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When solving the Einstein’s equations for an isolated system of masses, V. Fock introduces har-
monic reference frame and obtains an unambiguous solution. Further, he concludes that there exists
a harmonic reference frame which is determined uniquely apart from a Lorentz transformation if
suitable supplementary conditions are imposed. It is known that wave equations keep the same form
under Lorentz transformations. Thus, we speculate that Fock’s special harmonic reference frames
may have provided us a clue to derive the Einstein’s equations in some special class of non-inertial
reference frames. Following this clue, generalized Einstein’s equations in some special non-inertial
reference frames are derived based on the theory of vacuum mechanics. If the field is weak and the
reference frame is quasi-inertial, these generalized Einstein’s equations reduce to Einstein’s equa-
tions. Thus, this theory may also explain all the experiments which support the theory of general
relativity. There exist some differences between this theory and the theory of general relativity.

Keywords: Einstein’s equations; gravitation; general relativity; principle of equivalence; gravitational aether;
vacuum mechanics.

I. INTRODUCTION

The Einstein’s field equations of gravitation are valid
in all reference frames is a fundamental assumption in
the theory of general relativity [1–3]. R. P. Feynman
once said:”What I cannot create, I do not understand.”
([4], p. xxxii). New theories which can derive Einstein’s
field equations may be interesting. The reasons may be
summarized as follows.
1. Many attempts to reconcile the theory of general rel-

ativity and quantum mechanics by using the techniques
in quantum electrodynamics meet some mathematical d-
ifficulties ([5], p. 101). J. Maddox speculates that the
failure of the familiar quantization procedures to cope
with Einstein’s equations may stem from two possible
reasons. One possibility is that Einstein’s equations are
incomplete. The other possible reason may be that some
underlying assumptions in Einstein’s theory about the
character of the space or time may be not suitable ([5],
p. 101).
2. The value of the cosmological constant is a puz-

zle [6]. In 1917, A. Einstein thought that his equations
should be revised to be ([3], p. 410)

Rµν − 1

2
gµνR+ Λgµν = −κTm

µν , (1)

where gµν is the metric tensor of a Riemannian space-
time, Rµν is the Ricci tensor, R ≡ gµνRµν is the scalar
curvature, gµν is the contravariant metric tensor, κ is a
constant, Tm

µν is the energy-momentum tensor of a matter
system, Λ is the cosmological constant.
However, it seems that the cosmological constant Λ

is unnecessary when Hubble discovered the expansion of
the universe. Thus, Einstein abandoned the term Λgµν
in Eqs. (1) and returned to his original equations ([3], p.
410). The value of the cosmological constant Λ is also
related to the energy-momentum tensor of vacuum ([3],

p. 411). Theoretical interpretation of the small value of
Λ is still open [6].

3. The problem of the existence of black hole is in-
teresting [7]. Einstein believed that black hole cannot
exist in the real world [8]. Recently, the Event Horizon
Telescope Collaboration (EHTC) reconstructed event-
horizon-scale images of the supermassive black hole can-
didate in the center of the giant elliptical galaxy M87 [9].
EHTC reports that the observed image is consistent with
predictions for the shadow of a Kerr black hole based on
the theory of general relativity.

4. The existences and characters of dark matter and
dark energy are still controversy, refers to, for instance,
[10–14].

5. The existence and characters of gravitational aether
are still not clear. Sir I. Newton pointed out that his
inverse-square law of gravitation did not touch on the
mechanism of gravitation ([15], p. 28;[16], p. 91). He con-
jectured that gravitation may be explained based on the
action of an aether pervading the space ([15], p. 28;[16], p.
92). In the years 1905-1916, Einstein abandoned the con-
cepts of electromagnetic aether and gravitational aether
in his theory of relativity ([17], p. 27-61). However, H.
A. Lorentz believed that general relativity could be rec-
onciled with the concept of an ether at rest and wrote a
letter to A. Einstein ([17], p. 65). Einstein changed his
view later and introduced his new concept of ether ([17],
p. 63-113). However, Einstein did not tell us how to de-
rive his equations theoretically based on his new concept
of the gravitational aether.

6. Whether Newton’s gravitational constant GN de-
pends on time and space is still not clear. It is known
that GN is a constant in Newton’s and Einstein’s the-
ory of gravitation. P. A. M. Dirac speculates that GN

may depend on time based on his large number hypoth-
esis [18]. R. P. Feynman thought that if GN decreases
on time, then the earth’s temperature a billion years a-
go was about 48◦C higher than the present temperature
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([4], p. 9).
Furthermore, there exist some other problems relat-

ed to the theories of gravity, for instance, gravitational
waves [19], the speed of light in vacuum [20], the defi-
nition of inertial system, origin of inertial force, the ve-
locity of the propagation of gravity [21], the velocity of
individual photons [22], unified field theory, etc.
The gravitational interaction seems to differ in char-

acter from other interactions. The existing theories of
gravity still face the aforementioned difficulties. Thus, it
seems that new ideas about the gravitational phenome-
na are needed. Following Einstein [23], it may be better
for us to keep an open and critical mind to explore all
possible theories about gravity.
In 2012, M. J. Dupre and F. J. Tipler propose an aether

theory of general relativity [24]. Recently, generalized E-
instein’s equations of gravitational fields in inertial ref-
erence frames are derived based on a sink flow model of
particles [25]. However, the cases of non-inertial refer-
ence frames are not discussed in Ref. [25]. The purpose
of this manuscript is to propose a derivation of the E-
instein’s equations in some non-inertial reference frames
based on the theory of vacuum mechanics [25–28].

II. A BRIEF INTRODUCTION OF THE
THEORY OF VACUUM MECHANICS

Ancient people believe that there is a kind of contin-
uously distributed substance which fills every corner of
the space. Ancient Egyptians called this substance as
nun ([29], p. 172). According to ancient Egyptians, the
nun is a primeval watery darkness which is continuously
distributed surround the world ([29], p. 172). Ancient
Greeks, such as Thales and Anaximenes, believe that ev-
erything in the universe is made of a kind of fundamental
substance named aether.
The thought that our universe is an infinite hierarchy

which has universes within universes without end is a
charming idea. Astonished by this attractive idea and
inspired by the aforementioned ideas, we propose the fol-
lowing mechanical model of the universe.
Matter is composed of molecules. Molecules are con-

structed by atoms. Atoms are formed by elementary par-
ticles. Modern experiments, for instance, the Casimir ef-
fect, have shown that vacuum is not empty. Therefore,
new considerations on the old concept of aether may be
needed.
Thomson’s analogies between electrical phenomena

and elasticity helped J. C. Maxwell to establish a me-
chanical model of electrical phenomena [15]. Following
J. C. Maxwell, we introduce the following assumption
[26].

Assumption 1 We suppose that vacuum is filled with
a kind of continuously distributed matter which may be
called the Ω(1) substratum, or the electromagnetic aether.

The idea that all microscopic particles are sink flows

in a fluidic substratum has been proposed by many re-
searchers in the history, for instance, J. C. Maxwell ([15],
p. 243), B. Riemann ([30], p. 507), H. Poincaré ([31], p.
171), J. C. Taylor ([32], p. 431-436). Thus, we suppose
that electric charges are sources or sinks of the Ω(1) sub-
stratum [26]. Maxwell’s equations in vacuum are derived
by methods of continuum mechanics based on a mechan-
ical model of vacuum and a source or sink flow model of
electric charges [26]. The electromagnetic aether behaves
as a visco-elastic continuum [26]. Maxwell’s equations
approximate the macroscopic behavior of the Ω(1) parti-
cles, in analogy to the way that classical elastic mechanics
approximates the macroscopic behavior of the atoms of
solid materials.

Descartes interpreted the celestial motions of celestial
bodies based on the hypothesis that the universe is filled
by a fluidic vortex aether [15]. Since Newton’s law of
gravitation was published in 1687 [33], this action-at-a-
distance theory was criticized by the French Cartesian
[34]. Sir I. Newton tried to obtain a derivation of his
law based on Descartes’ scientific research program. At
last, he proved that Descartes’ vortex aether hypothesis
could not explain celestial motions properly [33]. Newton
himself even suggested an explanation of gravity based on
the action of an aetherial medium pervading the space
([15], p. 28). Euler attempted to explain gravity based
on some hypotheses of a fluidic aether [34]. Following
Descartes, we introduce the following assumption [27].

Assumption 2 We suppose that vacuum is filled by an
extremely thin medium which may be called the Ω(0) sub-
stratum, or the gravitational aether.

Thus, two sinks in the Ω(0) substratum are found to
attract with each other according to the inverse-square
law of gravitation [27]. A feature of this theory is that the
gravitational constant depends on time and the location
in space.

The particles that constitute the Ω(1) substratum may
be called the Ω(1) particles. Lord Kelvin believes that the
electromagnetic aether must also generate gravity [24,
35]. Following Lord Kelvin, we introduce the following
assumption.

Assumption 3 We suppose that there exist a kind of
basic sinks of the Ω(0) substratum, which may be called
monads after Leibniz. The Ω(1) particles and elementary
particles are formed of monads.

Since monads, the Ω(1) particles, elementary particles
are sinks of the Ω(0) substratum, they attract with each
other according to Newton’s law of gravitation [27].

There exists an universal drag force exerted on each
sink of the Ω(0) substratum [27]. Therefore, each mon-
ad, each Ω(1) particle and each elementary particle, as
sinks of the Ω(0) substratum, will experience the uni-
versal drag force. On the other hand, all the monads,
Ω(1) particles and elementary particles are undertaking
stochastic movements. Based on this universal damping
force and some assumptions, microscopic particles are
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found to obey a generalized non-relativistic Schrödinger
equation [28].
For convenience, we may call these theories [25–28] as

the theory of vacuum mechanics. Vacuum mechanics is
a physical theory which attempts to derive some basic
physical laws based on a new mechanical model of vacu-
um and particles.

III. EQUIVALENCE BETWEEN THE INERTIAL
MASS AND THE GRAVITATIONAL MASS

Proposition 1 The inertial mass of a microscopic par-
ticle equals its gravitational mass.

Proof of Proposition 1. Newton’s law of gravitation
can be written as ([36], p. 2)

F12 = −GN
mg1mg2

r2
r̂12, (2)

where F12(t) denotes the force exerted on the particle
with gravitational mass mg2 by the particle with grav-
itational mass mg1, mg1 and mg2 are the gravitational
masses of two particles, GN is Newton’s gravitational
constant, r̂12 denotes the unit vector directed along the
line from the particle with mass mg1 to the particle with
mass mg2, r is the distance between the two particles.
In 2008, we show that the force F12(t) exerted on the

particle with inertial mass mi2(t) by the velocity field of
the Ω(0) substratum induced by the particle with inertial
mass mi1(t) is [27]

F12(t) = −γN (t)
mi1(t)mi2(t)

r2
r̂12, (3)

where

γN (t) =
ρ0q

2
0

4πm2
0(t)

, (4)

ρ0 is the density of the Ω(0) substratum, m0(t) is the
inertial mass of a monad at time t, −q0(q0 > 0) is the
strength of the monad.
Suppose that GN = γN (t). Comparing Eq. (2) and

Eq. (3), we have

mi1mi2 = mg1mg2. (5)

Now we study a gravitational system of two protons.
According to Eq. (5), we have

m2
ip = m2

gp, (6)

wheremip andmgp are the inertial mass and gravitation-
al mass of a proton respectively.
Noticing mip > 0 and mgp > 0, Eq. (6) can be written

as

mip = mgp. (7)

Eq. (7) shows that the inertial mass mip of a pro-
ton equals its gravitational mass mgp. Similarly, we can
demonstrate that the inertial mass of another type of
microscopic particle equals its gravitational mass. �

This result is called the principle of equivalence in the
theory of general relativity [1–3].

IV. THE DYNAMICAL GRAVITATIONAL
POTENTIALS IN INERTIAL REFERENCE

FRAMES

The purpose of this section is to review the mathe-
matical forms of the dynamical gravitational potentials
in inertial reference frames. These results may provide
us some clues to explore possible mathematical model-
s of inertial potential and inertial force Lagrangian in
non-inertial reference frames, which are introduced in the
next section.

We introduce a Cartesian coordinate system {0, x, y, z}
for a three-dimensional Euclidean space that attached to
the Ω(1) substratum. Let {0, t} be a one-dimensional
time coordinate. For convenience, we introduce the fol-
lowing Galilean coordinate system x0 ≡ ct, x1 ≡
x, x2 ≡ y, x3 ≡ z. Let ηµν denotes the metric tensor
of the Minkowski spacetime.

We will use Greek indices α, β, µ, ν, etc., to denote the
range {0, 1, 2, 3} and Latin indices i, j, k, etc., to denote
the range {1, 2, 3}. Einstein’s summation convention will
be used, i.e., any repeated Greek superscript or subscript
appearing in a term of an equation is to be summed from
0 to 3.

The definition of the strength g of a gravitational field
is ([37], p. 24)

g =
Fg

mtest
, (8)

where mtest is the mass of a test point particle, Fg is the
gravitational force exerted on the test point particle by
a gravitational field.

According to Newton’s second law, we have

Fg = mtesta, (9)

where a is the acceleration of the test point particle.
Comparing Eq. (9) and Eq. (8), we have

g = a. (10)

The definition of the acceleration a is ([37], p. 24)

ai = γik
d2xk

dt2
, (11)

where

γik = −gik +
g0ig0k
g00

, (12)

gµν is the metric tensor of a Riemannian spacetime.

3
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Based on the time tracks of free particles described
by geodesic curves in Minkowski spacetime, we have the
following results ([1], p. 279;[37], p. 26)

ai = − ∂Π

∂xi
− c

√
1 +

2Π

c2
∂γi
∂t

, (13)

where

Π = −1− g00
2

c2, γi = − gi0√
g00

. (14)

If we suppose that ∂g00/∂t ≈ 0, then Eqs. (13) can
also be written as

ai = c2
∂

∂xi

(
1− g00

2

)
− c2

∂(−gi0)
∂(ct)

. (15)

V. INERTIAL POTENTIAL AND INERTIAL
FORCE LAGRANGIAN IN NON-INERTIAL

REFERENCE FRAMES

According to the theory of general relativity [2, 3], the
Einstein’s equations are valid not only in inertial ref-
erence frames but also in non-inertial reference frames.
Thus, it is needed to explore the possibility to derive the
Einstein’s equations in non-inertial reference frames.
When solving the Einstein’s equations for an isolated

system of masses, V. Fock introduces harmonic reference
frame and obtains an unambiguous solution ([38], p. 369).
Furthermore, in the case of an isolated system of mass-
es, he concludes that there exists a harmonic reference
frame which is determined uniquely apart from a Lorentz
transformation if suitable supplementary conditions are
imposed ([38], p. 373). It is known that wave equations
keep the same form under Lorentz transformations [1].
From Eqs. (93) in Ref. [25], we notice that the field e-
quations of gravitation in inertial reference frames in a
Minkowski spacetime are wave equations. Thus, we spec-
ulate that Fock’s special harmonic reference frames may
have provided us a clue to derive the Einstein’s equations
in some special class of non-inertial reference frames.
We introduce an arbitrary non-inertial coordinate sys-

tem (x′0, x′1, x′2, x′3) and denote it as Sn. It is known
that a particle in a non-inertial reference frame will ex-
perience an inertial force. Unfortunately, we have no
knowledge about the origin of inertial forces.
For convenience, we introduce the following definition

of matter system.

Definition 1 A matter system is a system of a number
of elementary particles, or continuously distributed ele-
mentary particles.

The equivalence between inertial mass and gravitation-
al mass implies that to some degree gravitational forces
behave in the same way as inertial forces ([36], p. 17).
Thus, we speculate that inertial forces may originate from
the interactions between matter systems and vacuum.
Therefore, we introduce the following assumption.

Assumption 4 The inertial force exerted on a matter
system in a non-inertial reference frame stems from the
interactions between the matter system and vacuum.

Based on Assumption 4, we introduce the following
concepts for inertial forces, which are similar to those
concepts for gravitational interactions.

Definition 2 Inertial potential ψiner
µν is an interaction

potential between a matter system and vacuum resulting
from the inertial force Finer exerted on the matter system
by vacuum in a non-inertial reference frame Sn.

Definition 3 Inertial force Lagrangian Liner is an inter-
action Lagrangian between a matter system and vacuum
resulting from the inertial force Finer exerted on the mat-
ter system by vacuum in a non-inertial reference frame
Sn.

Now our task is to explore possible models of inertial
potential ψiner

µν and inertial force Lagrangian Liner. Let
η′µν denotes the metric tensor of the non-inertial refer-

ence frame Sn. Suppose that ∂η′00/∂x
′0 ≈ 0. Then, fol-

lowing similar methods as in the derivation of Eqs. (15),
we obtain the following relationship for the inertial ac-
celeration a of a test point particle in the non-inertial
reference frame Sn

ai = c2
∂

∂x′i

(
1− η′00

2

)
− c2

∂(−η′i0)
∂x′0

. (16)

If η′i0 are time-independent, the inertial acceleration a
of the test point particle in Eqs. (16) simplifies to ([1], p.
280)

ai = c2
∂

∂x′i

(
1− η′00

2

)
. (17)

Using Eqs. (17), the inertial force Finer exerted on the
test point particle can be written as

Finer = ma = mc2∇
(
1− η′00

2

)
, (18)

where m is the mass of the test point particle, ∇ =
i∂/∂x′1 + j∂/∂x′2 + k∂/∂x′3 is the Hamilton operator,
i, j, k are three unit vectors directed along the coordi-
nate axes.

From Eq. (18), the inertial force Lagrangian of a sys-
tem of vacuum and the test point particle can be written
as

Liner1 = −mc2
(
1− η′00

2

)
. (19)

Therefore, the inertial force Lagrangian of a system
of vacuum and continuously distributed particles can be
written as

Liner = −ρmc2
(
1− η′00

2

)
, (20)
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where ρm is the rest mass density of the continuously
distributed particles.
Let T

′µν
m denotes the contravariant energy-momentum

tensor of the continuously distributed particles system. If
the inertial force is small enough, then we may regard this
non-inertial reference frame Sn as an inertial reference
frame approximately. Thus, we have T

′00
m ≈ ρmc

2 [25].
Noticing η00 = 1, the inertial force Lagrangian Liner in
Eq. (20) can be written as

Liner ≈ f0ψ
iner
00 T

′00
m , (21)

where

ψiner
00 = − 1

2f0
(η00 − η′00). (22)

Following Ref. [25], the parameter f0 is

f0 =

√
2ρ0q20
m2

0c
4
=

√
8πγN
c4

. (23)

Inspired by Eq. (21) and Eq. (22), we introduce the
following assumption.

Assumption 5 Suppose that the inertial force La-
grangian Liner of a system of a free point particle and
vacuum in the non-inertial reference frame Sn can be
written as

Liner = f0ψ
iner
µν mu′µu′ν , (24)

where m is the rest mass of the point particle, u′µ ≡
dx

′µ/dτη′ , τη′ is the proper time,

ψiner
µν = − 1

2f0
(ηµν − η′µν). (25)

Following similar methods as in [25], we obtain the
following result.

Proposition 2 Suppose that Assumption 5 is valid.
Then, the equations of motion of a free point particle
can be written as

d2x
′µ

dτ2η′
+ C

′µ
νσ

dx
′ν

dτη′

dx
′σ

dτη′
= 0, (26)

where

C
′ν
αβ ≡ 1

2
η

′µν

(
∂η′µα
∂x′β

+
∂η′µβ
∂x′α

−
∂η′αβ
∂x′µ

)
(27)

are the corresponding Christoffel symbols in the non-
inertial reference frame Sn.

Proof of Proposition 2. The Lagrangian of a free point
particle in Sn can be written as ([4], p. 57;[39])

L′
0 =

1

2
m
dx

′µ

dτη′

dx′µ
dτη′

=
1

2
mu

′µu′µ =
1

2
mη′µνu

′µu
′ν , (28)

where m is the rest mass of the point particle, dτη′ ≡
1
c

√
dx′µdx′µ is the infinitesimal proper time interval,

u
′µ ≡ dx

′µ/dτη′ .
Ignoring the contravariant energy-momentum tensor of

the Ω(1) substratum, i.e., T
′µν
Ω(1) ≈ 0 and using Eq. (28)

and Eq. (24), the total Lagrangian Lp of a system of
the Ω(0) substratum, the Ω(1) substratum and the point
particle can be written as

Lp = L′
0 + Liner =

1

2
mu′µu′µ + f0ψ

iner
µν mu′µu′ν . (29)

The Euler-Lagrange equations for the total Lagrangian
Lp can be written as ([36], p. 111)

∂Lp

∂x′µ
− d

dτη′

∂Lp

∂u′µ
= 0. (30)

Putting Eq. (29) into Eqs. (30), we have

d

dτη′

[(
ηµν + 2f0ψ

iner
µν

) dx′ν

dτη′

]
− f0

∂ψiner
αβ

∂x′µ

dx
′α

dτη′

dx
′β

dτη′
= 0.

(31)
Using Eq. (25), Eqs. (31) can be written as

d

dτη′

(
η′µν

dx
′ν

dτη′

)
− 1

2

∂η′αβ
∂x′µ

dx
′α

dτη′

dx
′β

dτη′
= 0. (32)

Eqs. (32) represent a geodesic line in a Minkowski s-
pacetime with a metric tensor η′µν , which can also be
written as Eqs. (26) ([37], p. 50). �

Eqs. (26) is a geodesic curve in a Minkowski space-
time. It is known that a geodesic curve is a straight line
in a Minkowski spacetime ([40], p. 235). For instance, ac-
cording to Newton’s first law, a free particle moves along
a straight line in the Galilean coordinates. Therefore,
Assumption 5 may be supported by some experiments.
Inspired by the inertial force Lagrangian for a free point
particle in Eq. (24), we introduce the following assump-
tion for a matter system and vacuum based on Assump-
tion 3.

Assumption 6 The inertial force Lagrangian Liner of a
matter system and vacuum in the non-inertial reference
frame Sn can be written as

Liner = f0ψ
iner
µν (T

′µν
m + T

′µν
Ω(1)) +O[(f0ψ

iner
µν )2], (33)

where T
′µν
m and T

′µν
Ω(1) are the contravariant energy-

momentum tensors of the matter and the Ω(1) substra-
tum respectively, O[(f0ψ

iner
µν )2] denotes those terms which

are small quantities of the order of (f0ψ
iner
µν )2.

VI. FIELD EQUATIONS IN A SPECIAL CLASS
OF NON-INERTIAL REFERENCE FRAMES

Suppose that the transformation equations between a
non-inertial coordinate system (x′0, x′1, x′2, x′3) and

5
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the Galilean coordinates (ct, x, y, z) are

x′α = fα(x0, x1, x2, x3). (34)

Following V. Fock ([38], p. 370-373), we introduce the
following definition of a special class of reference frames.

Definition 4 Suppose that a coordinate system
(x′0, x′1, x′2, x′3) satisfies the following conditions: (1)
every coordinates x′α satisfies the d’Alembert’s equation
([38], p. 369), i.e.,

�η′x′α ≡ 1√
−η′0

∂

∂x′µ

(√
−η′0η′µν

∂x′α

∂x′ν

)
= 0, (35)

where η′µν is the metric of the reference frame Sn, η
′
0 =

Det η′µν , DetAµν denotes the value of the corresponding
determinant of the tensor Aµν ; (2) every coordinates x′α

converges to the Galilean coordinates (ct, x, y, z) at large
enough distance, i.e.,

lim
r→∞

x′α = xα, (36)

where r =
√
x2 + y2 + z2; (3) η′µν−(η′µν)∞ are outgoing

waves, i.e., η′µν − (η′µν)∞ satisfy the following condition
of outward radiation: for r → ∞, and all values of t′0 =
t+r/c in an arbitrary fixed interval the following limiting
conditions are satisfied ([38], p. 365)

lim
r→∞

[
∂[r(η′µν − (η′µν)∞)]

∂r
+

1

c

∂[r(η′µν − (η′µν)∞)]

∂t

]
= 0,

(37)
where (η′µν)∞ denotes the value of η′µν at infinity. Then,
we call this coordinate system (x′0, x′1, x′2, x′3) as a
Fock coordinate system.

We use SF to denote a Fock coordinate system. The
Galilean coordinate system (ct, x, y, z) is a Fock coordi-
nate system. V. Fock points out an advantage of Fock
coordinate system ([38], p. 369):”When solving Einstein’s
equations for an isolated system of masses we used har-
monic coordinates and in this way obtained a perfectly
unambiguous solution.” Here the harmonic coordinates
called by V. Fock are Fock coordinate systems.
According to a theorem of Fock about Fock coordinate

systems ([38], p. 369-373), the transformation equations
(34) can be written as a Lorentz transformation, i.e.,

x′µ = aµνx
ν , (38)

where aµν are coefficients of a Lorentz transformation.
For convenience, we introduce the following notations

∂′µ ≡
(

∂

∂x′0
,
∂

∂x′1
,
∂

∂x′2
,
∂

∂x′3

)
, ∂

′µ ≡ η
′µν∂′ν . (39)

Proposition 3 Suppose that the reference frame SF is
a Fock coordinate system and Assumptions 6 is valid,
then the total Lagrangian L′

tot of a system of the Ω(0)

substratum, the Ω(1) substratum, vacuum and matter in
SF can be written as

L′
tot =

1

2
∂′λψ

′
µν∂

′λψ
′µν − 2∂′λψ

′
µν∂

′µψ
′λν − 6∂

′µψ′
µν∂

′νψ′

−3

2
∂′λψ

′∂
′λψ′ + L′

more + f0ψ
′
µν(T

′µν
m + T

′µν
Ω(1))

+f0ψ
iner
µν (T

′µν
m + T

′µν
Ω(1)) +O[(f0ψ

iner
µν )2]

+O[(f0ψ
′
µν)

2], (40)

where ψ′
µν is a tensorial potential of the gravitational

field, L′
more denotes those terms involving more than t-

wo derivatives of ψ′
µν , O[(f0ψ

′
µν)

2] denotes those terms

which are small quantities of the order of (f0ψ
′
µν)

2.

Proof of Proposition 3. Based on some assumptions,
the total Lagrangian Ltot of a system of the Ω(0) sub-
stratum, the Ω(1) substratum and matter in an inertial
reference frame can be written as [25]

Ltot =
1

2
∂λψµν∂

λψµν − 2∂λψµν∂
µψλν − 6∂µψµν∂

νψ

−3

2
∂λψ∂

λψ + Lmore + f0ψµν(T
µν
m + Tµν

Ω(1))

+O[(f0ψµν)
2], (41)

where ψµν is a tensorial potential of the gravitational field
in the inertial reference frame, Lmore denotes those terms
involving more than two derivatives of ψµν , O[(f0ψµν)

2]
denotes those terms which are small quantities of the
order of (f0ψµν)

2.
The total Lagrangian L′

tot can be written as

L′
tot = Ltot + Liner. (42)

Similar to the case of inertial reference frames ([36], p.
59-60, 63), we also have the following results in the Fock
coordinate system SF

∂′λ = a σ
λ ∂σ, ∂

′λ = aλσ∂
σ, (43)

ψ
′µν = aµαa

ν
βψ

αβ , (44)

ψ′
µν = a α

µ a β
ν ψαβ . (45)

The first term on the right hand side of Eqs. (40) can
be written as

1

2
∂′λψ

′
µν∂

′λψ
′µν =

1

2
(a σ

λ ∂σ)(a
α
µ a β

ν ψαβ)

·(aλσ∂σ)(aµαaνβψαβ). (46)

We have the following result ([36], p. 60)

a µ
β a

β
ν = δµν , (47)

where δµν is the Kronecker delta.
Using Eq. (47), Eqs. (46) can be written as

1

2
∂′λψ

′
µν∂

′λψ
′µν =

1

2
∂σψαβ∂

σψαβ . (48)
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Similarly, we can verify the following results

−2∂′λψ
′
µν∂

′µψ
′λν = −2∂σψαβ∂

αψσβ , (49)

−6∂
′µψ′

µν∂
′νψ′ = −6∂αψαβ∂

βψ, (50)

−3

2
∂′λψ

′∂
′λψ′ = −3

2
∂σψ∂

σψ, (51)

f0ψ
′
µνT

′µν
m = f0ψαβT

αβ
m , (52)

L′
more = Lmore, (53)

O[(f0ψ
′
µν)

2] = O[(f0ψµν)
2]. (54)

Putting Eq. (41) and Eq. (33) into Eq. (42) and using
Eqs. (48-54), we obtain Eq. (40). �
Applying similar methods as in Ref. [25], we have the

following result.

Theorem 1 If we ignore those terms which are smal-
l quantities of the order of (f0ψ

′
µν)

2 and (f0ψ
iner
µν )2 and

those terms involving more than two derivatives of ψ′
µν

in Eq. (40), i.e., O[(f0ψ
′
µν)

2] ≈ 0, O[(f0ψ
iner
µν )2] ≈ 0

and L′
more ≈ 0, then the field equations for the total La-

grangian L′
tot in Eq. (40) can be written as

∂′σ∂
′σψ′

αβ − 2(∂
′σ∂′αψ

′
βσ + ∂

′σ∂′βψ
′
ασ)

−6(η′αβ∂
′
σ∂

′
λψ

′σλ + ∂′α∂
′
βψ

′)− 3η′αβ∂
′
σ∂

′σψ′

= f0

(
T

′m
αβ + T

′Ω(1)
αβ

)
. (55)

Proof of Theorem 1. We have the following Euler-
Lagrange equations [41]

∂L′
tot

∂ψ′αβ
− ∂

∂x′σ

(
∂L′

tot

∂(∂′σψ
′αβ)

)
= 0. (56)

We have the following results

∂(∂′λψ
′
µν∂

′λψ
′µν)

∂(∂′σψ
′αβ)

=
∂(∂′λψ

′
µν)

∂(∂′σψ
′αβ)

∂
′λψ

′µν

+∂′λψ
′
µν

∂(∂
′λψ

′µν)

∂(∂′σψ
′αβ)

, (57)

ψ′
µν = η′µρη

′
ντψ

′ρτ . (58)

Using Eqs. (58), we have

∂(∂′λψ
′
µν)

∂(∂′σψ
′αβ)

=
∂

∂(∂′σψ
′αβ)

(
η′µρη

′
ντ∂

′
λψ

′ρτ
)

= η′µρη
′
ντ

∂(∂′λψ
′ρτ )

∂(∂′σψ
′αβ)

= η′µρη
′
ντδ

λ
σδ

ρ
αδ

τ
β

= η′µαη
′
νβδ

λ
σ . (59)

Using Eqs. (59) and Eqs. (58), the first term on the
right hand side of Eqs. (57) can be written as

∂(∂′λψ
′
µν)

∂(∂′σψ
′αβ)

∂
′λψ

′µν = ∂
′σψ′

αβ . (60)

Similarly, the second term on the right hand side of
Eqs. (57) can be written as

∂′λψ
′
µν

∂(∂
′λψ

′µν)

∂(∂′σψ
′αβ)

= ∂
′σψ′

αβ . (61)

Using Eqs. (57), Eqs. (60) and Eqs. (61), we have

∂

∂x′σ

[
∂(∂′λψ

′
µν∂

′λψ
′µν)

∂(∂′σψ
′αβ)

]
= 2∂′σ∂

′σψ′
αβ . (62)

Similarly, we can verify the following results

∂

∂x′σ

[
∂(∂′λψ

′
µν∂

′µψ
′λν)

∂(∂′σψ
′αβ)

]
= ∂

′σ∂′αψ
′
βσ

+ ∂
′σ∂′βψ

′
ασ, (63)

∂

∂x′σ

[
∂(∂

′µψ′
µν∂

′νψ)

∂(∂′σψ
′αβ)

]
= ∂′α∂

′
βψ

′

+ η′αβ∂
′
σ∂

′
λψ

′σλ, (64)

∂

∂x′σ

[
∂(∂′λψ

′∂
′λψ′)

∂(∂′σψ
′αβ)

]
= 2η′αβ∂

′
σ∂

′σψ′, (65)

∂L′
tot

∂ψ′αβ
= f0(T

′m
αβ + T

′Ω(1)
αβ ). (66)

Putting Eq. (40) into Eqs. (56) and using Eqs. (62-66),
we obtain Eqs. (55). �

Following Ref. [25], we introduce the following nota-
tion in the Fock coordinate system SF .

Ψ
′µν = ∂′λ∂

′λψ
′µν − 2∂′λ∂

′µψ
′νλ − 2∂′λ∂

′νψ
′µλ

−6η
′µν∂′σ∂

′
λψ

′σλ − 6∂
′µ∂

′νψ′ − 3η
′µν∂′λ∂

′λψ′.(67)

For convenience, we introduce the following definition
of the total energy-momentum tensor T

′µν of the sys-
tem of the matter, the Ω(1) substratum and the Ω(0)
substratum in the Fock coordinate system SF

T
′µν = T

′µν
m + T

′µν
Ω(1) + T

′µν
Ω(0), (68)

where T
′µν
Ω(0) is the energy-momentum tensor of the Ω(0)

substratum in the Fock coordinate system SF .
We introduce the following notation in SF

Θ
′µν = ∂′λ∂

′λψ
′µν − (∂′λ∂

′µψ
′νλ + ∂′λ∂

′νψ
′µλ)

+(∂
′µ∂

′νψ′ + η
′µν∂′σ∂

′
λψ

′σλ)− η
′µν∂′λ∂

′λψ′. (69)

Following Ref. [25], we introduce the following defini-

tion of the contravariant energy-momentum tensor T
′µν
ω

of vacuum in SF

T
′µν
ω =

1

f0
Ψ

′µν +
1

f0
Θ

′µν + T
′µν
Ω(0). (70)

Using these definitions, we have the following result.
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Corollary 1 The field equations (55) can be written as

∂′λ∂
′λψ

′µν − ∂′λ∂
′µψ

′νλ − ∂′λ∂
′νψ

′µλ

+∂
′µ∂

′νψ′ + η
′µν∂′σ∂

′
λψ

′σλ

−η
′µν∂′λ∂

′λψ′ = −f0(T
′µν − T

′µν
ω ). (71)

We can verify that the field equations (71) are invariant
under the following gauge transformation

ψ
′µν → ψ

′µν + ∂
′µΛν + ∂

′νΛµ, (72)

where Λµ is an arbitrary vector field.
We introduce the following definition

ϕ
′µν = ψ

′µν − 1

2
η

′µνψ′. (73)

Using Eqs. (73), the field equations (71) can be written
as

∂′λ∂
′λϕ

′µν − ∂′λ∂
′µϕ

′νλ − ∂′λ∂
′νϕµλ

+η
′µν∂′σ∂

′
λϕ

′σλ = −f0(T
′µν − T

′µν
ω ). (74)

We introduce the following Hilbert gauge condition [39]

∂′µ

(
ψ

′µν − 1

2
η

′µνψ′
)

= 0. (75)

Using Eqs. (73), the Hilbert gauge condition Eqs. (75)
simplifies to

∂′µϕ
′µν = 0. (76)

If we impose the Hilbert gauge condition Eqs. (76) on
the fields, then the field equations (74) simplify to

∂′λ∂
′λϕ

′µν = −f0(T
′µν − T

′µν
ω ). (77)

The field equations (77) can also be written as

η
′αβ ∂2ϕ

′µν

∂x′α∂x′β
= −f0(T

′µν − T
′µν
ω ). (78)

VII. GENERALIZED EINSTEIN’S EQUATIONS
IN A SPECIAL CLASS OF NON-INERTIAL

REFERENCE FRAMES

Definition 5 The Einstein tensor Gµν is defined by

Gµν ≡ Rµν − 1

2
gµνR, (79)

where gµν is a metric tensor of a Riemannian space-
time, Rµν is the Ricci tensor, R ≡ gµνRµν , g

µν is
the corresponding contravariant tensor of gµν such that
gµλg

λν = δνµ ([37], p. 40).

Similar to Ref. [25], we introduce the following defini-
tion of a metric tensor gµν of a Riemannian spacetime.

Definition 6

g̃µν ≡
√
−g0gµν ≡ η

′µν − 2f0ϕ
′µν , (80)

where g0 = Det gµν .

Applying similar methods of V. Fock ([38], p. 422-
430), Fock’s theorem of the Einstein tensor Gµν in the
Galilean coordinates ([38], p. 429) can be generalized to
non-inertial coordinate systems (x′0, x′1, x′2, x′3).

Proposition 4 The contravariant Einstein tensor Gµν

in a non-inertial coordinate systems (x′0, x′1, x′2, x′3)
can be written as

Gµν =
1

2g0
g̃αβ

∂2g̃µν

∂x′α∂x′β
+Π

′µ,αβΠ
′ν
αβ − 1

2
y

′µy
′ν

+
1

2
gµν(L′ +B′)−B

′µν , (81)

where

Π
′µ,αβ ≡ 1

2g0

(
g̃αλ

∂g̃µβ

∂x′λ
+ g̃βλ

∂g̃µα

∂x′λ
− g̃µλ

∂g̃αβ

∂x′λ

)
,

(82)

Π
′ν
αβ ≡ gαλgβσΠ

′ν,λσ, (83)

Γ
′α ≡ gσλΓ

′α
σλ, (84)

Γ
′ν
αβ ≡ 1

2
gµν

(
∂gµα
∂x′β

+
∂gµβ
∂x′α

− ∂gαβ
∂x′µ

)
(85)

Γ
′µν ≡ 1

2

(
gµα

∂Γ
′ν

∂x′α
+ gνα

∂Γ
′µ

∂x′α
− ∂gµν

∂x′α
Γ

′α

)
, (86)

y′β ≡ ∂(lg
√
−g0)

∂x′β
, y

′α ≡ gαβy′β , (87)

L′ ≡ − 1

2
√
−g0

Γ
′ν
αβ

∂g̃αβ

∂x′ν
+

1

2
y′νy

′ν , (88)

B
′µν ≡ Γ

′µν +
1

2
(y

′µΓ
′ν + y

′νΓ
′µ), B′ ≡ gµνB

′µν . (89)

A proof of Proposition 4 can be found in the Appendix.

Theorem 2 In a Fock coordinate system SF , we have
the following field equations

Gµν − 1

2g0

(√
−g0gαβ − η

′αβ
) ∂2(√−g0gµν)

∂x′α∂x′β

− 1

2g0
η

′αβ ∂2η
′µν

∂x′α∂x′β
−Π

′µ,αβΠ
′ν
αβ +

1

2
y

′µy
′ν

−1

2
gµν(L′ +B′) +B

′µν =
f20
g0

(T
′µν − T

′µν
ω ). (90)
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Proof of Theorem 2. Using Eqs. (80), Eqs. (81) can
be written as

Gµν =
1

2g0

(√
−g0gαβ − η

′αβ + η
′αβ
) ∂2(η′µν − 2f0ϕ

′µν)

∂x′α∂x′β

+Π
′µ,αβΠ

′ν
αβ − 1

2
y

′µy
′ν +

1

2
gµν(L′ +B′)−B

′µν

=
1

2g0

(√
−g0gαβ − η

′αβ
) ∂2(η′µν − 2f0ϕ

′µν)

∂x′α∂x′β

+
1

2g0
η

′αβ ∂2η
′µν

∂x′α∂x′β
− f0
g0
η

′αβ ∂2ϕ
′µν

∂x′α∂x′β

+Π
′µ,αβΠ

′ν
αβ − 1

2
y

′µy
′ν

+
1

2
gµν(L′ +B′)−B

′µν . (91)

Using Eqs. (80) and Eqs. (78), Eqs. (91) can be written
as Eqs. (90). �
We need to study the relationships between Eqs. (90)

and the Einstein’s field equations. In a harmonic coordi-
nates system, we have ([38], p. 254)

Γ
′ν = Γ

′µν = B
′µν = B′ = 0. (92)

Using Eqs. (92) and Eqs. (90), we have the following
result.

Corollary 2 In a Fock coordinate system SF the field
equations (90) can be written as

Gµν − 1

2g0

(√
−g0gαβ − η

′αβ
) ∂2(√−g0gµν)

∂x′α∂x′β

− 1

2g0
η

′αβ ∂2η
′µν

∂x′α∂x′β
−Π

′µ,αβΠ
′ν
αβ

+
1

2
y

′µy
′ν − 1

2
gµνL′ =

f20
g0

(T
′µν − T

′µν
ω ). (93)

Definition 7 If the following conditions are valid

η
′µν ≈ ηµν , (94)∣∣∣∣∣12η′αβ ∂2η

′µν

∂x′α∂x′β

∣∣∣∣∣≪ ∣∣∣f20 (T ′µν − T
′µν
ω )

∣∣∣ , (95)

then we call this reference frame quasi-inertial.

Using Eqs. (95) and Eqs. (93), we have the following
result.

Corollary 3 If the reference frame SF is quasi-inertial,
then, the field equations (93) can be written as

Gµν − 1

2g0

(√
−g0gαβ − η

′αβ
) ∂2(√−g0gµν)

∂x′α∂x′β

−Π
′µ,αβΠ

′ν
αβ +

1

2
y

′µy
′ν − 1

2
gµνL′

≈ f20
g0

(T
′µν − T

′µν
ω ). (96)

Eqs. (96) are only valid approximately in a quasi-
inertial Fock coordinate system SF . Now we consider
weak fields.

Definition 8 If ϕ
′µν and their first and higher deriva-

tives satisfy the following conditions∣∣∣2f0ϕ′µν
∣∣∣≪ 1, (97)∣∣∣∣∣ ∂j+k(2f0ϕ

′µν)

∂(x′α)j∂(x′β)k

∣∣∣∣∣≪ 1, j + k = 1, 2, 3, · · · (98)

then we call this field ϕ
′µν weak.

Following similar ideas as in Ref. [25], we introduce
the following assumption.

Assumption 7 For weak fields, the following relation-
ships are valid

T
′µν − T

′µν
ω ≈ T

′µν
m + T

′µν
Ω(1). (99)

Similar to Ref. [25], we have the following result.

Corollary 4 Suppose that (1) the Fock coordinate sys-
tem SF is quasi-inertial; (2) the field is weak. Then, the
field equations (96) reduce to

Rµν − 1

2
gµνR ≈ f20

g0

(
T

′m
µν + T

′Ω(1)
µν

)
. (100)

Proof of Corollary 4. According to Definition 8,
f0ϕ

′µν and their first and higher derivatives are small
quantities of order ε, where |ε| ≪ 1 is a small quantity.
Since the reference frame is quasi-inertial, Eqs. (94) are
valid. Using Eqs. (94), Eqs. (80) can be written as

√
−g0gµν ≈ ηµν − 2f0ϕ

′µν . (101)

Since the field is weak, Eqs. (97) and Eqs. (98) are
valid. Thus, applying Eqs. (97) and Eqs. (101), we have
the following estimations of the order of magnitude of the
following quantities

√
−g0gαβ − η

′αβ ∼ ε. (102)

Using Eqs. (98), we have the following estimations

∂gµν
∂x′α

∼ ∂gµν

∂x′α
∼ ε. (103)

Applying Eqs. (101) and Eqs. (98), we have the follow-
ing estimations

∂2(
√
−g0gµν)

∂x′α∂x′β
=
∂2(−2f0ϕ

′µν)

∂x′α∂x′β
∼ ε. (104)

Thus, using Eqs. (102) and Eqs. (104), we have the
following estimations(√

−g0gαβ − η
′αβ
) ∂2(√−g0gµν)

∂x′α∂x′β
∼ ε2. (105)
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Applying Eqs. (82), Eqs. (83) and Eqs. (103), we have
the following estimations

Π
′µ,αβ ∼ Π

′ν
αβ ∼ ε. (106)

Using Eqs. (87), we have the following relationship
([38], p. 143)

y′β = Γ
′ν
βν . (107)

We also have ([38], p. 143)

Γ
′ν
βν =

1

2
gµν

∂gµν
∂x′β

. (108)

Applying Eqs. (107), Eqs. (108) and Eqs. (103), we
have the following estimations

y′β ∼ ε. (109)

Using Eqs. (87) and Eqs. (109), we have the following
estimations

y
′α ∼ ε. (110)

Similar to the case of the Galilean coordinates, we have
([38], p. 430)

L′ = −1

2
Γ

′ν
αβ

∂gαβ

∂x′ν
− Γ

′αy′α. (111)

Applying Eqs. (92), Eq. (111) can be written as

L′ = −1

2
Γ

′ν
αβ

∂gαβ

∂x′ν
. (112)

Using Eq. (112), Eqs. (85) and Eqs. (103), we have the
following estimation

L′ ∼ ε2. (113)

Applying Eqs. (105), Eqs. (106), Eqs. (110) and Eq.
(113), we see that the second to the fifth term on the
left side of Eqs. (96) are all small quantities of order ε2.
Ignoring all these small quantities of order ε2 in Eqs. (96)
and using Eqs. (99), we obtain

Gµν ≈ f20
g0

(
T

′µν
m + T

′µν
Ω(1)

)
. (114)

Applying the rules of lowering the indexes of tensors,

i.e., Gµν = gµσgνλGσλ, T
′µν
m = gµσgνλT

′m
σλ , T

′µν
Ω(1) =

gµσgνλT
′Ω(1)
σλ , Eqs. (114) can be written as

Gσλ ≈ f20
g0

(
T

′m
σλ + T

′Ω(1)
σλ

)
. (115)

Putting Eqs. (79) into Eqs. (115), we obtain Eqs. (100).
�
Using Eq. (23), the field equations (100) can be written

as

Rµν − 1

2
gµνR ≈ 1

g0

8πγN
c4

(
T

′m
µν + T

′Ω(1)
µν

)
. (116)

Similar to Ref. [25], we have the following result.

Corollary 5 Suppose that (1) the Fock coordinate sys-
tem SF is quasi-inertial; (2) the field is weak; (3) g0 ≈
−1. Then, the field equations (100) reduce to

Rµν − 1

2
gµνR ≈ −f20

(
T

′m
µν + T

′Ω(1)
µν

)
. (117)

We introduce the following notation

κ = f20 =
8πγN
c4

. (118)

Using Eq. (118), the field equations (100) can be writ-
ten as

Rµν − 1

2
gµνR ≈ κ

g0

(
T

′m
µν + T

′Ω(1)
µν

)
. (119)

Using Eq. (118), the field equations (117) can be writ-
ten as

Rµν − 1

2
gµνR ≈ −κ

(
T

′m
µν + T

′Ω(1)
µν

)
. (120)

We notice that the field equations (120) are the E-

instein’s equations [1–3] if we suppose that T
′Ω(1)
µν ≈ 0.

Therefore, the field equations (90) are generalizations of
the Einstein’s equations in some special non-inertial ref-
erence frames. Thus, all known experiments of gravita-
tional phenomena which support the theory of general
relativity may also be explained by this theory of gravity
based on the theory of vacuum mechanics [25–28].

VIII. DISCUSSION

Although the field equations (90) are generalizations of
the Einstein’s equations, there exist at least the following
differences between this theory and the theory of general
relativity.

1. In the theory of general relativity, the Einstein’s
equations are assumptions [1–3]. Although A. Einstein
introduced his new concept of gravitational aether ([17],
p. 63-113), he did not derive his equations theoretical-
ly based on his new concept of the gravitational aether.
In our theory, the generalized Einstein’s equations (90)
are derived by methods of special relativistic continuum
mechanics based on some assumptions.

2. Although the theory of general relativity is a field
theory of gravity, the definitions of gravitational fields are
not based on continuum mechanics [1–3, 42]. Because of
the absence of a continuum, the theory of general rela-
tivity may be regarded as a phenomenological theory of
gravity. In our theory, gravity is transmitted by the Ω(0)
substratum. The tensorial potential ψ′

µν of gravitational
fields are defined based on special relativistic continuum
mechanics.

3. In Einstein’s theory, the concept of Riemannian s-
pacetime is introduced together with the field equations
[1–3]. The theory of general relativity cannot provide a
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physical definition of the metric tensor of the Riemanni-
an spacetime. In our theory, the background spacetime
is the Minkowski spacetime. However, the initial flat
background spacetime is no longer physically observable.
According to the equation of motion of a point particle in
gravitational field in inertial reference frames [25], to the
first order of f0ψµν , the physically observable spacetime
is a Riemannian spacetime with the metric tensor gµν .
The metric tensor gµν is defined based on the tensorial
potential ψ′

µν of gravitational fields.
4. The masses of particles are constants in the theory

of general relativity [1–3]. In our theory, the masses of
particles are functions of time t [27].
5. The gravitational constant GN is a constant in the

theory of general relativity [1–3]. The theory of general
relativity cannot provide a derivation of GN . In our the-
ory, the parameter γN is derived theoretically. From Eq.
(4), we see that γN depends on time t.
6. In our theory, the parameter γN in Eq. (4) depends

on the density ρ0 of the Ω(0) substratum. If ρ0 varies
from place to place, i.e., ρ0 = ρ0(t, x, y, z), then the space
dependence of the gravitational constant γN can be seen
from Eq. (4).
7. The Einstein’s equations [1–3] are supposed to be

valid in all reference frames. It is known that gener-
al relativity is a pure theory and contains no adjustable
constants. So the predictions of general relativity are
fixed. Thus, every experimental test of the theory is im-
portant. For more than 100 years, experimental tests of
general relativity are carried out only in the solar sys-
tem [43, 44]. However, the solar system can be regarded
approximately as an inertial reference frame. Therefore,
it is still not clear whether the Einstein’s equations are
valid in all non-inertial reference frames or not. How-
ever, in our theory the generalized Einstein’s equations
(90) are valid only in Fock coordinate systems. Whether
it is possible for us to derive generalized Einstein’s equa-
tions in other non-inertial reference frames is an interest-
ing question. V. Fock said ([38], p. 394):”But physically
the ’general principle of relativity’, in the sense that cor-
responding processes exist in arbitrary reference frames,
does not hold at all. Therefore Einstein’s conclusion that
all reference frames are physically equivalent, is without
foundation.”
8. The Einstein’s equations are rigorous [1–3]. How-

ever, in our theory, Eqs. (120) are valid approximately
under some assumptions.
It is interesting whether it is possible for us to detect

some of these differences by experiments.

IX. CONCLUSION

Inspired by the mathematical forms of the dynamical
gravitational potentials in inertial reference frames, we
establish mathematical models of inertial potential and
inertial force Lagrangian in non-inertial reference frames.
Field equations of gravitation in Fock coordinate systems

are derived based on the Euler-Lagrange equations. Ap-
plying the generalized Fock’s theorem, generalized Ein-
stein’s equations in Fock coordinate systems are derived.
If the field is weak and the reference frame is quasi-
inertial, these generalized Einstein’s equations reduce to
Einstein’s equations.
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Appendix

Proof of Proposition 4. The definition of the covari-
ant second rank curvature tensor Rµν is ([38], p. 422)

Rµν ≡ gαβRµα,βν , (121)

where

Rµα,βν ≡ 1

2

(
∂2gµν

∂x′α∂x′β
+

∂2gαβ
∂x′µ∂x′ν

− ∂2gνα
∂x′µ∂x′β

− ∂2gµβ
∂x′ν∂x′α

)
− gσλΓ

′σ
µβΓ

′λ
να

+gσλΓ
′σ
µνΓ

′λ
αβ , (122)

is the fourth rank curvature tensor.
The contravariant curvature tensor Rµν can be ob-

tained by raising the indices ([38], p. 156)

Rµν = gµσgνλRσλ. (123)

Following similar methods of V. Fock ([38], p. 425), we
have

Rµν =
1

2
gαβ

∂2gµν

∂x′α∂x′β
− Γ

′µν + Γ
′µ,αβΓ

′ν
αβ . (124)

The definition of the invariant of the curvature tensor
is ([38], p. 425)

R ≡ gµνR
µν . (125)

Following similar methods of V. Fock ([38], p. 428), we
have

R = gαβy′αβ − Γ
′αy′α − Γ′ − L′, (126)

where

y′αβ ≡ ∂2 lg
√
−g0

∂x′α∂x′β
, (127)

Γ′ ≡ gµνΓ
′µν , (128)
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L′ ≡ −1

2
Γ

′ν
αβ

∂gαβ

∂x′ν
− Γ

′α ∂(lg
√
−g0)

∂x′α
, (129)

The second derivative of g̃µν is ([38], p. 428)

∂2g̃µν

∂x′α∂x′β
=

√
−g0

(
∂2gµν

∂x′α∂x′β
+ y′β

∂gµν
∂x′α

+ y′α
∂gµν
∂x′β

+y′αβg
µν + y′αy

′
βg

µν
)
. (130)

Multiplying gαβ , Eqs. (130) can be written as ([38], p.
428)

gαβ
∂2g̃µν

∂x′α∂x′β
=

√
−g0

(
∂2gµν

∂x′α∂x′β
+ 2y′α

∂gµν

∂x′α

+gµνgαβy′αβ + gµνy′αy
′α) . (131)

Using Eqs. (124) and Eqs. (126), we have ([38], p. 428)

Rµν − 1

2
gµνR =

1

2

(
gαβ

∂2gµν
∂x′α∂x′β

+ gµνgαβy′αβ

)
+
1

2
gµν(Γ

′αy′α + Γ′ + L′)

−Γ
′µν + Γ

′µ,αβΓ
′ν
αβ (132)

Comparing Eqs. (132) and Eqs. (131), we have ([38],
p. 429)

Rµν − 1

2
gµνR =

1

2
√
−g0

gαβ
∂2g̃µν

∂x′α∂x′β

+
1

2
gµν(y′αy

′α + Γ
′αy′α + Γ′ + L′)

−Γ
′µν + y′α

∂gµν

∂x′α
+ Γ

′µ,αβΓ
′ν
αβ .(133)

Using the notations defined in Eqs. (79), Eqs. (82),
Eqs. (83) and Eqs. (89), Eqs. (133) can also be written
as Eqs. (81) ([38], p. 429-430). �
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