets include mitigation 
resources and strategies such as earthquake resilient materials, or presence of trees and plants to 
maintain cooler temperatures and cleaner air. Indicators within the Unplanned Urbanization domain 
are associated with rapid and unplanned in-migration to an area that might result in tightly packed, 
unplanned housing, limited green space, and lack of roads. The Contamination domain reflects 
accumulation of garbage, water pollution, air pollution, or high levels or constant noise that affect 
the well-being of residents. 
      
Area Connect domains refers to connectivity with surrounding settlements and the integration into 
the rest of the city. These include the Infrastructure domain, referring to water, waste, 
transportation, and other infrastructure systems typically managed by the municipal government, as 
well as the Facilities & Services domain which reflects the availability, accessibility, and affordability 
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of schools, health facilities, banking establishments, shops, religions and cultural amenities, and 
other facilities and services needed for a thriving city. Challenges in deprived communities are 
prevented and addressed by transparent, effective city-wide planning and management making city 
Governance the final domain.  
 

 
Figure 9. Diagram of IDEAMAPS Domains of Deprivation Framework 

 
The IDEAMAPS Domains of Deprivation Framework stresses that not only household-level domains 
require gendered indicators, but also Within Area domains and Area Connect domains require 
gendered indicators. For example, is street lighting particularly important to women’s safety and 
access to services such as public toilets? How are female-dominated versus male-dominated jobs 
distributed in the city; for example, do most men work outside the community while most women 
work inside the community? This has implications for gendered exposure to contamination, crime, 
traffic, and so on. A gendered lens is key to understanding how deprivation impacts communities, 
and their members, differently.  
 
 
DISCUSSION 
 
This paper presents a review of contemporary frameworks for conceptualizing urban deprivation in 
LMIC cities, integrates key concepts from social and physical sciences, and develops a novel Domains 
of Deprivation Framework that can support multi-disciplinary global deprived area mapping efforts. 
Our domains aim to be inclusive of issues that define deprivation from the individual-to-city-level, 
and this is reflected in classification of domains within a simple spatial hierarchy. We also, 
importantly, link dozens of indicator groups to each domain based on the literature review. 
Therefore, the IDEAMAPS Domains of Deprivation Framework is flexible to be adapted to different 
geographic contexts and scalable, by allowing users to “switch on and off” indicators that are more 
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or less relevant to their context, and supports the integration of diverse household- and area-level 
data with the ultimate aim to support pro-poor policy-making.  
 
Scale 
 
The overwhelming majority of frameworks reviewed, conceptualized, and measured deprivation as a 
household-level socio-economic issue, focusing on indicators of household assets, access to services, 
and individual sense of well-being (e.g., Table 3). As with several UK indices, some indices for LMICs 
acknowledged the importance of area-level (e.g., pollution) and system-level (e.g., public utilities) 
factors in shaping and reinforcing deprivation (e.g., Baud et al., 2009). However, attempts to 
measure area-level domains with aggregated household data were generally inadequate as it can be 
challenging to aggregate information operating at different scales. For example, percent of 
households using a flush toilet (household-level) is not necessarily related to the percent of sewage 
in a neighborhood or city that is safely treated (area-level) (Baud et al., 2009). Aggregation of 
household data to areas also means working with arbitrary geographic boundaries that may mask or 
produce misleading trends, which can be termed as the modifiable areal unit problem (MAUP) 
(Openshaw, 1983). Within articles reviewed, it appears that area-level deprivation indicators were 
best studied and measured directly by either selecting a number of communities and collecting 
detailed community-level data (e.g., Caicedo & Jones 2014) or using Earth Observation (e.g., Ajami et 
al. 2019; Kohli et al. 2012).  
 
Although many publications stress that data are needed from an “array of spatial scales” to inform 
policies, interventions, and research decisions (e.g., McLennan et al. 2019), a key challenge is how to 
spatially align and combine household- and area-level data. Deprivation indices calculated by 
administrative units are limited by the heterogeneity of administrative boundaries, and comparison 
across countries is problematic because the terminology, function, and size of administrative units 
varies by country. In many countries, disaggregated census data (e.g., census tracts) are not easily 
accessible (resulting in the use of larger and very heterogeneous areas), and if disaggregated census 
data are accessible they are collected at low temporal frequencies (e.g., census data are typically 
collected every 10 years). In many countries, census might omit the most deprived population (e.g., 
those living in temporary and low-income settlements, also known as slums) (Carr-Hill, 2013; 
Wardrop et al., 2018) 
 
Data integration 
 
One way to align data at a fine geographic scale is to disaggregate indicators with geo-statistical 
models into a regular grid of equal-sized small cells (e.g., 100x100m); these cells can then be 
aggregated to any larger relevant boundary. Census population counts (e.g., WorldPop, 2021) and 
survey indicators (e.g., Gething, 2015) are already disaggregated in this way, though models are 
subject to error (Leyk et al. 2005). Similar innovative solutions are being used to model non-census 
and survey indicators of deprivation in terms of spatially disaggregated analysis of area level 
deprivation, for example, the combination of Earth Observation (EO) data alongside newly emerging 
data sources (e.g., social media data, Taubenböck et al., 2018b), extraction of data focusing on 
specific aspects of deprived areas from available repositories (e.g., lack of physical accessibility 
extracted from OpenStreetMap; Soman et al., 2020) or the use of Artificial Intelligence (AI) and EO 
data to capture environmental characteristics contributing to deprivation (e.g., accumulation of 
waste piles; SLUMAP, 2020).  
 
However, more innovative solutions are required to address existing data gaps. In this context, data 
related to tenure is typically not used to measure area-level deprivation due to unavailability of data. 
To bridge this data gap, Ron Mahabir and team (2018) tested the use of web-scraped data from real 
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estate companies and gridded population data to deduce areas of potential informal tenure, 
knowing that formal real estate transactions will occur in areas where formal tenure systems 
operate. Problems with such an approach remain, given that real estate companies in LMICs do not 
typically serve the bottom 20-40% of the economic pyramid (Kolb et al., 2020) resulting in a segment 
of rental and owned property transitions taking place offline. However, this kind of innovative data 
integration to develop proxy indicators is a move in the right direction. Innovative proxy indicators 
can be supported in the age of big data by the evolution of data cubes that allow the combination of 
various data, modelled at homogenous areal units (e.g., grids) (De Anda et al. 2019). Data cubes 
provide new solutions in terms of data access, spatially disaggregated data and capturing the 
complexity of spatial phenomena such as deprivation.  
 
Data disaggregation 
 
Another gap is the lack of data disaggregated by important sub-groups such as gender. The lack of 
measurement of gender requires specific attention as women tend to bear more adverse effects of 
urban deprivation than men, and do not benefit equally from urbanization (Chant, 2013). Gender 
inequalities are experienced in numerous areas of daily life including: accessing decent work 
opportunities, increased workloads with the balancing of paid and unpaid work activities, accessing 
financial assets and housing security, fair tenure rights, access to services, asset accumulation, 
engaging in public governance structures, and personal security (Chant & McIlwaine, 2016; Moser, 
2016; Tacoli & Satterthwaite, 2013; Tacoli, 2012; Reichlin & Shaw, 2015). Female-headed households 
are additionally associated with increased deprivation levels, likely because these households tend 
to depend on one income and because women often earn less than men (Ortiz-Ospina & Roser, 
2020). 
  
Data disaggregation by gender can also unmask challenges that overwhelmingly affect men, and 
improve the ability of civil society and officials to respond by better targeting their messages, 
policies, or interventions. For example, in relation to crime levels, women may be more likely to 
experience domestic violence (Kalokhe et al., 2018) and sexual assault in deprived areas (BBC News, 
2010), but men might instead be more likely to experience mugging, and gang-related or street 
crime (Meth, 2017).  
 
Policy and practice relevance 
 
The IDEAMAPS Domains of Deprivation Framework is a global framework that is designed to be 
tailored to local contexts such that local experts select the most relevant indicators for each domain. 
This is because the most relevant indicators of, say, Social Hazards and Assets, will vary by location 
(e.g. Tirana versus Timbuktu) and coverage (e.g. city-wide versus continent-wide). Amy Krakowka 
Richmond and colleagues (2015) applied a similar approach in their study of climatic and socio-
economic vulnerability in East Africa in which they defined ‘baskets’ of vulnerability factors, and 
worked with local leaders across countries to produce a weighted score for each basket, such that 
‘baskets’ were comparable across regions. The IDEAMAPS Domains of Deprivation Framework is 
already being used in this way. Using an early published version of the framework (Thomson, 
Shonowo, et al., 2020), the Impact Initiative REACH program in Northern Nigeria developed an Area 
Deprivation Index (ADI) to determine the degree to which communities can be categorized as 
informal, and intersected their ADI with a COVID-19 risk score to prioritize communities for outreach 
and support (REACH resource centre, 2020).  
 
Another important use of the Domains of Deprivation Framework is to identify missing data, and 
focus innovation on data collection and analysis methods, and policy/advocacy efforts to fill these 
data gaps. This review revealed a dearth of data about Physical Hazards & Assets, Contamination, 
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Infrastructure, and Governance which are all key to identify and respond to deprived areas. Early 
work on this framework, for example, inspired the Slumap Project to identify and map large waste 
piles using high resolution data (SLUMAP, 2020) to fill the need for waste management data in the 
domain of contamination (Thomson et al., 2019). We strongly encourage readers to think of 
innovative proxies such as Ron Mahabir’s team (2018) to map indicators such as street lighting or 
sewage treatment (Infrastructure), or civic participation or zoning/land use boundaries 
(Governance). We encourage readers familiar with EO data to also consider ways to make data 
about flood zones (Physical Hazard) or air pollution (Contamination) more discoverable and usable 
by a broad audience, for example, by sharing on the Humanitarian Data Exchange (HDX, 2020) in 
common file formats (e.g., .shp, .tiff). 
 
The framework additionally serves as an accountability and development planning tool by tracking 
household- and area-level indicators within domains that will already be familiar to policy-makers 
and planners (e.g., Infrastructure, Facilities & Services, Governance). We hope that this framework 
might prove to be a useful vehicle for collaboration and data sharing across local government 
departments and across disciplines who often deal with divergent data related to populations versus 
the environment. Additional applications of the Domains of Deprivation Framework could include 
community-based profiling and enumerations, such as those conducted by Shack and Slum Dwellers 
International (SDI) Federations. SDI teams survey slum areas in terms of household- as well as 
community-level needs, but may benefit from an additional tool to integrate data and understand 
related issues of pollution or security, which may not currently be profiled using SDI methods (SDI, 
2020). The UN-Habitat Participatory Slum Upgrading Programme who works with local governments 
and other partners to profile cities might also find this framework helpful. Their flagship programs, 
such as RISE-UP, supports the urban poor to create resilient settlements and Inclusive Cities to 
promote social cohesion, improved transport and sanitation as well as infrastructure links with 
migrant communities and informal settlements (UN-Habitat, 2020a).  
 
Limitations 
 
By nature of being a literature review, our framework is limited by what other researchers have 
written and measured, and may include blind-spots that render our framework incomplete. For 
example, few researchers explicitly measured and discussed how women and men experience 
indicators differently in cities. Additionally, few frameworks included a domain like contamination or 
pollution, despite solid waste management often constituting the largest budget line in municipal 
budgets (Hoornweg & Bhada-Tata, 2012), and air pollution being a leading environmental risk factor 
for premature death globally (Babatola, 2018). We attempted to distill conceptually unique domains 
of deprivation from the existing literature without regard, necessarily, of frequency of measurement 
to ensure that under-measured, but important, domains and indicators were represented. Although 
we attempted to draw on a broad literature from across social and physical sciences, it is possible 
this review missed relevant urban deprivation articles, for example, in the refugee and humanitarian 
studies literature (Deola & Patel, 2014). 
 
We believe that all, or at least most, of the domains in the Domains of Deprivation Framework are 
important to characterize deprived areas, and thus we advise researchers to not only use domains 
which are convenient to measure. We recognize that the use of EO and spatial data to measure 
area-level outcomes might present technical barriers for social scientists and practitioners, and the 
limited availability of pre-processed spatially-referenced social data may frustrate physical data 
scientists; however, robust mapping and measurement of deprived areas calls for interdisciplinary 
collaboration. We believe this framework can be operationalized. 
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As a global framework, there will be challenges to localizing its application. Who decides which 
indicators best represent each domain in a particular setting? Data availability will always play a role 
in these discussions. Indicator decisions should be taken through an inclusive, multi-stakeholder 
process which ensures that people living in deprived areas are part of the conversation about how 
they are mapped and measured. Not only is this the right thing to do, applications of the Domains of 
Deprivation Framework will benefit from the unique insights of people who experience deprivation 
locally. Furthermore, many community-based groups have profiled their own community already, 
and are likely to have existing data that could be used in collaborations.  
 
 
CONCLUSION 
 

The IDEAMAPS Domains of Deprivation Framework aim to conceive the major domains of 
deprivations significant in LMICs, and understand the types of indicators that represent these 
domains across contexts following a scoping review of the literature and stakeholder engagement. 
This was achieved with our framework, conceptualizing nine domains of deprivation with 67 relevant 
indicator groups. This generalized framework combines household data and area-level data which 
can be applied locally, used for comparison between cities and used by different stakeholders for 
different purposes whether for research, policies or by communities to hold the Government 
accountable. This framework also brings to the fore the need for more research and data production 
in relation to area-level indicators, specifically on physical and social hazards, contamination, 
infrastructure, and city-level governance. The combination of both household-level and area-level 
data helps to determine the degree to which any community can be described as being “deprived,” 
and brings us closer to leaving no one behind. 
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