
 

 
 

Article 

Principal component analysis of RNA-seq data unveils a novel prostate cancer-associated 

gene expression signature 
Yasser Perera-Negrin1,2, *, Augusto Gonzalez3,4 and Rolando Perez 3,5 

1 China-Cuba Biotechnology Joint Innovation Center, Yongzhou Zhong Gu Biotechnology Co., Ltd,Yongzhou 

City, 425000, Hunan Province, People Republic of China; ypereranegrin@ccbjic.com 
2 Laboratory of Molecular Oncology, Center of Genetic Engineering and Biotechnology, Havana, 10600, Cuba; 

yasser.perera@cigb.edu.cu 
3   Joint China-Cuba neuroinformatics laboratory and Academic Unit, University of Electronic Science and 

Technology of China, Chengdu, People Republic of China 
4   Institute of Cybernetics, Mathematics and Physics, Havana, Cuba; agonzale@icimaf.cu 
5  Center of Molecular Immunology, Havana, Cuba; rolando@oc.biocubafarma.cu 

 

* Correspondence: ypereranegrin@ccbjic.com 

 

Simple Summary: Prostate cancer (Pca) is a highly heterogeneous disease and the second more 

common tumor in males. Molecular and genetic profiles have been used to identify subtypes and 

guide therapeutic intervention. However current risk stratification systems still fail to adequately 

predict outcome, resulting in frequent patient over-treatment. In addition, therapeutic options for 

poorly tractable Pca are limited, thus the discovery of novel molecular targets to intervene is also 

needed. Our Principal Component Analysis (PCA) of RNAseq-data uncovered a Core-Expression 

Signature (CES) which segregates primary PRAD from normal prostate tissues. The 33 surfaced 

genes (PRAD-CES) include validated/predicted biomarkers and emerging/putative Pca drivers, as 

well as six novel RNA genes not previously associated to Pca. GO enrichment and correlation anal-

ysis involving major clinical features (i.e., Gleason Score, AR Score, TMPRSS2-ERG fusion and Tu-

mor Cellularity) suggest that PC2 and PC3 gene signatures might describe more aggressive and 

inflammation-prone transitional forms of PRAD. 

Abstract: Prostate cancer (Pca) is a highly heterogeneous disease and the second more common 

tumor in males. Molecular and genetic profiles have been used to identify subtypes and guide ther-

apeutic intervention. However, roughly 26% of primary Pca are driven by unknown molecular le-

sions. We use Principal Component Analysis (PCA) and custom RNAseq-data normalization to 

identify a gene expression signature which segregates primary PRAD from normal tissues. This 

Core-Expression Signature (PRAD-CES) includes 33 genes and accounts for 39% of data complexity 

along the PC1-cancer axis. The PRAD-CES is populated by protein-coding (AMACR, TP63, HPN) 

and RNA-genes (PCA3, ARLN1) sparsely found in previous studies, validated/predicted bi-

omarkers (HOXC6, TDRD1, DLX1), and/or cancer drivers (PCA3, ARLN1, PCAT-14). Of note, the 

PRAD-CES also comprises six over-expressed LncRNAs without previous Pca association, four of 

them potentially modulating driver’s genes TMPRSS2, PRUNE2 and AMACR. Overall, our PCA 

capture 57% of data complexity within PC1-3. GO enrichment and correlation analysis involving 

major clinical features (i.e., Gleason Score, AR Score, TMPRSS2-ERG fusion and Tumor Cellularity) 

suggest that PC2 and PC3 gene signatures might describe more aggressive and inflammation-prone 

transitional forms of PRAD. Of note, surfaced genes may entail novel prognostic biomarkers and 

molecular alterations to intervene. Particularly, our work uncovered RNA genes with appealing 

implications on Pca biology and progression. 
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1. Introduction 

Prostate cancer (Pca) is the second most common cancer in men [1]. Multiple genetic and 

demographic factors contribute to the incidence of Pca [2]. Prostate-specific antigen (PSA) 

screening allows detection of nearly 90% of prostate cancers at initial stages when their 

surgical removal is the selected medical intervention [3]. However, most of these patients 

never experience the disease during their life-time, therefore Pca is considered over-diag-

nosed and over-treated, impacting on patient’s quality of life, medical work-loads/costs, 

and overall society [4]. 

 

On the other hand, the clinical outcome of Pca is highly variable, and precise prediction 

of disease’s course, once diagnosed, is not possible [5]. Major risk stratification systems 

are based on clinical and pathological parameters such as Gleason score, PSA levels, TNM 

system and surgical margins [6]. However, the above risk stratification systems fail to ad-

equately predict outcome in many cases [7,8]; thus, novel serum-, urinary-, and tissue-

based biomarkers are constantly tested and implemented [9]. Of note, for those tumors 

spreading beyond the prostatic gland (i.e., local and/or distant metastasis) the prognosis 

is more dismal, and effective therapies are needed [10,11]. Renewed expectations are still 

rooted into emerging and hopefully tractable Pca molecular alterations [12,13]. 

 

Comprehensible genome-wide analysis of primary Prostate Adenocarcinoma (PRAD) re-

vealed both already known and novel molecular lesions for 74% of all tumors [14]. The 

most common alterations were fusions of androgen-regulated promoters with ERG and 

other members of the E26 transformation-specific (ETS) family of transcription factors. 

Particularly, the TMPRSS2-ERG fusion is the most representative molecular lesion, ac-

counting for 46% of study cases. Pca also show varying degrees of DNA copy-number 

alteration, whereas somatic point mutations are relatively less common [15,16]. Despite 

this detailed molecular taxonomy of PRAD, roughly 26% of primary Pca of both, good 

and poor prognosis, are driven by unknown molecular lesions [14]. 

 

Principal Component Analysis (PCA) is an unsupervised analysis method providing in-

formation about major directions of data variability and structure, thus reducing the over-

all dimensionality of complex datasets to a few dominant components [17]. Based on 

global gene expression data, PCA usually reveals underlying population heterogenicity, 

including cell differentiation stages, malignant phenotypes and treatment-induced 

changes, which can be linked to phenotypes and further characterized [18]. Biological 

meanings are usually capture by the first 3-4 PCs, although further improvements on PCA 

revealed that higher dimensions may also entail biology information [19]. 

 

Recently, we used Principal Component Analysis (PCA) analysis of RNA-seq expression 

data to demonstrated that a relatively small number of “core genes” can segregate normal 

from neoplastic tissues for different tumor localizations [20]. Here by combining such 

PCA along with resources allocated at Cbioportal, we analyze primary PRAD RNAseq 

data to uncover a novel PRAD-Core Expression Signature (PRAD-CES) which may “de-

scribe” Pca [21,22]. Furthermore, whereas this PRAD-CES segregates tumor from normal 

samples along what we call the cancer axis (i.e., PC1), top genes populating PC2 and PC3 

might reflects a more aggressive and inflammation-prone transitional forms of PRAD. 

Overall, the list of surfaced genes may entail novel prognostic biomarkers and/or molec-

ular alterations to intervene. Particularly appealing, was the identification of several RNA 

genes with potential implications on Pca biology and progression. 
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2. Materials and Methods 

                            RNA-seq data 

For PCA we take RNA-seq tissue expression data from the TCGA Prostate Adenocarci-

noma project (TCGA-PRAD, https://portal.gdc.cancer.gov/repository, Accessed in March 

2019). The data is in the number of fragments per kilo base of gene length per mega-base 

of reads format (FPKM). The studied cases include 499 tumor samples and 52 normal sam-

ples. At Cbioportal (https://www.cbioportal.org/) such data belong to Prostate Adenocar-

cinoma (TCGA, Firehose Legacy) cohort. Two other data cohorts were used in particular 

analysis: Prostate Adenocarcinoma (TCGA, Cell 2015) and Prostate Adenocarcinoma 

(MSKCC, Cancer Cell 2010).   

 

                            PCA analysis 

Fig. 1a shows in a typical PRAD sample that the expression of more than 35000 genes is 

below 0.1. We shift the ex-pression by 0.1 in such a way that, when computed the differ-

ential expressions, genes with not statistically significant expressions are ruled out of the 

analysis. Then, we take the mean geometric average over normal samples in order to de-

fine the reference expression for each gene, and normalize accordingly to obtain the dif-

ferential expressions, ē = e/eref. Finally, we take the base 2 logarithm, ê = Log2 (ē), to define 

the fold variation. Besides reducing the variance, the logarithm allows treating over- and 

sub-expression in a symmetrical way. The co-variance matrix is defined in terms of ê. We 

forced the reference for the PC analysis to be at the center of the cloud of normal samples, 

ê = 0. This is what actually happens in a population, where most individuals are healthy 

and cancer situations are rare.  

 

With these assumptions, the covariance matrix is written: σ2ij = Σ êi(s) êj(s) / (Nsamples-

1), where the sum runs over the samples, s, and Nsamples is the total number of samples 

in the study. êi(s) is the fold variation of gene i in samples. The dimension of matrix σ2 is 

60483, that is equals the number of genes in the data. By diagonalizing this matrix, we get 

the axes of maximal variance: The Principal Components (PCs). They are sorted in de-

scending order of their contribution to the variance. As mentioned, PC1 captures 39% of 

the total data variance, PC2 11%, PC3 7%, etc. These results suggest that we may achieve 

a reasonable description of the main biological characteristics of PRAD using only a small 

number of the eigenvalues and eigenvectors of σ2. To this end, we diagonalize σ2 by 

means of a Lanczos routine in Python language, from which we get the first 100 eigenval-

ues and their corresponding eigen-vectors. 

 

                            Gene information and genome visualization 

General gene information was collected from Genecards integrated data sources 

(www.genecards.org) including but not limited to expression, tissues-specificity, sub-cel-

lular localization and diseases association data [23]. Genome visualizations were done 

with Ensembl release 100 - April 2020 (https://www.ensembl.org), Genome assembly: 

GRCh38.p13 (GCA_000001405.28) [24]. 

 

                            LncRNA databases 

To identify any previous association among identified LncRNAs and cancer, the following 

non-redundant databases were reviewed: Lnc2Cancer 2.0: An updated database that pro-

vides comprehensive experimentally supported associations between lncRNAs and hu-

man cancers [25]. LncRNADisease 2.0: contains experimentally and/or computationally 

supported data [26]. Cancer LncRNA Census (CLC): a compilation of 122 GENCODE 

lncRNAs with causal roles in cancer phenotypes [27]. The miRTarBase http://miRTar-

Base.mbc.nctu.edu.tw/ was used to uncover ceRNAs among selected LncRNAs [28]. 
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Enrichment analysis 

The enrichment analysis was performed using the Enrich platform and the following cat-

egories: Ontologies (GO_Biological_Process_2018) and Pathways (Reactome_2016) [29].  

 

Cbioportal  

Oncoprint visualizations for selected Genomic Profiles, Alteration Frequency, and muta-

tions representation were obtained from Cbioportal, https://www.cbioportal.org/ [21,22]. 

 

Cancer Driver repositories and driver prediction platforms 

To search for any previous cancer association of identified genes the Cancer Gene Census 

and OncoKB (http://oncokb.org) databases were reviewed [30,31]. The driver prediction 

platforms IntoGene (https://www.intogen.org/search) and ExInAtor (https://www.gold-

lab.org/cancer-driver-lncrna-prediction-sof) were used to predict a potential driver role 

for protein-coding and non-coding genes [32,33]. 

 

Pearson Correlation 

Correlations among selected Pca clinical features and the PCs variables were performed 

using a Mathematica function (Pearson Correlation Test). A normal distribution of the 

variables is required. 

. 

3. Results 

3.1. Data normalization surfaced an age-independent global gene expression profile  

In our analysis there are 52 samples of “normal” prostate tissues, 498 primary tumors 

samples, and one metastatic sample. RNA-seq data comprise expression values for 60483 

independent genes, roughly 35000 of them are not transcribed at significant levels in pros-

tate samples (Figure 1a). 

Considering sample availability, we dichotomized the RNAseq data from “normal” and 

“neoplastic” tissues into two arbitrary age cohorts, with the “old” threshold set at ≥ 62 

years (age range: 42-78, median=62) (Supplementary Figure 1). Thus, “normal” patient 

samples were divided in “young” samples (n=28, NY) and “old” patient samples (n=24, 

NO); whereas primary tumors samples were divided in “young” tumor samples (n=249, 

TY) and “old” ones (n=250, TO). While such distribution seems arbitrary and dictated by 

data availability, only 1 out 4 new PRAD diagnostic cases occurs below 60 years, whereas 

the mean diagnosis age is 66 years [34].   
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Figure 1. Un-normalized expression data and differential expression profiles in PRAD. (a) Typical 

range of (un-normalized) expression values from one representative patient (log scale). The red 

dashed line denotes the expression threshold for statistical significance. Genes with expression be-

low the threshold both in normal tissue and in tumor are mapped to differential expressions very 

near one. (b,c) Differential-expression profiles for each of the data cohorts NO, TY and TO. The 

geometric average over the NY group is taken as reference. Notice that there are around 1000 genes 

with differential expression values below 1/2 (down-regulated) (b) and around 1000 genes with dif-

ferential expression above 2 (up-regulated) (c). Notice also that the expression profiles practically 

coincide for the TY and TO groups, and apparently differ from the NO profile. 

The normalization of expression values for each of the data cohorts TY and TO against 

NY group data indicates that the neoplastic transformation entails a similar and genome-

wide over- and under-expression of genes, irrespective of the age of the patients (i.e., TY 

vs TO) (Figure 1b, c). Overall, we found roughly 1000 genes with normalized expression 

values above 2 and about the same number of genes with normalized expression values 

below 0.5. 

3.2 Principal Component Analysis unveils a Core Expression Signature 

The eigenvectors of the covariance matrix defined the PCs axes: PC1, PC2, etc., and pro-

jection over them define the new state variables. By definition, PC1 captures the highest 

fraction of the total variance in the sample set (i.e., PC1=39%), whereas the rest of compo-

nents are sorted in descending order of their contribution to the variance 11% (PC2), 7% 

(PC3), 5% (PC4) and so on. Overall, the 8 first PCs comprised 74% of the data variance. Of 

note, 50% of data variance can be captured by the two major Principal Components (i.e., 

PC1 and PC2).   

The PCA reveals that a Core Expression Signature composed of 33 genes from PC1 (here-

after, PRAD-CES33) can segregate primary neoplastic samples from normal prostatic tis-

sues with roughly 4% and 8% of false positives and false negatives, respectively (Figure 

2). Beyond such 33 genes, the addition of subsequent genes only slightly improves the 

ratio of false positives and the segregation of neoplastic from normal samples along the 

PC1 axis. 
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Figure 2. Principal Component Analysis (PCA) of RNAseq-based expression data from PRAD patients. (a) The tumor samples (cloud 

mean=+91.3) fall apart the distribution of “normal” ones (cloud mean= 0.0) along the PC1 axis defined here as the “cancer axis” (p-

value = 10^-65, Mann-Whitney test). (b) Selecting a PC1 value of 45 as a frontier, 2/52 (3.8%) of normal samples are false positives, 

whereas 38/499 (7.7%) deemed as false negatives. (b, c) The optimal number of “core” genes within the PC1 gene subset is selected 

according to the ratio of False Positives and the Location Test.  

The position along the PC1 axis of a sample is computed as x1 = Σ êi v1i, where v1i are the 

components of the unitary vector along this axis. A bardcode-like representation of the 

amplitudes for such 33 genes is represented in Supplementary Figure S2. The greatest 

value (i.e., over-expression) corresponds to a well know driver and biomarker gene in 

PRAD, the Prostate Cancer Associated 3 (PCA3) antisense [35,36]. Otherwise, the most 

under-expressed genes within this PRAD-CES are the protein coding gene SEMG1 [37]. 

Further bardcode-like analysis of top-100 genes contributing to PC1 axis shown a similar 

profile (Supplementary Figure S2). Detailed information about the 33 genes included in 

the core signature are described in Supplementary Table 1.  

Notice that a picture like Figure 2b is drawn by recomputing the positions of samples 

along PC1, the ratio of false positives, etc. by using only the first n genes, ordered accord-

ing to the module of their amplitudes in vector v1.  

Finally, the distribution of tumor samples according to PRAD-CES on the PC1-PC2 plane 

was similar, irrespective of the age range (i.e., TY cloud median=87, TO cloud median=64). 

These results imply that not only the global normalized gene expression profile is similar 

among TY and TO in PRAD cases, rather than a small number of core genes could become 

a molecular signature of the neoplastic state, irrespective of the age of the patient (i.e., 

PRAD-CES33).   

3.3 Protein coding and RNA-genes compose the PRAD-CES33  

The surfaced PRAD molecular signature its composed by protein coding (70%), as well as 

RNA-genes, including antiSense, pseudogene, and LncRNA (30%). Of note, 20/23 (87%) 

of protein coding genes have been previously associated to cancer, 18 of them (78%) par-

ticularly to Pca (Supplementary Table 2). On the other hand, 3/10 RNA genes have been 

connected to Pca (33%).  

We further verified the expression of PRAD-CES33 gene products on available databases. 

The expression of the corresponding proteins in malignant prostate tissues was observed 

for 9/23 coding genes, whereas 6/10 RNA genes were detected in such malignant tissues 

(Supplementary Table 2). Finally, 14/23 protein products were mainly located to the 

plasma membrane and/or the extra-cellular space. 

PRAD-CES genes displayed very low mutational burden with less than 5% of all samples 

displaying any mutation (Figure 3a, b). Otherwise, roughly 15% of primary PRAD sam-

ples harbor CNV on PRAD-CES genes, being predominant deep deletions. The overall 

alteration frequency of PRAD-CES genes is half of Pca driver genes annotated in the CGC 

(i.e., 21% vs 42% of cumulative alteration frequency, respectively). Top altered genes in-

clude CRTAC1 (4%), TP63 (3%) and DLX1 (2.8%) (Figure 3a). 
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(a)                                                      (b) 

 

      

 

 

 

 

 

 

 

 

                         (c) 

Figure 3. Representation of the pattern and type of molecular alteration in PRAD samples according to Cbioportal (TCGA, Firehose 

Legacy) data cohort. (a) Oncoprint representing genomic alterations for PRAD-CES33 composite genes. (b) Frequency of genomic 

alterations observed in PRAD for PRAD-CES33 genes, a random selected gene list and Pca driver genes. (c) Recurrent somatic and 

germline mutations for the protein-coding Tumor Protein P63 (TP63) in NSCLC and PRAD. Non-Small Cell Lung Cancer mutations 

from TRACERx, NEJM & Nature 2017 dataset (n= 447). 

 

3.4 Core expression signature includes emerging drivers and biomarkers 

A simply text-mining indicated roughly 18 surfaced genes may play driver roles in PRAD 

(Supplementary Table 2). To verify if PRAD-CES genes include validated cancer drivers 

we searched the Cancer Gene Census (CGC) and OncoKB databases. According to recur-

rent somatic and germline mutations, the CGC enlisted TP63 as Tier 1 driver for NSCLC, 

HNSCC and DLBCL cancers, but not Pca. Both the frequency and affected residues dif-

fered among NSCLC and Pca (Figure 3c). None of the remaining 23 protein coding genes 

within PRAD-CES genes populate such CGC-Pca driver list.  

 

Furthermore, we seek for potential driver roles for genes included in PRAD-CES using 

the mutational pattern-based prediction platforms IntoGene and ExInAtor (see methods). 

None of the surfaced PRAD-CES coding genes were predicted as drivers by such orthog-

onal tools. Otherwise, we search for non-coding genes that could be predicted by ExInA-

tor as potential cancer drivers. PCA3 was the only significantly mutated LncRNA 
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predicted by ExInAtor as a driver, despite four of the six LncRNAs were analyzed (i.e., 

PCA3, AP006748.1, AP001610.2, ARLNC1).  

 

To further investigate RNA genes previously associated with cancer, we search three 

LncRNA databases Lnc2Cancer, LncRNADisease and Cancer LncRNA Census. Three (i.e., 

ARLNC1, PCA3, PCAT-14), six (i.e., AC092535.4, AP001610.2, AP002498.1, AP006748.1, 

PCA3 and PCAT14), and one RNA gene (i.e., PCA3), respectively; were previously asso-

ciated with cancer (Table 1). Of note, the PRAD driver TMPRSS2 was predicted as mRNA 

target for AP001610.2 and AP006748.1 LncRNAs according to LncRNADisease database. 

 

     Table 1. LncRNA included in PRAD-CES and their association with cancer according to indicated databases. 

 

LncRNA Database Method 
Tumor 

Type* 
Role 

mRNA tar-

get(s) 
Reference 

ARLNC1 
Lnc2Cancer 2.0a 

RNA-seq, qPCR, 

Northern blot Prostate Driverα CDYL2β 29808028 

PCA3 
Lnc2Cancer 2.0a 

qPCR, Western blot 

Prostate & 

Others 

Driver;  

Biomarker PRUNE2 30569456 

PCAT-14 
Lnc2Cancer 2.0a RNA-seq, qPCR, 

RNAi, ISH 

Prostate & 

Others 

Driver;  

Biomarker IGLL1, DRICH1 27566105 

AC092535.4 
LncRNADiseaseb 

Predicted lncRNA-

disease 

Cervical & 

Others ? 

CTBP1, SPON2, 

RNF212 not found 

AP001610.2 
LncRNADiseaseb 

Predicted lncRNA-

disease 

Cervical & 

Others ? TMPRSS2, MX1 not found 

AP002498.1 
LncRNADiseaseb 

Predicted lncRNA-

disease 

Cervical & 

Others ? 

CAPN5, 

B3GNT6, ACER3 not found 

AP006748.1 
LncRNADiseaseb 

Predicted lncRNA-

disease 

Cervical & 

Others ? TMPRSS2 not found 

PCA3 
LncRNADiseaseb ncRNA-disease cau-

sality 

Prostate & 

Others 

Driver;  

Biomarker PRUNE2 

27743381; 

26594800 

PCAT-14 
LncRNADiseaseb ncRNA-disease cau-

sality 

Prostate & 

Others 

Driver;  

Biomarker IGLL1, DRICH1 

27460352; 

27566105 

PCA3 

Cancer LncRNA 

Census c qPCR, Western blot 

Prostate & 

Others 

Driver;  

Biomarker PRUNE2 

27743381; 

26594800 

   a Experimentally supported; b Experimentally and/or computationally supported; c GENCODE lncRNAs with causal roles;  

  *Top associated tumor; α from text-mining; β Predicted using LncRNADiseaseb tool. 

 

Finally, two others surfaced LncRNAs may impinge on Pca relevant genes according to a 

genomic inspection. The LncRNA AL359314.1 overlap with PCA3 and may reinforce the 

negative regulation of PCA3 over PRUNE2 [36]; whereas AC139783.1 is transcribed 

within the AMACR protein coding gene (Figure 4a, b). 
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                                (b) 

Figure 4. Genome location of the surfaced LncRNAs AL359314.1 (a) and AC139783.1 (b) indicating sequence overlap with protein 

coding genes PRUNE2 (anti-sense direction) and AMACR (sense direction). Representation of the regions of interest using Ensembl 

release 100.  

3.5 Aberrant expression of PRAD-CES genes on independent datasets  

To verify the deregulated expression of PRAD-CES genes in Pca, we used Prostate Ade-

nocarcinoma (MSKCC, Cancer Cell 2010) data cohorts since such study also used normal 

samples/tissues to normalize. Most of PRAD-CES genes (i.e., 15/27 detected) showed a 

consistent expression (i.e., over-expression or under-expression) in a significant propor-

tion of such a patient cohort (>20%) (Supplementary Figure 3). For 10 genes: TRGC1, 

PCAT14, ARLNC1, SERPINA5, COMP, CRTAC1, SLC39A2, SEMG1, SEMG2 and TRGV9, 

the aberrant expression was seen in a minor proportion of patients (i.e., <10%) or not pa-

tients at all (i.e., TRGC1, PCAT14, ARLNC1, SLC39A2, SEMG2 and TRGV9) (Supplemen-

tary Figure 3).  

The expression of PRAD-CES genes were further analyzed on three independent prostate 

cancers studies from Lapointe et al., 2004, Taylor et al., 2010 and Ross-Adams et al., 2015 

[38-40]. Three putative emerging drivers in PRAD were consistently deregulated across 

the analyzed datasets. AMACR, SIM2 and GPX2 protein-coding genes were significantly 

up-regulated (AMACR, SIM2) or down-regulated (GPX2) in both primary and metastatic 

samples from lymph node or multiple sites (Figure 5, Supplementary Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

(a)                                 (b)                               (c) 

Figure 5. The figures shown Box plots of z-scores of Benign vs malignant tissues for AMACR (a), SIM2 (b) and GPX2 (c) genes. For 

statistics analysis a Kruskal-Wallis test with Bonferroni correction for multiple tests was conducted. Data taken from (Taylor et al., 

2010)[40].  

Overall, 14 of 33 PRAD-CES genes were included in the Lapointe dataset (Supplementary 

Figure 4). Whereas, the expression of 11 of them were consistently up- or down-regulated 
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in this dataset, three showed no statistical differences (i.e., COMP, SEMG1 and SEMG2). 

On the other hand, in the Taylor dataset 17 of 33 PRAD-CES genes were detected. The 

expression of 11 genes were found consistently up- or down-regulated in primary tumors 

vs. benign tissues in agreement with our RNAseq-data, whereas no significant differences 

were found for 6 genes (i.e., GSTM1, SERPINA5, COMP, SLC39A2, SEMG1 and SEMG2). 

Finally, in the Ross-Adams dataset 19 of the 33 PRAD-CES genes were detected. The ex-

pression of 17 genes were found consistently up- or down-regulated in primary tumors 

vs. benign tissues, whereas no significant differences were found for 2 genes (i.e., SEMG1 

and SEMG2) (Supplementary Figure 4). 

 

3.6 PCs: Enriched Biological Processes and correlation with major clinical features  

To seek for biological meanings beyond that of the individual genes populating the PCs, 

the top 33 genes from PC1, PC2 and PC3 were submitted to enrichment analysis to identify 

associated Biological Process. Of note, the top 33 genes populated PC1 (i.e., PRAD-CES) 

were mainly associated with tumor-intrinsic processes (GO:1900003, GO:0010950, 

GO:0007283, GO:0048232; p<0.01); whereas the Biological Process related to PC2 

(GO:0006958, GO:0002455, GO:2000257, GO:0030449; p<0.001) and PC3 (GO:0050864, 

GO:0099024, GO:0051251, GO:0006911; p<0.001) suggested involvement of the Innate and 

adaptive Immune System (Figure 6a-c, Supplementary Table 3). 

 

 

 

 

 

 

 

 

                                                            (b) 

 

 

 

 

(a) 

 

 

 

                                                      (c) 

Figure 6. Enrichment analysis for Biological Process using the tool Enrich. PRAD_CES composite genes from PC1(a) and top 33 genes 

from PC2 (b) and PC3 (c) were included in the analysis. Statistical significance is in accordance with color from light (highly signifi-

cant) to dark tones (less significant). 

 

Overall, the PRAD-CES genes (PC1) participate in more diverse BP and pathways com-

pared to genes populated PC2 and PC3 which its reflected by the lower combined scores 

for top identified BP within PC1 (Supplementary Table 3 and 4). Otherwise, PC2 and PC3 

populated genes seemed mainly involved in the complement activation, humoral immune 

response, regulation of B cell activation, phagocytosis, engulfment and regulation of acute 

inflammatory response.  
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To analyze the underlying distribution of major PRAD clinical features across PCs 1-3, a 

correlation analysis between each PC and the Gleason-Score, AR-Score, TMPRSS2-ERG 

and tumor cellularity were performed (Figure 7, Table 2). 
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Figure 7. Correlation between PC1 and PC3 and major clinical features of PRAD using the data cohort Prostate Adenocarcinoma 

(TCGA, Cell 2015), comprising 333 primary tumors. Major features include Gleason-Score (a), AR-Score (b,d), TMPRSS2-ERG and 

tumor cellularity (c) (see Table 2 for details).  

 

                             Table 2. Correlations among PCs and selected clinical features of PRAD (TCGA, Cell 2015). A Pear- 

                             son Correlation Test was performed. Bold numbers indicate significant correlation p<0.05.                                     

                             See also Supplementary Table 5.  

 

 

 

 

 

 

 

Our analysis revealed that PC1 values shown a weak-yet positive correlation with Gleason 

(R<0.30, p=6.0E-06), and AR Score (R<0.30, p=5.0E-5); whereas a medium-strength positive 

association with Tumor cellularity (R=0.37, p=8.0E-11) was seen. Of note, independent cor-

relations among clinical features in this dataset indicated that the Gleason score weakly 

correlates with Cellularity (R=0.26, p=8.0E-6) and TMPRSS2-ERG fusion anti-correlates 

with AR Score (R=-0.24, p=4.0E-5) (Supplementary Table 5). Therefore, the observed cor-

relation between PC1 values and the above-mentioned clinical features may reflect the 

Clinical Features PC1 PC2 PC3 

Gleason Score 0.26 -0.16 0.04 

TMPRSS2-ERG 0.02 -0.18 0.24 

AR Score 0.23 0.32 0.45 

Cellularity 0.37 0.14 0.19 
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underlying PRAD biology which is in line with the fact that PC1 explain up to 39% of data 

complexity, being a more “general” expression signature. 

 

Concerning PC2, we observed an anti-correlation among TMPRSS2-ERG and AR Score 

which goes along the underlying PRAD biology; however, in this PC the Gleason Score 

anti-correlated with Tumor Cellularity. Finally, the genes included in PC3 showed posi-

tive correlations with TMPRSS2-ERG, AR Score and Tumor Cellularity (Table 2, Supple-

mentary Table 5). 

 

4. Discussion 

Here, we use Principal Component Analysis (PCA) to surface gene expression patterns 

which may “describe” primary PRAD, providing new putative biomarkers and/or molec-

ular targets to intervene. Such dimensionality reduction algorithm clearly segregates tu-

mor from normal samples, with eight PCs capturing roughly 3/4 of data complexity. The 

RNA-seq input data was obtained from the Prostate Adenocarcinoma cohort TCGA_Fire-

hose Legacy, which comprised a significant number of tumor and normal samples, the 

ultimate required to perform a custom-made normalization. Furthermore, the use of only 

one Pca data cohort, among severals available, is in line with findings indicating PCA lose 

resolution on highly heterogeneous and pooled data [13]. In addition, we used two other 

major PRAD data cohorts (i.e., TCGA, Cell 2015 and MSKCC, Cancer Cell 2010) as they 

provide clinical data (TCGA, Cell 2015) or used similar normalization for RNA-seq based 

gene expression analysis (MSKCC, Cancer Cell 2010).  

 

Our custom-made normalization revealed a long-tail distribution of expression values 

which might reflect global deregulation events associated with aging and/or malignant 

transformation (i.e., genetic and epigenetics events) [41]. Since we used “normal Young” 

data as reference, the obtained pattern may suggest that neoplastic transformation over-

impose on an already age-adjusted global expression profile (i.e., TY and TO profiles seem 

alike). A similar global gene-expression pattern emerged when a micro-array expression 

data from a previous study was analyzed (data not shown).  

 

Our PCA allow us to identify a Core-Expression Signature (PRAD-CES) composed of 33 

genes which accounts for 39% of data variance along what we call the cancer axis (PC1). 

The biological meaning of PC2 and PC3 seems more elusive, accounting for an additional 

18% of variability. The PRAD-CES includes validated, emerging and putative PRAD driv-

ers and/or biomarkers. Although only one validated protein-coding driver was found (i.e., 

TP63), three RNA genes with causative roles were surfaced: ARLNC1, PCA3, and PCAT-

14 [36,42-44]. Otherwise, six protein coding genes awaits further validation concerning 

PRAD driver roles: OR51E2, HPN, AMACR, DLX1, HOXC6 and WFDC2 [45-50].  

 

Concerning potential or validated biomarkers, the PRAD-CES list contains 15 RNA- or 

protein-coding genes with such a role. Among them HOXC6, TDRD1, and DLX1 have 

been already proposed to identify patients with aggressive prostate cancer [51]. TDRD1 

might also play an important role in prostate cancer development, and as a cancer/testis 

antigen, a potential therapeutic target for cancer immunotherapy [52].  

 

Of note, cross-validation of genes included in PRAD-CES against independent data co-

horts, indicated that most of these genes were consistently deregulated in primary PRAD, 

with notable exceptions on comp, semg1 and semg2 genes. Otherwise, the expression of 

14 genes could not be verified in some of the above-mentioned datasets (i.e., Lapointe et 

al., 2004, Taylor et al., 2010 and Ross-Adams et al., 2015)[38-40]. Overall, the most 
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consistent genes among those detected across all analyzed data were OR51E2, SIM2, HPN, 

SLC45A2, TDRD1, PCA3, DLX1, AMACR, WFDC2, and HOXC6. 

 

On the other hand, our PCA surfaced nine over-expressed RNA genes, six of them lacking 

previous association with Pca. Particularly, four LncRNAs could target PRAD driver’s 

genes TMPRSS2, PRUNE2 and AMACR. One interesting finding was the genome prox-

imity/overlap among PRAD-CES over-expressed genes AC139783.1, AMACR and 

SLC45A2 on Chromosome 5. SLC45A2-AMACR was reported as a novel fusion protein 

which is associated with progressive Pca disease [53]. Otherwise, among several miRNAs 

which may down-regulate AMACR expression in Pca, the potential sponging of hsa-miR-

26a-5p by the surfaced AC139783.1, needs to be addressed. AMACR over-expression have 

been associated with Pca evolution towards hormone-independency, whereas AMACR 

inhibition seems a feasible strategy to treat hormone-refractory prostate cancer patients 

[47]. Of note, LncRNA over-expression in Pca has been related with disease progression, 

used as prognostic factor, or proposed as therapeutic targets [54-56].  

 

The most frequent molecular abnormalities in PRAD involved gene-fusions, copy-number 

alterations and epigenetic deregulation [14]. As a matter of facts, the mutational burden 

observed in surfaced PRAD-CES genes was low, suggesting that expression levels and not 

co-existing mutations determine the PCA-based segregation of tumor from normal sam-

ples. Furthermore, less than 3% of PRAD samples included in our study displayed CNV, 

thus suggesting that most of the observed gene expression deregulation arose from epi-

genetic and/or transcription-based regulatory mechanism.  

 

In this work we selected four molecular/clinical features to correlate with PCs. Primary 

prostate cancer is androgen dependent, and androgen-mediated signaling is crucial in 

prostate cancer pathogenesis, driving the creation and over-expression of most ETS fusion 

genes [57,58]. Among such ETS fusion genes, TMPRSS2-ERG fusion accounts for 46% of 

cases [14]. On the other hand, Gleason score remains as a cornerstone pathological crite-

rion for risk-stratification and prognosis [59]. Finally, we included tumor cellularity as a 

proxy for non-prostatic yet-relevant infiltrating populations [60].  

 

The observed correlations indicated PC1 might reflects the underlying primary PRAD bi-

ology with positive correlation among Gleason Score and Tumor Cellularity, as well as 

among this variable and AR Score. Otherwise, genes comprising PC2 and PC3 may reveal 

a transition towards a more aggressive and inflammation-prone phenotype, with a mix-

ture of tumor epithelial cells and infiltrating immune cells [61]. This notion seems also 

supported by a weaker correlation of PC2 and PC3 genes with tumor cellularity, but also 

by the increasingly positive correlation among genes populating PCs 1-3 and the AR Score 

(i.e., from 0.23 to 0.45). Of note, only PC3 genes positively correlated with TMPRSS2-ERG 

fusion. Altogether, an intriguing possibility is whether PC3-populating genes may de-

scribe an inherent fraction of primary tumors cells endowed to metastasize. 

5. Conclusions 

Our study is limited by data availability/structure and biopsy bias as any global transcrip-

tome inquire [62]. Primary prostate tumors are multifocal and molecularly heterogeneous; 

thus, the surfaced signature may reflect only gene expression features representative from 

the sampled site [63,64]. However, our PCA indeed uncover relevant PRAD genes found 

dispersed across several studies, providing new putative biomarkers and/or drivers. In 

this sense, the inclusion of PCA3 within our PRAD-CES seems encouraging since this 

LncRNA is well recognized as causative, prostate-specific and feasible biomarker which 

is secreted to an easy-to-inquire biological fluids like urine [65]. Furthermore, as 
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therapeutic options for poorly tractable Pca are limited, the evaluation of the putative 

novel molecular targets populating PRAD-CES seems appealing. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 

Histogram showing the age range for patients included in the PRAD-TCGA Firehose Legacy cohort 

used for PCA of RNA-seq expression data, Figure S2: A Barcode-like representation of PRAD genes 

comprising the unitary vectors along PC1. Top panel, contains 33 genes identified for a delta=0.027; 

Lower panel representing 100 genes for a delta=0.0235. Within the barcode the major value (i.e., 

over-expression) corresponds to PCA3, whereas the lower value (i.e., under-expression) belongs to 

SEMG1, Figure S3: Differential expression of PRAD-CES genes in the MSKCC, Cancer Cell 2010 

cohort. The oncoprint representation tool from Cbioportal is used. Z scores>2, normal vs tumor ex-

pression values, Figure S4: Expression analysis of genes from the PRAD-CES using three independ-

ent data cohorts of primary prostate tumors from radical prostatectomy, Table S1: Detailed infor-

mation about the 33 genes included in the PRAD core signature (PRAD-CES33), Table S2: Gene 

Classification, Disease Association and Gene Product Expression, Table S3: Enrichment analysis for 

Biological Process using the tool Enrich, Table S4: Enrichment analysis for Biological Pathways us-

ing the tool Enrich, Table S5: Correlations among PCs and selected clinical features of PRAD (TCGA, 

Cell 2015). 
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