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Abstract 
The bio-oil obtained by pyrolysis of Açaí (Euterpe oleracea Mart.) seeds at 450 ºC, 1.0 

atmosphere, in technical scale, submitted to fractional distillation to produce biofuels-like 

fractions. The distillation of bio-oil carried out in a laboratory distillation column (Vigreux) of 

30 cm. The physical-chemistry properties (density, kinematic viscosity, acid value and 

refractive index) determined by official methods. The chemical functions present in distillation 

fractions determined by FT-IR and the chemical composition by GC-MS. The distillation of 

bio-oil yielded gasoline, light kerosene, and kerosene-like fuel fractions of 16.16, 19.56, and 

41.89% (wt.), respectively. All the physical-chemistry properties (density, kinematic viscosity, 

acid value and refractive index) increase with boiling temperature. The gasoline-like fraction is 

composed by 64.0% (area.) hydrocarbons and 36.0% (area.) oxygenates, while light kerosene-

like fraction by 66.67% (area.) hydrocarbons and 33.33% (area.) oxygenates, and kerosene-

like fraction by 19.87% (area.) hydrocarbons and 81.13% (area.) oxygenates. 

Keywords: Açaí, Residual Seeds, Pyrolysis, Bio-Oil, Distillation, Bio-gasoline, Bio-kerosene. 

1. Introduction 

Açaí (Euterpe oleracea Mart.) is a native palm of natural occurrence in tropical Central 

and South America [1]. The palm gives a dark-purple, berry-like fruit, clustered into bunches 

[2]. The fresh fruits are traditionally processed by crushing and/or extracting the pulp and skin 
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with warm water to produce a thick, purple-colored beverage/juice or a paste [3-4]. The fruit is 

a staple food in rural and urban areas of the Amazon River estuary, particularly in the State Pará 

(Pará-Brazil), with a great economic importance at both rural livelihoods and regional levels 

[5]. It has become one of the most important export products of the Amazon River estuary to 

other parts of Brazil [5], as well as oversees [6]. 

Of the total 1.228.811 tons/year of fruits produced by the State Pará, between 85% [7] 

and 83% (wt.) [8], is a residue (Açaí seeds), thus producing between 1.019.913 and 1.044.489 

tons/year of a residue. The mechanical processing of Açaí fruits in nature produces around 

175.7 tons residue/day in off-season crop and 448.0 tons residue/day in the season crop in the 

metropolitan region of Belém (Pará-Brazil), posing a complex environmental problem of solid 

waste management [9, 10]. The Açaí fruit is a small dark-purple, berry-like fruit, almost 

spherical, weighing between 2.6 to 3.0 g [11], with a diameter around 10.0 and 20.0 mm [11], 

containing a large core seed that occupies almost 85% (vol./vol.) of its volume [3]. Açaí 

(Euterpe oleracea Mart.) fruit has an oily-fiber seed, rich in lignin-cellulose material [12–15].  

Pyrolysis makes it possible the use of low quality lignin-cellulosic based material to 

produce not only liquid bio-oils, but also gaseous fuels, and a carbonaceous rich solid phase, as 

reported in the literature [16-73], and studies include biomass pyrolysis  [23-24, 26, 45, 56-57, 

62, 67-68], bio-oil chemical upgrading techniques [26, 45, 50], bio-oils physical-chemical  

properties [21, 25-26, 28, 34-35, 43, 57, 62-63], as well as separation and/or purification 

processes to improve bio-oils quality [17-22, 30-33, 36-41, 46-48, 51, 53-54, 59-61, 65-66, 70-

73].  

The bio-oil produced by pyrolysis is a multicomponent liquid mixture presenting water, 

carboxylic acids, aldehydes, ketones, alcohols, esters, ethers, aliphatic hydrocarbons, aromatic 

hydrocarbons, anhydrous-sugars, furans, phenols derivatives, among others chemical functions 

[16-17, 20, 38, 44, 47-48, 53, 60-61, 73]. In addition, its organic fraction has a wide distribution 

of polarity, molecular weight [47], as well as differences in thermo-physical and transport 

properties of chemical compounds, as reported by the simulation of organic liquid compounds 

[74], posing challenges to the efficient separation and/or purification processes [47, 74].  

In the last years, several thermal and physical separation processes were applied to 

remove oxygenates from biomass-derived bio-oils including molecular distillation [30, 33, 36-

39, 71], fractional distillation [17-21, 40-41, 46-48, 53, 59-60, 66, 70, 72-73], liquid-liquid 

extraction [22, 31, 61], and fractional condensation [51, 54, 65]. In addition, chemical methods 

such as catalytic upgrading of bio-oils vapors have been applied to improve bio-oils quality [19, 

29, 64]. 
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The fractional distillation studies were carried out in micro/bench scale [17, 46-47], 

laboratory scale [41, 53, 66, 70, 72-73], and pilot scale [21], under atmospheric [17-18, 46-48, 

53, 66, 70, 72-73], or under vacuum [18-19, 41, 48, 53]. Açaí (Euterpe oleracea, Mart.) seeds 

are the only fruit specie, whose centesimal and elemental composition is completely different 

from wood biomass (aspen poplar wood, eucalyptus, maple wood, and softwood bark) [17-19, 

21, 53], agriculture residues of cereal grains (corn Stover, rice Rusk) [41, 46-47, 66, 70, 72], 

jatropha curcas [46], and until horse manure and switch-grass [53]. However, until the moment 

no systematic study investigated the physicochemical properties (density, kinematic viscosity, 

refractive index, and acid value) chemical composition of Açaí (Euterpe oleracea, Mart.) seeds 

bio-oil distillation fractions [73]. 

In this work, fractional distillation of bio-oil obtained by pyrolysis of Açaí seeds at 450 

ºC, 1.0 atmosphere, in technical scale, has been investigated systematically using a laboratory-

scale column (Vigreux) to produce fuels-like fractions (gasoline, light kerosene, and kerosene), 

as well as to determine the physical-chemistry properties (density, kinematic viscosity, acid 

value and refractive index) and chemical composition of distillation fractions. 

2. Materials and methods 

2.1. Materials, pre-treatment, and characterization of Açai (Euterpe oleracea, Mart.) 

seeds in nature 

The seeds of Açaí (Euterpe oleracea Mart.) in nature obtained in a small store of Açaí 

commercialization, located in the City of Belém-Pará-Brazil [73]. The seeds were submitted to 

pre-treatments of drying and grinding as reported elsewhere [73]. The dried and grinded seeds 

were physical-chemistry characterized for moisture, volatile matter, ash, fixed carbon, lipids, 

proteins, fibers, and insoluble lignin according to official methods [73, 75, 76]. 

2.2. Fractional distillation of bio-oil 

2.2.1. Distillation: Experimental apparatus and procedures 

The fractional distillation of bio-oil was performed by using an experimental apparatus 

and procedures described elsewhere [73, 77-78]. The aqueous phase presented in the distillation 

fractions was separated from the organic phase by decantation using a 250 ml glass separator 

funnel. Afterwards, filtration was applied to remove small solid particles present in the organic 

phase. 

2.3. Physical-chemistry analysis and chemical composition of distillation fractions 

2.3.1. Physical-chemistry analysis of distillation fractions 

The distillation fractions were (gasoline, light kerosene, and kerosene) physical-

chemistry characterized for acid value (AOCS Cd 3d-63), density (ASTM D4052) at 25°C, 
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kinematic viscosity (ASTM D445/D446) at 40°C, and refractive index (AOCS Cc 7-25) [81]. 

The analysis of chemical functions (carboxylic acids, aliphatic and aromatic hydrocarbons, 

ketones, phenols, aldehydes, furans, esters, ethers, etc.) present in distillation fractions 

determined by FT-IR [73, 77]. 

2.3.2. Chemical composition of distillation fractions 

The chemical composition of distillation fractions determined by CG-MS and the 

equipment and operational procedures described in details elsewhere [73].  

3. Results and discussions 

3.1. Material balances and yields of fractional distillation 

Table 1 summarizes the material balance and yields by fractional distillation of bio-oil, 

and the distillation fractions and bottoms are illustrated in Figure 1. The yields of fuel-like 

fractions (gasoline, light kerosene, and kerosene) were 16.16, 19.56, and 41.89% (wt.), 

respectively, giving a total distillation yield of 77.61% (wt.). The results are according to similar 

studies for distillation of biomass derived bio-oil in the literature [17-19, 21, 41, 46-48, 53, 66, 

70, 72]. The yield of distillation fractions, is higher than those reported in the literature for both 

atmospheric and vacuum conditions [17-19, 21, 41, 46-48, 53, 66, 70, 72].  

Table 1: Material balance and yields by fractional distillation of bio-oil. 

Distillation:  

Vigreux Column 

Bio-Oil Gas Raffinate Distillates [g] Yield [wt.%] 

[g] [g] [g] H2O G LK K LD H2O G LK K LD 

(30°C-215°C) 307.53 0 69.87 0 49.48 59.91 128.27 0 0 16.16 19.56 41.89 0 

G = Gasoline, LK = Light Kerosene, K = Kerosene, LD = Light Diesel. 
 

Zheng and Wei [41] reported by distillation of fast pyrolysis bio-oil at 80°C under 

vacuum (15 mmHg), a distilled bio-oil yield of 61% (wt.). Zhang et. al. [47] reported by 

atmospheric distillation of fast pyrolysis bio-oil, an accumulated distillate of 51.86% (wt.). 

Zhang et. al. [47] observed that as the distillation temperature reached 240°C, condensation 

reactions take place, generating water, a behavior not observed during the course of distillation 

as illustrated in Table 1. Capunitan and Capareda [48] reported for the distillation at 

atmospheric condition, an organic phase (Distillates) yield of 15.0% (wt.) at 100°C, 4.7% (wt.) 

between 100°C < TBoiling < 180°C, and 45.3% (wt.) between 180°C < TBoiling < 250°C, while 

vacuum distillation yielded 10.3% (wt.) of an organic phase at 80°C, 5.9% (wt.) between 80°C 

< TBoiling < 160°C, and 40.9% (wt.) between 160°C < TBoiling < 230°C. Elkasabi et. al. [53] 

reported by distillation of tail-gas reactive pyrolysis (TGRP) bio-oil, yields ranging from 55 to 

65% (wt.). 
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Figure 1: Distillation fractions [gasoline (yellow), light kerosene (red), and kerosene (red dark)-

like boiling range temperature fossil fuels] and bottoms [Raffinate (black solid)] obtained by 

fractional distillation of bio-oil produced by pyrolysis of Açaí (Euterpe oleracea, Mart.) seeds 

at 450 ºC and 1.0 atmosphere, in pilot scale. 

3.2. Physical-chemical properties of distillation fractions 

The physical-chemical properties of distillation fractions (gasoline, 80-175°C; light 

kerosene, 175-200°C; and kerosene-like fraction, 200-215°C) of bio-oil are illustrated in Table 

2.  

Table 2: Physical-chemical properties of distillation fractions of bio-oil. 

Physico-
chemical 

Properties 

450 ° C 
ANP Nº 65 

G LK K  

 [g/cm3], 30°C 0.9146 0.9191 0.9816 
0.82-0.85 

I. A [mg KOH/g] 14.94 61.08 64.78  

I. R[-] 1.455 1.479 1.497  

 [mm²/s], 40°C 1.457 3.106 4.040 2.0-4.5 

I.A=Acid Value, I.R=Refractive Index. 
 

It can be observed that acidity of distillation fractions increases with boiling 

temperature. However, the acidity of gasoline-like fraction is much lower than that of raw bio-

oil (70.26 mg KOH/g), as described in Table 3. The high acid value of bio-oil is due to the 
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presence of 78.48% (area.) oxygenates, as shown in Table 4. The same behavior was observed 

for the densities, kinematic viscosities, and refractive indexes of gasoline, light kerosene, and 

kerosene-like like fractions with increasing boiling temperature. This is probably due to the 

high concentration of higher-boiling-point compounds in the distillate fractions, such as 

phenols, cresols (p-cresol, o-cresol), and furans, as the concentration of those compounds in the 

distillation fractions increases with increasing boiling temperature as reported elsewhere [66, 

70, 72], corroborate in Tables 5, 6, and 7. 

The gasoline, light-kerosene, and kerosene-like fuel densities were 0.9146, 09191, and 

0.9816 g/mL. The gasoline-like fuel density (fractions (40°C < TBoiling < 175°C), higher, but 

close to the density of distillation fraction of 0.8733 g/mL (TBoiling < 140°C) for jatropha curcas 

cake pyrolysis bio-oil reported by Majhi et. al. [46]. This is probably due to the high lipids 

content between 14-18% (wt.) and 10-10.9% (wt.) fiber, thus producing a bio-oil similar to 

lipid-based pyrolysis organic liquid products [77-78]. The gasoline, light-kerosene, and 

kerosene-like fuel kinematic viscosities were 1.457, 3.106, and 4.040 mm²/s, lower than the 

distillation fraction kinematic viscosity of 2.350 mm²/s (TBoiling < 140°C) for jatropha curcas 

cake pyrolysis bio-oil reported by Majhi et. al. [46]. 

The acid value of gasoline, light-kerosene, and kerosene-like fuel fractions were 14.94, 

61.08, and 64.78 mg KOH/g, lower than the distillation fraction acid value of 0.05 mg KOH/g 

(TBoiling < 140°C) for jatropha curcas cake pyrolysis bio-oil distillation reported by Majhi et. al. 

[46], the organic phases (distillates) acid values of 4.1 (100°C < TBoiling), 15.1 (100°C < TBoiling 

< 180°C), and 7.41 (180°C < TBoiling < 250°C) mg KOH/g, for corn Stover bio-oil atmospheric 

distillation reported by Capunitan and Capareda [48], the organic phases (distillates) acid values 

of 3.0 (80°C < TBoiling), 13.9 (80°C < TBoiling < 160°C), and 5.0 (160°C < TBoiling < 230°C) mg 

KOH/g, for corn Stover bio-oil vacuum distillation reported by Capunitan and Capareda [48], 

the acid values of 13.5 mg KOH/g (TBoiling = 192°C) and 5.3 mg KOH/g (TBoiling = 220°C) of 

distillation fractions F3 and F4 of TGRP1, and the acid value of 11.1 mg KOH/g (TBoiling = 

235°C) of distillation fraction F5 of TGRP2, for tail-gas reactive pyrolysis of horse manure 

(TGRP1), switch grass (TGRP2), and eucalyptus (TGRP3), reported by Elkasabi et. al. [53].  

The results reported by Elkasabi et. al. [53], show that fractional distillation was not 

effective to diminish the acid values of TGRP bio-oil with initial high acid values, what does 

not agree with the results reported by Capunitan and Capareda [48], as well as those presented 

in Table 2, showing that the acid values of distillation fractions are lower than that of raw bio-

oil, proving that distillation was effective. 
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Table 3: Physical-chemical properties of bio-oil, compared to similar studies reported in the 

literature [21, 25, 28, 47, 69, 79-80]. 

Physicochemical  

Properties 

450 ºC [21] [25] [28] [47] [69] [79] [80] 

ANP Nº 65 

Bio-Oil Bio-Oil Bio-Oil Bio-Oil Bio-Oil Bio-Oil Bio-Oil Bio-Oil 

ρ [g/cm3], 30°C 1.043 1.066 1.250 1.140 1.190 1.1581 1.200 1.030 0.82-0.85 

I. A [mg KOH/g] 70.26 - - - - - -  - 

I. R [-] ND - - - - - -  - 

 [mm²/s], 40°C, *60°C 68.34 38.0 148.0 13.2 40.0* 5.0-13.0 12.0 - 2.0-4.5 

I.A = Acid Value; I.R = Refractive Index; ANP: Brazilian National Petroleum Agency, Resolution N° 65 
(Specification of Diesel S10); ND = Not Determined. 

3.3. FT-IR and GC-MS analyses of bio-oil and distillation fractions 

3.3.1. FT-IR spectroscopy of bio-oil and distillation fractions 

By the FT-IR analysis of bio-oil and distillation fractions (gasoline: 40-175 °C, light 

kerosene: 175-200 °C, and kerosene-like fraction: 200-215 °C), summarized in Figure 2, the 

identification of absorption bands/peaks was performed according to previous studies [28, 48, 

59, 73, 77-78, 80, 81]. The FT-IR spectroscopy of bio-oil and distillation fraction identify the 

presence of hydrocarbons (alkanes, alkenes, and aromatic hydrocarbons) and oxygenates 

(phenols, cresols, carboxylic acids, alcohols, ethers, ketones, and furans).  

 
Figure 2: FT-IR of Açaí seeds bio-oil and distillation fractions. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 February 2021                   doi:10.20944/preprints202102.0188.v1

https://doi.org/10.20944/preprints202102.0188.v1


 

3.3.2. Chemical compositional of bio-oil and distillation fractions by GC-MS 

3.3.2.1 Chemical compositional of bio-oil by GC-MS 

The chromatogram of bio-oil is shown in Figure 3. The peaks are concentrated between 

retention times of 8.0 and 22.0 minutes, with the highest one around 12.5 minutes. The GC-MS 

identified hydrocarbons (alkanes, alkenes, aromatic hydrocarbons, and cycloalkenes) and 

oxygenates (esters, phenols, cresols, carboxylic acids, ketones, furans, and aldehydes) in bio-

oil, being composed of 21.52% (area.) hydrocarbons and 78.48% (area.) oxygenates [73]. The 

high acidity of bio-oil, described in Table 3, is probably due to the presence of carboxylic acids, 

ketones, aldehydes, phenols and cresols confer the high acidity of bio-oil. 
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Figure 3: GC-MS of bio-oil. 

The composition of bio-oil shows similarity to those reported in the literature [27, 34, 

41, 47-48, 53, 61], showing the presence of hydrocarbons, phenols, cresols, furans, carboxylic 

acids, and esters, among other classes of compounds [73]. The identification of hydrocarbons 

with carbon chain length between C11 and C15, shows the presence of heavy gasoline 
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compounds with C11 (C5-C11), light kerosene-like fractions (C11-C12), and light diesel-like 

fractions (C13-C15), according to Table 4. 

Table 4: Classes of compounds, summation of peak areas, CAS number, and retention times of 

chemical compounds identified by CG-MS in bio-oil. 

Class of Compounds: Chemical Compounds RT [min] CAS i% (Area) 

Alkanes  
Undecane 10.622 1120-21-4 1.124 
Tridecane 13.870 629-50-5 2.481 
Pentadecane 16.744 629-62-9 2.290 
Dodecane, 5,8-diethyl 19.326 24251-86-3 1.626 
Ʃ (Area.%) = 7.521 
Alkenes  
6-Tridecene, (Z)- 1.626 6508-77-6 2.118 
Ʃ (Area.%) = 2.118 
Cycloalkenes  
Megastigma-4,6(E), 8 (Z)-trien 13.440 5298-13-5 1.847 
Ʃ (Area.%) = 1.847 
Aromatic Hydrocarbons  
Naphthalene 12.262 91-20-3 4.399 
Naphthalene, 1-methyl 14.046 90-12-0 2.390 
1H-Indene, 1-ethylidene 14.296 2471-83-2 3.249 
Ʃ (Area.%) = 10.038 
Esters  
Undecanoic acid, 10-methyl-, methyl ester 17.049 5129-56-6 1.096 
Methyl tetradecanoate 19.620 124-10-7 2.969 
Ʃ (Area.%) = 4.065 
Carboxylic  Acids  
Dodecanoic acid 17.648 334-48-5 4.307 
Tetradecanoic acid 20.677 544-63-8 4.216 
Ʃ (Area.%) = 8.523 
Ketones  
2-Pentanone, 4-hydroxy-4-methyl 5.886 123-42-2 1.878 
2-Cyclopenten-1-one, 2,3-dimethyl 9.552 1121-05-7 1.655 
Ʃ (Area.%) = 3.533 
Phenols  
Phenol 8.469 108-95-2 15.932 
Phenol, 2-methoxy 10.446 90-05-1 4.583 
Phenol, 2,6-dimethyl 10.805 576-26-1 1.991 
Phenol, 2,4-dimethyl 11.469 105-67-9 2.034 
Phenol, 2,5-dimethyl 11.502 95-87-4 2.215 
Phenol, 3,4-dimethyl 11.821 95-65-8 3.845 
Phenol, 4-ethyl-2-methoxy 13.571 2785-89-9 4.567 
Ʃ (Area.%) = 35.167 
Cresols  
p-Cresol 9.818 108-39-4 6.331 
m-Cresol 10.198 106-44-5 11.054 
Cresol 12.210 93-51-3 3.141 
Ʃ (Area.%) = 20.526 
Furans  
Benzofuran, 2-methyl 10.879 4265-26-2 1.879 
Furan, 2-(2 furanylmethyl)-5-methyl 11.946 13678-51-8 2.089 
Benzofuran, 4,7-dimethyl 12.700 28715-26-6 1.783 
Ʃ (Area.%) = 5.751 
Aldehyds  
Cinnamaldehyde, β-methyl- 12.654 1196-67-4 0.910 
Ʃ (Area.%) = 0.910 
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3.3.2.2 Chemical compositional of distillation fractions by GC-MS 

The chromatogram of bio-oil distillation fractions (gasoline: 40-175°C, light kerosene: 

175-200°C, and kerosene-like fraction: 200-215°C) are shown in Figures 4, 5, and 6, 

respectively. One observes that the spectrum of peaks is moving to the right, showing that 

distillation was effective to fractionate the bio-oil.  

The GC-MS identified in gasoline-like fraction hydrocarbons (alkanes, alkenes, and 

aromatic hydrocarbons) and oxygenates (esters, phenols, alcohols, ketones, furans, and 

aldehydes). The gasoline-like fraction contains 64.0% (area.) hydrocarbons (13.27% alkenes, 

9.41% alkanes, and 41.32% aromatic hydrocarbons) and 36.0% (area.) oxygenates (5.50% 

esters, 2.61% ketones, 1.35% phenols, 6.05% alcohols, 13.24% furans, and 7.25% aldehydes). 

The absence of carboxylic acids confers the low acidity of gasoline-like fraction, as summarized 

in Table 5. 
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Figure 4: GC-MS of gasoline-like fraction (40°C-175°C). 
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Table 5: Classes of compounds, summation of peak areas, CAS number, and retention times of 

chemical compounds identified by CG-MS in gasoline-like fraction (40°C-175°C). 

Class of Compounds: Chemical Compounds RT [min] CAS i% (Area) 

Alkanes  
Undecane 10.548 1120-21-4 3.19 
Tridecane 13.794 629-50-5 3.93 
Tetradecane 15.276 629-59-4 0.75 
Pentadecane 16.744 629-62-9 1.55 
∑ (Area.%) = 9.41 
Alkenes  
p-Mentha-1,5,8-triene 9.861 21195-59-5 2.254 
1-Undecene 10.402 821-95-4 2.776 
1-Dodecene 12.088 112-41-4 3.034 
Bicyclo[6.4.0]dodeca-9,11-diene 13.291 - 0.614 
1-Tridecene 13.672 2437-56-1 2.098 
Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene 14.286 2443-46-1 1.380 
1-Tetradecene 15.167 1120-36-1 1.111 
∑ (Area.%) = 13.267 
Aromatic Hydrocarbons    
Benzene, 1,3-dimethyl- 6.247 108-38-3 0.578 
Benzene, propyl- 7.995 103-65-1 0.516 
Benzene, 1-ethyl-3-methyl- 8.128 620-14-4 0.686 
Benzene, 1-ethyl-2-methyl- 8.193 611-14-3 0.593 
Trimethylbenzene 8.283 108-67-8 0.566 
Benzene, (1-methylethyl)- 8.454 98-82-8 1.050 
Benzene, 1,2,4-trimethyl- 8.738 95-63-6 2.107 
Benzene, 1-ethenyl-2-methyl- 8.770 611-15-4 2.709 
Benzene, 1,2,3-trimethyl- 9.255 526-73-8 1.297 
Benzene, pentyl- 11.607 538-68-1 2.205 
Benzene, (1-methyl-2-propynyl)- 11.646 4544-28-9 0.875 
Benzene, (1-methyl-2-cyclopropen-1-yl)- 11.685 65051-83-4 1.441 
o-Xylene 6.413 95-47-6 1.136 
p-Xylene 6.834 106-42-3 2.080 
6,7-Dimethyl-3,5,8,8a-tetrahydro-1H-2-benzopyran                  10.368 110028-10-9 1.243 
2,4-Dimethylstyrene 11.371 2234-20-0 0.703 
1H-Indene, 1-methyl- 11.547 767-58-8 1.830 
Naphthalene 12.217 91-20-3 10.081 
1H-Indene, 2,3-dihydro-4,7-dimethyl- 12.533 6682-71-9 0.760 
Benzocycloheptatriene 14.038 264-09-5 1.401 
Indane 9.516 496-11-7 0.763 
Indene 9.699 95-13-6 6.702 
∑ (Area.%) = 41.322 

Esters  
Hexanoic acid, 2-phenylethyl ester 6.917 72934-12-4 0.494 
2-Furancarboxylic acid, 3-phenylpropyl ester                8.536 - 0.645 
Carbonic acid, octadecyl phenyl ester 8.616             - 3.193 
Acetic acid, 2-methylene-bicyclo[3.2.1]oct-6-en-8-yl 
ester                9.379 - 0.644 

1-hydroxy-1,2,3,4-tetrahydronaphthalene 
trifluoroacetate ester 11.850 134563-46-5 0.526 

∑ (Area.%) = 5.502 
Ketones  
5H-Inden-5-one, 1,2,3,6,7,7a-hexahydro- 9.975 1489-28-7 1.630 
Tricyclo[4.2.1.1(2,5)]deca-3,7-dien-9-one, 10-hydroxy-10-
methyl-    11.767 70220-88-1 0.983 

∑ (Area.%) = 2.613 
Phenols  
Phenol 8.704 108-95-2 0.741 
2-(2-Hydroxyphenyl)buta-1,3-diene 12.450 90-05-1 0.608 
∑ (Area.%) = 1.349 
Alcohols  
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2-heptanol 5.906 543-49-7 0.366 
1-Hexadecanol, 2-methyl- 16.583 2490-48-4 0.849 
Carveol 10.263 99-48-9 1.259 
2-Indanol 9.760 4254-29-9 0.568 
2,6,8-Trimethylbicyclo[4.2.0]oct-2-ene-1,8-diol 10.484 - 1.505 
1-Naphthalenol, 1,2,3,4-tetrahydro-3-methyl- 13.388 3344-45-4 0.427 
2-Naphthalenol, 1,2-dihydro-, acetate\3-
Methoxymethoxy-1,5,5-trimethyl-cyclohexene 

12.300 132316-80-4 1.073 

∑ (Area.%) = 6.047 
Furans  
Benzofuran 8.816 271-89-6 3.746 
Benzofuran, 2-methyl 10.838 4265-25-2 4.997 
Furan, 2-(2 furanylmethyl)-5-methyl 11.922 13678-51-8 1.209 
Benzofuran, 4,7-dimethyl 12.739 28715-26-6 3.287 
∑ (Area.%) = 13.239 
Aldehyds  
Myrtenal 10.034 564-94-3 1.724 
Cinnamaldehyde 12.654 104-55-2 5.523 
∑ (Area.%) = 7.247 
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Figure 5: GC-MS of light kerosene-like fraction (175°C-200°C). 

The GC-MS identified in light kerosene-like fraction hydrocarbons (alkanes, alkenes, 

and aromatic hydrocarbons) and oxygenates (esters, carboxylic acids, phenols, alcohols, 

ketones, furans, and aldehydes). The light kerosene-like fraction is composed of 66.67% (area.) 

hydrocarbons (17.60% alkenes, 32.65% alkanes, and 16.42% aromatic hydrocarbons) and 
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33.33% (area.) oxygenates (6.16% esters, 4.24% ketones, 3.26% carboxylic acids, 7.13% 

phenols, 8.30% alcohols, 2.39% furans, and 1.86% aldehydes). The presence of carboxylic 

acids, ketones, furans, and phenols is associated to the high acidity of light kerosene-like 

fraction, as shown in Table 6. 

Table 6: Classes of compounds, summation of peak areas, CAS number, and retention times of 

chemical compounds identified by CG-MS in light kerosene-like fraction (175°C-200°C). 

Class of Compounds: Chemical Compounds RT [min] CAS i% (Area) 

Alkanes  
Undecane 10.558 1120-21-4 2.115 
Dodecane 12.222 112-40-3 1.608 
Tridecane 13.793 629-50-5 7.177 
Tetradecane 
Pentadecane 
Hexadecane 
Heptadecane 
Tetradacane 2,6,10-trimethyl- 

15.266 
16.668 
17.987 
19.266 
20.485 

629-59-4  
629-62-9 
544-76-3 
629-78-7 

14905-56-7 

2.550 
8.424 
1.236 
8.974 
0,562 

∑ (Area.%) = 32.646 
Alkenes  
1-Dodecene 
1-Tridecene 
1-Tetradecene 
1-Pentadecene 
1-Heptadecene 
3-Heptadecene,(Z)- 
8-Heptadecene 

12.096 
13.668 
15.157 
16.576 
17.896 
18.991 
19.060 

112-41-4 -6 
2437-56-1 
1120-36-1 

13360-61-7 
6765-39-5 

- 
2579-04-6 

2.077 
1.225 
1.295 
3.279 
1.105 
2.914 
5.701 

∑ (Area.%) = 17.596 
Aromatic Hydrocarbons  
Naphthalene, 2-methyl- 14.023 91-57-6 1.141 
Naphthalene, 1-methyl- 14.265 90-12-0 1.582 
Benzocycloheptatriene 
Naphthalene, 1-ethyl- 
Naphthalene, 1,3-dimethyl- 
Naphthalene, 1-(2-propenyl)- 
Naphthalene, 2-ethyl- 
1-Isopropenylnaphthalene 
Fluorene 
9H-Fluorene,9-methyl- 

14.923 
15.483 
15.679 
16.732 
16.806 
17.145 
18.197 
18.415 

264-09-5 
1127-76-0 
575-41-7 

2489-86-3 
827-54-3 

1855-47-6 
86-73-7 

2523-37-7 

1.633 
2.301 
3.739 
1.010 
1.997 
0.848 
1.722 
0.445 

∑ (Area.%) = 16.418 
Esters  
Dodecanoic acid, methyl ester 16.987 111-82-0 3.801 
Methyl tetradecanoate 19.580 124-10-7 2.358 
Ʃ (Area.%) = 6.159 
Carboxylic  Acids  
4,5-Dichlorothiophene-2-carboxylic acid 14.766 31166-29-7 1.198 
Erucic acid 
Propanoic acid, 2-methyl-, (dodecahydro-6a-hydroxy-
9a-methylene-2,9-dioxoazuleno 
Cis-5,8,11,14,17-Eicosapentaenoic acid 

18.864 
19.435 

 
20.403 

112-86-7  
33649-17-1 

 
10417-94-4 

0.450 
0.925 

 
0.692 

∑ (Area.%) = 3.265 
Ketones  
Cyclopenta[1,3]cyclopropa[1,2]cyclohepten-3(3aH)-
one, 1,2,3b,6,7,8-hexahydro 
4-(2,4,4-Trimethyl-cyclohexa-1,5-dienyl)-but-3-en-2-
one  

14.851 
 

15.980 

91531-58-7  
 
- 

1.013 
 

0.966 

Cyclopenta[1,3]cyclopropa[1,2]cyclohepten-3(3aH)-
one, 1,2,3b,6,7,8-hexahydro-1,2,3b 
2,4,6-Cycloheptatrien-1-one,2-hydroxy-5-(3-methyl-2-
butenyl)-4-(1-methylethenyl)- 

16.330 
 

16.887 

91531-58-7  
 

552-96-5 

0.879 
 

1.382 
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∑ (Area.%) = 4.240 
Phenols  
Phenol, 2,5-dimethyl- 11.725 95-87-4 1.168 
Phenol, 3,4-dimethyl- 12.015 95-65-8 1.274 
Phenol, 3-ethyl-5-methyl- 13.591 698-71-5 4.686 
∑ (Area.%) = 7.128 
Alcohols  
9-Methyltricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-diol 14.176 78323-73-6 0.789 
1-Naphthalenol, 1,2,3,4-tetrahydro-2,5,8-trimethyl- 16.162 55591-08-7 1.862 
Bicyclo[4.1.0]heptan-2-ol,1β-(3-methyl-1,3-
butadienyl)-2α,6β-dimethyl-3β-acetoxy 
Cyclopentanol, 3,3,4-trimethyl-4-p-tolyl-, (R,R)-(+)- 
1-Hexadecanol, 2-methyl- 

16.378 
 

16.475 
19.172 

- 
 

19902-38-6 
2490-48-4 

2.696 
 

1.604 
1.348 

∑ (Area.%) = 8.299 
Furans  
Dibenzofuran 17.299 132-64-9 2.387 
∑ (Area.%) = 2.387 
Aldehyds  
2-((2R,4aR,8aS)-4a-Methyl-8-
methylenedecahydronaphthalen-2-yl)acrylaldehyde 

17.791 3650-40-6 1.864 

∑ (Area.%) = 1.864 

By the GC-MS analysis of kerosene-like fraction, hydrocarbons (alkanes, alkenes, and 

aromatic hydrocarbons) and oxygenates (esters, ethers, phenols, alcohols, ketones, furans, and 

aldehydes) were identified.  
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Figure 6: GC-MS of kerosene-like fraction (200°C-215°C). 
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The kerosene-like fraction is composed of 19.87% (area.) hydrocarbons (2.79% alkenes, 

4.20% alkanes, and 12.88% aromatic hydrocarbons) and 81.13% (area.) oxygenates (2.06% 

esters, 0.80% ethers, 3.50% ketones, 60.79% phenols, 0.96% alcohols, 8.99% furans, and 

3.22% aldehydes). The presence of ketones, furans, ethers, esters, aldehydes, and phenols 

confer the high acidity of kerosene-like fraction, as summarized in Table 7. Finally, the content 

of hydrocarbons within the distillation fractions (gasoline: 40°C < TBoiling < 175°C; light 

kerosene: 175°C < TBoiling < 200°C; and kerosene-like fraction: 200°C < TBoiling < 215°C) are 

higher than those reported in the literature [17-19, 46-48, 66, 70, 72], showing that was effective 

not only to diminish the acidity, but also to concentrate hydrocarbons. 

Table 7: Classes of compounds, summation of peak areas, CAS number, and retention times of 

chemical compounds identified by CG-MS in kerosene-like fraction (200°C-215°C). 

Class of Compounds: Chemical Compounds RT [min] CAS i% (Area) 

Alkanes  
Tridecane 13.792 629-50-5 2.023 
Tetradecane 15.276 629-59-4 0.752 
Pentadecane 16.675 629-62-9 1.422 
∑ (Area.%) = 4.20 
Alkenes  
Tetracyclo[5.3.0.0<2,6>.0<3,10>]deca-4,8-diene 11.546 34324-40-8 0,981% 
Bicyclo[6.4.0]dodeca-9,11-diene 13.288 - 0,389% 
1-Tetradecene 15.166 1120-36-1 1,027% 
1-Pentadecene 16.586 13360-61-7 0,390% 
∑ (Area.%) = 2.787 
Aromatic Hydrocarbons  
Benzene, 1-ethynyl-4-methyl- 9.708 766-97-2 1.148 
1H-Indene, 2,3-dihydro-4-methyl- 11.370 824-22-6 0.288 
Naphthalene 12.213 91-20-3 9.719 
Naphthalene, 1-methyl 14.043 90-12-0 0.842 
Naphthalene, 2-methyl- 14.290 91-57-6 0.883 
∑ (Area.%) = 12.880 
Alcohol  
1,3-Cyclohexadiene-1-methanol, α,2,6,6-tetramethyl- 11.764 102676-97-1 0.773 
9-Heptadecene-4,6-diyn-3-ol 13.386 1242413-82-6 0.187 
∑ (Area.%) = 0.960 
Ether  
p-Propargyloxytoluene 12.431 5651-90-1 0.803 
∑ (Area.%) = 0.803 
Ketones  
2-Cyclopenten-1-one, 2-methyl- 7.237 1120-73-6 0.447 
Ethanone, 1-(2-furanyl)- 7.366 1192-62-7 0.178 
2-Cyclopenten-1-one, 2,3-dimethyl 9.609 1121-05-7 0.735 
Benzoin 10.144 119-53-9 0.511 
8-Decen-2-one, 9-methyl-5-methylene- 12.090 130876-97-0 0.354 
Bicyclo[8.2.0]dodecan-11-one, 12,12-dichloro-, 
(1R*,10S*)- 

13.672 110079-11-3 1.078 

∑ (Area.%) = 3.503 
Phenols  
Phenol 8.860 108-95-2 31.258 
Phenol, 2-methyl- 9.861 95-48-7 8.621 
Phenol, 3-methyl- 9.995 108-39-4 13.132 
Phenol, 2-methoxy 10.442 90-05-1 5.554 
Phenol, 2,5-dimethyl 11.645 95-87-4 2.229 
∑ (Area.%) = 60.794 
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Ester  
1-hydroxy-1,2,3,4-tetrahydronaphthalene 
trifluoroacetate ester 

11.846 134563-46-5 2.065 

∑ (Area.%) = 2.065 
Furans  
Benzofuran, 2-methyl- 10.831 4265-25-2 3.546 
Furan, 2-(2 furanylmethyl)-5-methyl- 11.914 13678-51-8 0.750 
Benzofuran, 4,7-dimethyl- 12.486 28715-26-6 4.693 
∑ (Area.%) = 8.989 
Aldehyds  
2-Propenal, 3-phenyl- 10.753 104-55-2 3.219 
∑ (Area.%) = 3.219 

 
4. Conclusions 

The yield of distillation fractions (gasoline, light kerosene, and kerosene-like like 

fractions), 77.61% (wt.), is higher but according than those reported in the literature for both 

atmospheric and vacuum conditions [17-19, 21, 41, 46-48, 53, 66, 70, 72]. The acid values of 

distillation fractions increase with increasing boiling temperature. However, the acidity of 

gasoline-like fraction is much lower than that of raw bio-oil (70.26 mg KOH/g). The same 

behavior was observed for the densities, kinematic viscosities, and refractive indexes of 

gasoline, light kerosene, and kerosene-like like fractions with increasing boiling temperature. 

The FT-IR analysis of bio-oil and distillation fraction identify the presence of 

hydrocarbons (alkanes, alkenes, and aromatic hydrocarbons) and oxygenates (phenols, cresols, 

carboxylic acids, alcohols, ethers, ketones, and furans). The bio-oil is composed of 21.52% 

(area) hydrocarbons and 78.48% (area) oxygenates. The presence of carboxylic acids, as well 

as phenols and cresols is associated to the high acidity of bio-oil. 

The gasoline-like fraction is composed by 64.0% (area.) hydrocarbons and 36.0% (area.) 

oxygenates, while light kerosene-like fraction by 66.67% (area.) hydrocarbons and 33.33% 

(area.) oxygenates, and kerosene-like fraction by 19.87% (area.) hydrocarbons and 81.13% 

(area.) oxygenates. The content of hydrocarbons within the distillation fractions are higher than 

those reported in the literature [17-19, 46-48, 66, 70, 72], showing that distillation was effective 

not only to diminish the acidity, but also to concentrate hydrocarbons. 
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